Table of contents

- Appendix Figure S1. Symmetry analysis, localized connector refinement and homology to T4 gp10.
- Appendix Figure S2. Comparison of the T6SS baseplate with the T4 phage inner baseplate.
- Appendix Figure S3. Schematic representation of the genomic region encoding
 T6SS from Vibrio cholerae.
- Appendix Table S1. Cryo-EM data collection and processing.
- Appendix Table S2. Fitting of X-ray crystallographic structures into cryo-EM density maps of baseplate and cap.
- Appendix Table S3. Strains used in this study, related to Material and Methods.

Appendix Fig. S1

Symmetry analysis, localized connector refinement and homology to T4 gp10.

(A). Bottom and side views of the 3-fold averaged sheath-baseplate reconstruction. Rotational power spectra of the cross sections through the sheath, wedge, and spike regions.

(B). Tilted view of the composite baseplate cryo-EM reconstruction, except for the disordered connector density, replaced by six copies of locally refined reconstruction colored in pink.

(C). Tilted view of the 12 Å T4 baseplate cryo-EM reconstruction (EMD-1048), with fitted upper peripheral baseplate (EMD-3394) colored in pink.

(D). Side views of the TssK connector protein and domain IV of T4 gp10 with three-fold symmetry axis highlighted with black dashed lines.

(E). View along three-fold symmetry axis of (D).

Appendix Fig. S2

Comparison of the T6SS baseplate with the T4 phage inner baseplate.

- (A). Extracted putative baseplate of 8 Å T6SS sheath-baseplate reconstruction.
- (B). Cryo-EM reconstruction of the T4 inner baseplate (EMD-3392) low-pass filtered to 8 Å.

Appendix Fig. S3

Schematic representation of the genomic region encoding T6SS from Vibrio cholerae.

Main cluster with VgrG-3, and three auxiliary clusters – Hcp-1, Hcp-2 and PAAR are shown. Baseplate, membrane complex, cap, effectors, adaptors, immunity and regulatory proteins are shown.

		Movies		Particles						~		
T6S Part	Symmetry	on Hcp lim.	Hcp lim.	Non Hcp lim.		Hcp lim.		Final 3DR	œl size, Å	olution, <i>İ</i>	Software	
				Picked	After	3D	Picked	After	combined	Pi	Res	
		z			2D			2D				
Baseplate	C6/C3	6,603	,603 2,599	21,446	8,309	2,660	12,832	3,241	1,265	2.12	8/11	MotionCorr2, Gctf, Scipion, RELION1.4, 2
Distal end	C6			21)110	0,000	3,710			3,710*		7.5	
TssK	C6-C1 relaxation				-				3,600		10	RELION2

Appendix Table S1. Cryo-EM data collection and processing.

* Final 3D refinement with particles from non-Hcp limited cells only.

Model	PDB	% atoms	Correlation coefficient
Sheath ring 1		87	0.87
Ring 1 refitted		90	0.89
Ring 2	ENAVNI	86	0.86
Ring 3		89	0.88
Ring 4		91	0.89
Ring 5		91	0.90
VgrG/PAAR C6		88	0.88
VgrG/PAAR C3	41VI I K/ 4JI V	94	0.93
Ring N (topmost)		76	0.79
Ring N refitted	5MXN	84	0.86
Ring (N-1)		90	0.87
Hcp N (topmost)		60	0.87
Hcp N-1	5MXN*	77	0.90
Hcp N-2		90	0.95
VipA/VipB only into distal end	5MXN**	73	0.82
TssK	5M30	66	0.92

Appendix Table S2. Fitting of X-ray crystallographic structures into cryo-EM density maps of baseplate and distal end.

* Hcp tube and **VipA/VipB sheath models were extracted from complete sheath-tube model (PDB 5MXN).

Appendix Table S3.	Strains used in this study,	related to Material and Methods.	

Organism	Genotype	Plasmid	Relevant features	Source	
V. cholerae 2740-80	lac7 ⁻ Str ^r vinA-msfGEP		C-terminal chromosomal fusion of	(Kudryashev et	
			msfGFP to vipA	al., 2015)	
	lac7- Str ^r AvinA AflaC	pBAD24-	Complementation of vipA deletion from		
	acz, sti, zvipa, zjigo	vipA	inducible vector; Amp ^r	(Brackmann et	
	lacz Str Aving Aflac	pBAD24-	Complementation of vipA deletion from	า al., 2017)	
	lacz, sti, zwpa, zjige	vipA-N3	inducible vector; Amp ^r		
	lacz Stri wind metCED Abon1 Abon2		Deletion of both <i>hcp</i> variants in <i>vipA</i> -	(Vettiger et al.,	
	ίας, 3ti , <i>πρΑ-πδ</i> ίθ <i>ερ, Δπερι, Δπερ</i> ε		msfGFP background	2016)	
	lacZ ⁻ , Str ^r , vipA-msfGFP, Δhcp1, Δhcp2, ΔflgG		flgG deletion in hcp mutant background		
	last Style wind material Aband Aband Afler	pBAD24-	Complementation of <i>hcp</i> deletion from		
	lacz , Str, VipA-msjGFP, Δпср1, Δпср2, ΔjigG	hcp2	inducible vector; Amp ^r		
	lacz Stri wind N2 msfCED Abon1 Abon2		Chromosomal integration of vipA-N3-		
	AflaC		<i>msfGFP</i> in <i>hcp / flgG</i> deletion	this study	
	Дjigð		background		
	lacz- Stri vind N2 msfCED Abon1 Abon2	pBAD24- <i>hcp2</i>	Complementation of hcp deletion in		
	AflaG		vipA-N3-msfGFP background from		
	Дjigð		inducible vector; Amp ^r		
E. coli	Km ^r thi 1 thr low ton A lack sunE		Allelic replacement vector used for all in-		
SM10 λ	rocA::PD4 2 Te::Mu pir	pWM91	frame deletions by conjugation; sacB,		
pir	Teca		Amp ^r /Gent ^r		
DH5αλ pir	F ⁻ , endA1, glnV44, thi-1, recA1, relA1, gyrA96				
	deoR, nupG, Φ80d <i>lacZ</i> ΔM15, (<i>lacZYA-</i>		Cloning strain		
	<i>argF</i>)U169, hsdR17(rK ⁻ mK ⁺), λ ⁻				