Supporting information for

Saturation mutagenesis by efficient free-energy calculation

Zuzana Jandova¹, Daniel Fast¹, Martina Setz¹, Maria Pechlaner^{1,‡}, Chris Oostenbrink^{1*}

¹ Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna

[‡] Current address: Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich, Switzerland

*chris.oostenbrink@boku.ac.at

- Table S1: end-point energies ($\langle E \rangle$) and fluctuations ($\langle E^2 \rangle \langle E \rangle^2$) uncharging calculations of sidechains in water for the charged state (λ =0) and neutral state (λ =1) in kJ/mol in Table 1.
- Table S2: end-point energies ($\langle E \rangle$) and fluctuations ($\langle E^2 \rangle \langle E \rangle^2$) of the uncharging calculations of sidechains in tripeptides for the charged state (λ =0) and neutral state (λ =1) in kJ/mol in Table 4.
- Table S3: the percentage of contributing configurations in the OSP calculations for all amino acid sidechain analogues (reference states R1 and R2) and for all amino acids (reference states R3, R4, R5 and R6).
- Table S4: comparison of the computational efforts of TI and the TPF+OSP approach.
- Figure S1: Curves of convergence of fluctuations $(\langle E^2 \rangle \langle E \rangle^2)$ at the end points of methione sidechains uncharging. (charged state (λ =0) and neutral state (λ =1).
- Data S1: Molecular topology building blocks for the reference states in Figure 2 of the main document.

	charged(Q) (λ=0)		neutral(N) (λ=1)	
	$\langle E \rangle$	$\langle E^2 angle - \langle E angle^2$	$\langle E \rangle$	$\langle E^2 \rangle - \langle E \rangle^2$
arg	338.69	35.37	-33.41	31.51
asn	129.62	22.94	-0.11	14.25
asp	684.48	41.92	33.87	34.18
cys	25.33	10.70	0.07	6.70
gln	129.85	22.76	-0.10	14.19
glu	680.25	41.23	33.50	34.21
hisa	124.11	20.37	-0.32	13.64
hisb	152.69	21.65	-0.71	15.76
lys	417.29	36.61	-33.21	34.60
met	34.95	11.44	-0.10	7.40
phe	22.10	8.91	-0.62	6.00
ser	80.67	17.96	0.06	9.33
thr	78.49	17.60	0.11	9.11
trp	72.76	15.50	-0.99	12.00
tyr	86.42	17.95	-0.37	10.38

Table S1: End-point energies ($\langle E \rangle$) and fluctuations ($\langle E^2 \rangle - \langle E \rangle^2$) of uncharging calculations

of sidechains in water for the charged state (λ =0) and neutral state (λ =1) in Table 1 (in kJ/mol).

	charged(Q) (λ=0)		neutral(N) (λ=1)	
	$\langle E \rangle$	$\langle E^2 \rangle - \langle E \rangle^2$	$\langle E \rangle$	$\langle E^2 angle - \langle E angle^2$
arg	415.90	35.10	45.60	31.40
asn	328.80	22.50	198.80	14.50
asp	756.70	41.60	118.00	33.40
cys	33.70	10.60	8.30	6.60
gln	372.10	23.70	197.10	16.00
glu	747.10	41.20	104.50	33.70
hisa	101.90	20.40	-22.00	13.40
hisb	146.30	21.80	-2.80	15.60
lys	487.20	36.50	41.50	34.00
met	32.30	11.30	-2.00	7.40
phe	12.70	8.70	-7.90	5.80
ser	91.20	17.50	15.70	9.30
thr	86.50	17.10	17.40	9.80
trp	92.00	15.40	23.20	11.60
tyr	151.80	18.00	64.10	10.40

Table S2: End-point energies ($\langle E \rangle$) and fluctuations ($\langle E^2 \rangle - \langle E \rangle^2$) of uncharging calculations

of sidechains in tripeptides for the charged state (λ =0) and neutral state (λ =1) in Table 4 (in kJ/mol).

	sidec	hain					
	analo	gues		tripeptides			
	R1	R2	R3	R4	R5	R5	
ala	49.85	-	79.14	82.23	83.68	83.23	
arg	0.00	6.29	0.02	1.06	0.01	0.01	
asn	5.00	57.96	17.14	38.26	15.97	15.84	
asp	6.69	69.19	16.62	37.75	15.38	14.95	
cys	18.23	80.92	45.11	55.24	45.17	43.98	
gln	0.00	41.26	4.06	24.50	4.10	4.18	
glu	1.63	57.01	2.62	19.65	2.40	2.44	
hisa	0.53	43.37	1.19	16.20	1.12	1.15	
hisb	0.32	33.44	1.14	14.21	1.13	1.08	
ile	0.95	72.36	1.74	5.74	3.04	3.13	
leu	1.65	53.16	4.38	19.57	4.32	4.34	
lys	0.11	11.96	0.51	9.87	0.42	0.46	
met	0.00	67.64	1.87	18.40	2.03	2.05	
phe	0.03	18.95	0.08	4.01	0.05	0.05	
ser	27.07	84.09	53.60	51.60	54.50	53.30	
thr	9.46	93.44	21.73	24.80	25.64	26.33	
trp	0.00	2.76	0.00	0.36	0.00	0.00	
tyr	0.00	12.12	0.04	2.61	0.03	0.03	
val	7.38	82.34	9.38	11.98	11.96	12.12	

Table S3: Percentage of configurations significantly contributing to the value $(\Delta G_{R>N}^{OSP})$ in OSP. The number of configurations is counted for which $(H_N - H_R)$ in equation (8) is less than $\Delta G_{N>R}^{OSP} + k_B T$.

	ТІ			TPF+OSP		
ns	Q>N	N>A	total	Q>N	N>A	total
1 AA	29.2	11.2	40.4	20.0	50.0	70.0
17 AA	408.5	190.7	599.3	280.6	50.0	330.6

Table S4: Computational resources spent on calculation of the free energy of mutation into alanine. The value for TI is the result of 14 uncharging TI calculations and 17 annihilation TI calculations of mutations to Ala in the tripeptides. In OSP only one 50 ns simulation of R5 reference in tripeptide was included, while for TPF 14 uncharging calculations (two simulations each) are taken into account. The total amount of ns for every process is labelled by Q>N and N>A for the calculation of uncharging and annihilation free energies, respectively.

Figure S1: Cumulative estimates of the fluctuations $(\langle E^2 \rangle - \langle E \rangle^2)$ at the end points of uncharging (charged state (λ =0) and neutral state (λ =1)) of selected sidechain analogues as a function of simulation time.

Data S1: Molecular topology building blocks for the reference states in Figure 2 of the main document.

MTBUILDBLSOLUTE # building block (residue, nucleotide, etc.) # RNME R1 # number of atoms, number of preceding exclusions # NMAT,NLIN 2 0 # preceding exclusions #ATOM MAE MSAE # atoms #ATOM ANM IACM MASS CGMICGM MAE MSAE 0.00000 0 1 1 AR 31 39 2 # bonds # NB 0 # IB JB MCB # bond angles # NBA 0 # ΙB JB KB MCB # improper dihedrals # NIDA 0 # ΙB JB LB MCB KB # dihedrals # NDA 0 # ΙB JB KB LB MCB # LJ exceptions # NEX 0 # IB JB MCB NCO IND CON END MTBUILDBLSOLUTE # building block (residue, nucleotide, etc.) # RNME R2 # number of atoms, number of preceding exclusions # NMAT,NLIN 2 0 # preceding exclusions #ATOM MAE MSAE # atoms #ATOM ANM IACM MASS CGMICGM MAE MSAE 0.00000 1 AR 31 39 0 1 2 0.00000 2 AR 31 39 1 0 # bonds # NB 1 # ΙB JB MCB 1 2 54 # bond angles # NBA 0 \mathbf{JB} # IΒ KB MCB # improper dihedrals # NIDA

IB JB KB LB MCB # dihedrals # NDA # ΙB JB KB LBMCB # LJ exceptions # NEX # IB JB MCB NCO IND CON END MTBUILDBLSOLUTE # building block (residue, nucleotide, etc.) # RNME R3 # number of atoms, number of preceding exclusions # NMAT,NLIN # preceding exclusions #ATOM MAE MSAE -1 # atoms #ATOM ANM IACM MASS CGMICGM MAE MSAE 6 14 1 N -0.31000 2 H 0.31000 3 CA 0.00000 4 AR 0.00000 0.45000 5 C -0.45000# bonds # NB # MCB ΙB JB # bond angles # NBA IΒ JB KB MCB # -1 -1 # improper dihedrals # NIDA # KB LBMCB ΙB JB -1

7 6 1 # dihedrals # NDA # ΙB JB KB LBMCB -2 -1 -1 -1 # LJ exceptions # NEX # IB JB MCB NCO IND CON END MTBUILDBLSOLUTE # building block (residue, nucleotide, etc.) # RNME R4 # number of atoms, number of preceding exclusions # NMAT,NLIN # preceding exclusions #АТОМ MAE MSAE # atoms -1 #ATOM ANM IACM MASS CGMICGM MAE MSAE -0.31000 1 N 2 H 0.31000 3 CA 0.00000 4 AR 0.00000 5 AR 0.00000 6 C 0.45000 -0.45000 # bonds # NB # IΒ JB MCB 6 8 10 # bond angles # NBA # ΙB JB KB MCB -1 -1

8 33 # improper dihedrals # NIDA # ΙB JB KB LBMCB -1 # dihedrals # NDA # ΙB JB KΒ LBMCB -2 -1 -1 -1 # LJ exceptions # NEX # IB JB MCB NCO IND CON END MTBUILDBLSOLUTE # building block (residue, nucleotide, etc.) # RNME R5 # number of atoms, number of preceding exclusions # NMAT,NLIN 7 2 # preceding exclusions MAE MSAE #ATOM -1 # atoms #ATOM ANM IACM MASS CGMICGM MAE MSAE 1 N -0.31000 2 H 0.31000 3 CA 0.00000 0.00000 4 D 5 AR 0.00000 6 C 0.45000 -0.45000 # bonds # NB MCB # IΒ JB # bond angles # NBA # KB MCB IΒ JB -1 -1

	3	9	27		
	4	5	27		
	4	8	27		
	5	6	27		
	5	7	27		
	9	10	5		
,,	, 9,	11	10		
#	bond	ang⊥	es		
#	NBA				
"	15				
#	IB	JB	KB	MCB	
	-1	1	2	32	
	-1	1	3	31	
	2	1	3	18	
	1	3	4	13	
	1	3	9	13	
	4	3	9	13	
	3	4	5	15	
	3	4	8	15	
	5	4	8	15	
	4	5	6	15	
	4	5	7	15	
	6	5	7	15	
	3	9	10	30	
	3	9	11	19	
	10	<u>^</u>	1 1	2.2	
	10	9	11	33	
#	impro	oper	dihed	33 rals	
# #	impro NIDA	oper	11 dihed:	33 rals	
# #	impro NIDA 5	oper	ll dihed:	33 rals	
# # #	impro NIDA 5 IB	9 oper JB	ll dihed KB	33 rals LB	МСВ
# # #	impro NIDA 5 IB 1	y oper JB -1	II dihed: KB 3	33 rals LB 2	MCB 1
# # #	IU impro NIDA 5 IB 1 3	y oper JB -1 1	II dihed KB 3 9	33 rals LB 2 4	MCB 1 2
# # #	IU impro NIDA 5 IB 1 3 4	9 oper JB -1 1 8	II dihed KB 3 9 5	33 rals LB 2 4 3	MCB 1 2 2
# #	impro NIDA 5 IB 1 3 4 5	9 oper JB -1 1 8 4	11 dihed: KB 3 9 5 6	33 rals LB 2 4 3 7	MCB 1 2 2 2
##	impro NIDA 5 IB 1 3 4 5 9	9 oper JB -1 1 8 4 3	11 dihed: 8 3 9 5 6 11	33 rals LB 2 4 3 7 10	MCB 1 2 2 2 1
####	10 impro NIDA 5 IB 1 3 4 5 9 dihee	y oper JB -1 1 8 4 3 drals	11 dihed 3 9 5 6 11	33 rals LB 2 4 3 7 10	MCB 1 2 2 2 1
## # ##	10 impro NIDA 5 IB 1 3 4 5 9 diheo NDA	y oper JB -1 1 8 4 3 drals	11 dihed: 8 3 9 5 6 11	33 rals LB 2 4 3 7 10	MCB 1 2 2 2 1
## # ##	10 impro NIDA 5 IB 1 3 4 5 9 diheo NDA 7	y oper JB -1 1 8 4 3 drals	11 dihed: 3 9 5 6 11	33 rals LB 2 4 3 7 10	MCB 1 2 2 2 1
## # ## #	10 impro NIDA 5 IB 1 3 4 5 9 dihee NDA 7 IB	JB -1 1 8 4 3 drals JB	KB KB 5 6 11 KB	33 rals LB 2 4 3 7 10 LB	MCB 1 2 2 1 1 MCB
## # ## #	10 impro NIDA 5 IB 1 3 4 5 9 diheo NDA 7 IB -2	JB -1 1 8 4 3 drals JB -1	KB 5 6 11 KB 1	33 rals LB 2 4 3 7 10 LB 3	MCB 1 2 2 1 1 MCB 14
## # ## #	10 impro NIDA 5 IB 1 3 4 5 9 diheo NDA 7 IB -2 -1	y oper JB -1 1 8 4 3 drals JB -1 1	KB 5 6 11 KB 1 3	33 rals LB 2 4 3 7 10 LB 3 9	MCB 1 2 2 1 MCB 14 44
## # ## #	10 impro NIDA 5 IB 1 3 4 5 9 diheo NDA 7 IB -2 -1 -1	y oper JB -1 1 8 4 3 drals JB -1 1 1	KB 3 9 5 6 11 KB 1 3 3	33 rals LB 2 4 3 7 10 LB 3 9 9	MCB 1 2 2 1 MCB 14 44 43
## # ## #	10 impro NIDA 5 IB 1 3 4 5 9 diheo NDA 7 IB -2 -1 -1 1	9 5 5 5 5 5 5 5 5 5 5 5 5 5	KB 3 9 5 6 11 KB 1 3 3 4	33 rals LB 2 4 3 7 10 LB 3 9 9 5	MCB 1 2 2 1 1 MCB 14 44 43 34
## # ## #	10 impro NIDA 5 IB 1 3 4 5 9 diheo NDA 7 IB -2 -1 -1 1 1	y opper JB -1 1 8 4 3 drals JB -1 1 1 3 3	KB 3 9 5 6 11 KB 1 3 3 4 9	33 rals LB 2 4 3 7 10 LB 3 9 9 5 11	MCB 1 2 2 1 MCB 14 44 43 34 42
## # ## #	10 impro NIDA 5 IB 1 3 4 5 9 diheo NDA 7 IB -2 -1 -1 1 1	y opper JB -1 1 8 4 3 drals JB -1 1 3 3 3	11 dihed: 3 9 5 6 11 KB 1 3 3 4 9 9	33 rals LB 2 4 3 7 10 LB 3 9 9 5 11 11	MCB 1 2 2 1 MCB 14 44 43 34 42 45
## # ## #	10 impro NIDA 5 IB 1 3 4 5 9 diheo NDA 7 IB -2 -1 -1 1 1 1 3	y oper JB -1 1 8 4 3 drals JB -1 1 1 3 3 4	KB 3 9 5 6 11 KB 1 3 4 9 9 5	33 rals LB 2 4 3 7 10 LB 3 9 9 5 11 11 6	MCB 1 2 2 1 MCB 14 44 43 34 42 45 34
## # ## # #;	10 impro NIDA 5 IB 1 3 4 5 9 diheo NDA 7 IB -2 -1 -1 1 1 1 1 2 Je:	y oper JB -1 1 8 4 3 drals JB -1 1 1 3 3 4 xcept	KB 3 9 5 6 11 KB 1 3 3 4 9 5 5 ions	33 rals LB 2 4 3 7 10 LB 3 9 9 5 11 11 6	MCB 1 2 2 1 MCB 14 44 43 34 42 45 34
## # ## # ##	IU impro NIDA 5 IB 1 3 4 5 9 diheo NDA 7 IB -2 -1 1 1 1 1 3 LJ ez NEX	y pper JB -1 1 8 4 3 drals JB -1 1 3 3 4 xcept	KB 3 9 5 6 11 KB 1 3 4 9 5 ions	33 rals LB 2 4 3 7 10 LB 3 9 9 5 11 11 6	MCB 1 2 2 1 MCB 14 44 43 34 42 45 34
## # ## # ##	IU impro NIDA 5 IB 1 3 4 5 9 diheo NDA 7 IB -2 -1 1 1 1 3 LJ e: NEX 0	y pper JB -1 1 8 4 3 drals JB -1 1 3 3 4 xcept	KB 3 9 5 6 11 KB 1 3 4 9 5 ions	33 rals LB 2 4 3 7 10 LB 3 9 9 5 11 11 6	MCB 1 2 2 1 MCB 14 44 43 34 42 45 34
## # ## # ## #	IU impro NIDA 5 IB 1 3 4 5 9 diheo NDA 7 IB -2 -1 1 1 3 LJ e: NEX 0 IB	JB JB -1 1 8 4 3 drals JB -1 1 3 3 4 xcept JB	L1 dihed: KB 3 9 5 6 11 KB 1 3 4 9 9 5 ions MCB	33 rals LB 2 4 3 7 10 LB 3 9 9 5 11 11 6 NCO	MCB 1 2 2 1 MCB 14 44 43 34 42 45 34 1ND

CON