Heck Reaction of Electronically Diverse Tertiary Alkyl Halides

Daria Kurandina, Mónica Rivas, Maxim Radzhabov, and Vladimir Gevorgyan*

Table of Contents

1.	General Information	S2
2.	Synthesis of Starting Materials	S 3
3.	Optimization Table	S 7
4.	Visible Light-Induced Heck Reaction	S9
5.	Representative Procedures for 1 mmol Scale Reactions	S19
6.	Mechanistic Studies	S20
7.	NMR Spectral Data	S24
8.	References	S57

1. General Information

NMR spectra were recorded on Bruker Avance DRX-500 (500 MHz) or DPX-400 (400 MHz) instrument. ¹H signals are referenced to residual CHCl₃ at 7.26 ppm. ¹³C signals are referenced to CDCl₃ at 77.16 ppm. GC/MS analysis was performed on a Hewlett Packard Model 6890 GC interfaced to a Hewlett Packard Model 5973 mass selective detector (15 m x 0.25 mm capillary column, HP-5MS). Column chromatography was carried out employing Silicycle Silica-P flash silica gel (40-63 µm). Precoated silica gel plates F-254 were used for thin-layer analytical chromatography. Anhydrous solvents purchased from Aldrich were additionally purified on PureSolv PS-400-4 by Innovative Technology, Inc. purification system and/or stored over calcium hydride. Benzene was degassed by freeze-pump-thaw method prior to use. All starting materials were purchased from Strem Chemicals, Aldrich, Gelest Inc., TCI America, or Alfa Aesar, or synthesized via known literature procedures. The 34 W Blue LED lamp (Kessil KSH150B LED Grow Light) and Vornado 133 Small Air Circulator fan were purchased from amazon.com. All manipulations with transition metal catalysts were conducted in oven-dried glassware under inert atmosphere using a combination of glovebox and standard Schlenk techniques.

2. Synthesis of starting materials

Synthesis of Alkyl halides (1):

The following alkyl halides were purchased from commercial sources.

1b

Compound **1b** was prepared according to a literature procedure¹.

Compound **1f** was prepared according to a literature procedure $\frac{2-3}{2}$.

Ph OH Nal, MeSO₃H Ph I MeCN, 0 °C->rt 1c

Compound 1c was prepared according to a slightly modified literature procedure:⁴

MeSO₃H (650 μ L, 10 mmol, 2.0 equiv) was added dropwise to a solution of NaI (1.5 g, 10 mmol, 2.0 equiv) and 2-methyl-4-phenylbutan-2-ol (850 μ L, 5 mmol, 1 equiv) in MeCN (20 mL, 0.2 M) at 0 °C. The reaction mixture was allowed to warm to rt, and then stirred for an additional 30 min. Next, the reaction mixture was diluted with hexane and passed through a pad of silica gel. After it was concentrated on a rotary evaporator, the residue was purified by flash chromatography in hexanes. Yield: 1.1 g (82%). Spectroscopic data for **1f** were in accordance with the literature data.⁴

$$\begin{array}{c} O \\ EtO^{-P} \\ EtO^{-P} \\ EtO^{-P} \\ THF \end{array} \xrightarrow{iPrMgCl \cdot LiCl} EtO^{-P} \\ EtO^{-P} \\ EtO^{-P} \\ then I_2 \text{ in THF, 1 h} \end{array} \xrightarrow{O} \\ \begin{array}{c} O \\ EtO^{-P} \\ EtO^{-P} \\ EtO^{-P} \\ then I_2 \text{ in THF, 1 h} \end{array} \xrightarrow{O} \\ \begin{array}{c} O \\ EtO^{-P} \\ EtO^{-P} \\ then I_2 \text{ in THF, 1 h} \end{array} \xrightarrow{O} \\ \begin{array}{c} O \\ EtO^{-P} \\ EtO^{-P} \\ then I_2 \text{ in THF, 1 h} \end{array} \xrightarrow{O} \\ \begin{array}{c} O \\ EtO^{-P} \\ EtO^{-P} \\ then I_2 \text{ in THF, 1 h} \end{array} \xrightarrow{O} \\ \begin{array}{c} O \\ EtO^{-P} \\ then I_2 \text{ in THF, 1 h} \end{array} \xrightarrow{O} \\ \begin{array}{c} O \\ EtO^{-P} \\ then I_2 \text{ in THF, 1 h} \end{array} \xrightarrow{O} \\ \begin{array}{c} O \\ EtO^{-P} \\ then I_2 \text{ in THF, 1 h} \end{array} \xrightarrow{O} \\ \begin{array}{c} O \\ EtO^{-P} \\ then I_2 \text{ in THF, 1 h} \end{array} \xrightarrow{O} \\ \begin{array}{c} O \\ EtO^{-P} \\ then I_2 \text{ in THF, 1 h} \end{array} \xrightarrow{O} \\ \begin{array}{c} O \\ EtO^{-P} \\ then I_2 \text{ in THF, 1 h} \end{array} \xrightarrow{O} \\ \begin{array}{c} O \\ EtO^{-P} \\ then I_2 \text{ in THF, 1 h} \end{array} \xrightarrow{O} \\ \begin{array}{c} O \\ EtO^{-P} \\ then I_2 \text{ in THF, 1 h} \end{array} \xrightarrow{O} \\ \begin{array}{c} O \\ EtO^{-P} \\ then I_2 \text{ in THF, 1 h} \end{array} \xrightarrow{O} \\ \begin{array}{c} O \\ EtO^{-P} \\ then I_2 \text{ in THF, 1 h} \end{array} \xrightarrow{O} \\ \begin{array}{c} O \\ EtO^{-P} \\ then I_2 \text{ in THF, 1 h} \end{array} \xrightarrow{O} \\ \begin{array}{c} O \\ EtO^{-P} \\ then I_2 \text{ in THF, 1 h} \end{array}$$

Compound 1e was prepared according to the following procedure:

To diethyl chlorophosphate (2.89 mL, 20 mmol, 1 equiv) dissolved in THF (40 mL, 0.5 M) was added 1.3 M THF solution of *i*PrMgCl·LiCl (20 mL, 26 mmol, 1.3 equiv) over 30 min at -78 °C under inert atmosphere. The reaction was allowed to warm up to rt overnight. Then it was quenched

with saturated NH₄Cl solution (15 mL) and extracted with Et₂O (3×30 mL). The resulting organic layer was washed with brine (2×10 mL), dried with MgSO₄ and concentrated *in vacuo*. The product was used in the next step without further purification. Yield: 2.8 g (78%).

To diethyl isopropylphosphate (721 mg, 4 mmol, 1 equiv) dissolved in THF (40 mL, 0.1 M) was added dropwise 2.5 M hexane solution of *n*-BuLi (3.2 mL, 8 mmol, 2 equiv) at -78 °C under inert atmosphere. The reaction was stirred at this temperature for 30 min. Next, solution of I₂ (2.03 g, 8 mmol, 2 equiv) in THF (10 mL) was added in portions. The resulting reaction mixture was warmed up to r.t. and after 1 h, quenched with saturated NH₄Cl solution (10 mL). Subsequent extraction with Et₂O (3×30 mL) and concentration *in vacuo* led to the crude iodide **1e** that was purified by column chromatography (Hex:Acetone: 5:1 to 1:1). R_f (Hex:Acetone: 1:1) = 0.73. Yield: 0.6 g (50%). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 4.28 – 4.19 (m, 4H), 2.09 (d, *J* = 15.5 Hz, 6H), 1.35 (td, *J* = 7.1, 0.5 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 63.94 (d, *J* = 7.2 Hz), 32.29 (s), 16.42 (d, *J* = 5.6 Hz). HRMS (ESI+) calcd. for C₇H₁₇IO₃P [M+H]: 306.9960, found: 306.9948.

Compound **1h** was prepared according to the following procedure:

To a solution of 2-isopropyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.1 mL, 11 mmol, 1.1 equiv) in CH₂Cl₂ (30 mL) was added Br₂ (515 μ L, 10 mmol, 1 equiv) under inert atmosphere. The reaction was stirred at room temperature for 3 h. The reaction mixture was concentrated *in vacuo* to provide the corresponding brominated substrate that was used for the next step without any purification. Yield: 2.4 g (96%)

To a solution of NaI (2.8 g, 19 mmol, 2 equiv) in acetone (20 mL) under inert atmosphere was added the alkyl bromide (2.4 g, 9.5 mmol, 1 equiv) dissolved in acetone (5 mL). After 2 h, the resulting reaction mixture was quenched with saturated Na₂S₂O₃ solution (10 mL) and washed with water (10 mL). The organic layer was dried over Na₂SO₄ and concentrated *in vacuo* to afford alkyl halide **1h**. Yield: 2.4 g (85%). R_f (Hex:Acetone=10:1): 0.67. Yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 1.94 (s, 6H), 1.28 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 83.98, 32.73, 24.24. HRMS (ESI+) calcd. for C₉H₁₉BIO₂ [M+H]: 297.05232, found: 297.05184.

Synthesis of Alkenes (2):

The following alkenes were purchased from commercial sources.

Compound **2d** was prepared according to a literature procedure.⁵

Compound **2f** was prepared according to a literature procedure.⁶

Compound 2k was prepared according to a literature procedure.²

Compound **21** was prepared according to a literature procedure.⁸

Compound **2l** was prepared according to the following procedure:

To a suspension of 5-bromo-2-methylbenzoxazole (1 g, 4.7 mmol, 1 equiv) in 1,4-dioxane (20 mL) and water (1 mL) was added potassium vinyltrifluoroborate (764 mg, 5.7 mmol, 1.2 equiv),

 Cs_2CO_3 (3.08 g, 9.4 mmol, 2 equiv) and tetrakis(triphenylphosphorus) palladium(0) (273 mg, 0.24 mmol, 0.05 equiv). The mixture was stirred at reflux under nitrogen for 5 h. The mixture was then poured onto ice-water (20 mL) and extracted with EtOAc (3×30 mL). The organic phases were combined, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo, the residue was purified by chromatography on silica gel (Hex:EA=20:1>10:1) to afford **2l** as yellow oil. Yield: 0.59 g (79%). All analytical data were in accordance with the literature.⁹

Compound **2m** was prepared according to a literature procedure.⁵

Compound **2t** was prepared according to a literature procedure.¹⁰

#	Substrate	trate	Ligand	Base		Product	Yield, ^b
	1	Catalyst			Conditions	3 a	%
1	1 a	Pd(PPh ₃) ₄	-	Cs_2CO_3	[0.1] PhCH ₃ , 50 °C	3aa	Dec.
2	1 a	Pd(dppf)Cl ₂	-	Cy ₂ NMe	[0.1] PhCF ₃ , 110 °C	3aa	Dec.
3	1 a	$Pd(OAc)_2$	Xantphos	Cs_2CO_3	[0.5] PhH, BLED	3aa	87
4 ^c	1 a	$Pd(OAc)_2$	Xantphos	Cs_2CO_3	[0.5] PhH, BLED	3aa	92 ^d
5 ^e	1 a	$Pd(OAc)_2$	Xantphos	Cs_2CO_3	[0.5] PhH, BLED	3aa	53
6	1 a	Pd(OOCCF ₃) ₂	Xantphos	Cs_2CO_3	[0.5] PhH, BLED	3aa	81
πf	1 a	$Pd(OAc)_2$	Xantphos	\mathbf{C}	[0.5] DHI DIED	3aa	02
/		(5 mol %)	(10 mol %)	CS_2CO_3	[0.3] PIIH, BLED		82
0	1 a	$Pd(OAc)_2$	Xantphos	C_{α} C_{α}	[0 5] THE DLED	3aa	61
0		(5 mol %)	(10 mol %)	CS_2CO_3	[0.3] IHF, BLED		04
0	1 a	$Pd(OAc)_2$	Xantphos	Cs ₂ CO ₃		3aa	40
9		(2 mol %)	(5 mol %)		[0.5] PNH, BLED		42
10	1 a	Pd Xantphos G3	-	<i>i</i> Pr ₂ NEt	[0.5] PhH, BLED	3aa	59
11	1 a	Pd(PPh ₃) ₄	-	Cs_2CO_3	[0.5] PhH, BLED	3aa	7
12	1 a	$Pd(PPh_3)_4$	-	Cs_2CO_3	[0.5] THF, BLED	3aa	14
13	1 a	Pd(PPh ₃) ₄	-	Cs_2CO_3	[0.1] THF, BLED	3aa	46
14	1 a	$Pd(OAc)_2$	DPEPhos	Cs_2CO_3	[0.5] PhH, BLED	3aa	7
15	1 a	$Pd(OAc)_2$	t-Bu-Xantphos	Cs_2CO_3	[0.5] PhH, BLED	3aa	0
16	1 a	$Pd(OAc)_2$	L	Cs_2CO_3	[0.5] PhH, BLED	3aa	7
17	1 a	Ni(COD) ₂	DPPE	Cs_2CO_3	[0.5] PhH, BLED	3aa	0
18	1 a	$Pd(OAc)_2$	Xantphos	Cs_2CO_3	[0.5] PhH, 40 °C	3aa	traces
19	1 a	-	Xantphos	Cs_2CO_3	[0.5] PhH, BLED	3aa	0
20	1d	Pd(dppf)Cl ₂	-	Cy ₂ NMe	[0.1] PhCF ₃ , 110 °C	3da	Dec.
21	1d	$Pd(OAc)_2$	Xantphos	Cs_2CO_3	[0.5] PhH, BLED	3da	67

22	1d	$Pd(OAc)_2$	Xantphos	Cs_2CO_3	[0.5] PhH, no light, rt	3da	88
23	1h	Pd(dppf)Cl ₂	-	Cy ₂ NMe	[0.1] PhCF ₃ , 110 °C	3ha	Dec.
24	1h	$Pd(OAc)_2$	Xantphos	Cs_2CO_3	[0.5] PhH, BLED	3ha	30
25	1h	Pd Xantphos G3	-	<i>i</i> Pr ₂ NEt	[0.5] PhH, BLED	3ha	86
26	1h	Pd Xantphos G3	-	<i>i</i> Pr ₂ NEt	[0.5] PhH, no light, 40 °C	3ha	96

^aConditions: **1a** 0.1 mmol scale, 34 W blue LED; ^bGC-MS yield; ^c2 equiv of *t*-BuI and 1 equiv of styrene were used. ^d Isolated yield, 0.5 mmol scale. ^e *t*-BuBr was used and reaction time was 48 h. ^f 5 mol % Pd(OAc)₂ and 10 mol % Xantphos work well for the reaction when **1a** is the limiting reagent. However, for the isolation purpose, since styrenes were found to be barely separable from the corresponding Heck products, we used **1a** in excess and 10 mol % Pd(OAc)₂/20 mol % Xantphos (conditions in entry 4).

4. Heck Reaction of Tertiary Alkyl Halides

General Procedure I:

An oven dried 3 mL Wheaton V-vial containing a stirring bar was charged with $Pd(OAc)_2$ (11.2 mg, 0.05 mmol, 10 mol %), Xantphos (57.9 mg, 0.1 mmol, 20 mol %) and Cs_2CO_3 (326 mg, 1 mmol, 2 equiv) under N₂ atmosphere (glovebox). Next, alkyl halide **1** (1 mmol, 2 equiv), alkene **2** (0.5 mmol, 1 equiv) and dry/degassed benzene (1 mL) were added to reaction vessel via syringes. The vessel was capped with a pressure screw cap. The vial was irradiated with 34 W Blue LED lamp (Kessil KSH150B LED Grow Light) for 6-12 h (monitored by GC/MS), with cooling by a fan (vial temperature reached 37 °C). The vial distance from the lamp was about 1-2 cm. The resulting mixture was purified by column chromatography, affording the corresponding products (**3**).

General Procedure II:

An oven dried 1 mL Wheaton V-vial containing a stirring bar was charged with $Pd(OAc)_2$ (5.6 mg, 0.025 mmol, 10 mol %), Xantphos (29.0 mg, 0.05 mmol, 20 mol %) and Cs_2CO_3 (163 mg, 0.5 mmol, 2 equiv) under N₂ atmosphere (glovebox). Next, alkyl halide **1** (0.25 mmol, 1 equiv), alkene **2** (0.5 mmol, 2 equiv) and dry/degassed benzene (0.5 mL) were added to reaction vessel via syringes. The vessel was capped with a pressure screw cap. The reaction was stirred at rt, covered with foil, for 6-12 h (monitored by GC/MS). The resulting mixture was purified by column chromatography, affording the corresponding products (**3**).

General Procedure III:

An oven dried 1 mL Wheaton V-vial containing a stirring bar was charged with alkyl halide 1 (0.5 mmol, 2 equiv), and Xantphos Pd G3 (23.8 mg, 0.025 mmol, 10 mol %) under N₂ atmosphere (glovebox). Next, alkene 2 (0.25 mmol, 1 equiv) and dry/degassed benzene (0.5 mL) and *i*Pr₂NEt (87 μ L, 0.5 mmol, 2 equiv) were added to the reaction vessel via syringes. The vessel was capped with a pressure screw cap. The reaction was stirred at 40 °C in a preheated aluminum block for 6-12 h (monitored by GC/MS). The resulting mixture was purified by column chromatography, affording the corresponding products (**3**).

Alkyl Heck Products (3) Analytics:

t-Bu ∖ \checkmark 3aa

3aa was prepared according to the general procedure **I**. Yellow oil (73.5 mg, 92%). All analytical data for **3aa** were in accordance with the literature data¹¹. R_f (Petroleum ether): 0.73. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.35 (m, 2H), 7.33 – 7.27 (m, 2H), 7.22 – 7.17 (m, 1H), 6.33 (d, *J* = 16.2 Hz, 1H), 6.27 (d, *J* = 16.2 Hz, 1H), 1.14 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 141.84, 138.05, 128.45, 126.72, 126.00, 124.56, 33.32, 29.58.

3ab was prepared according to the general procedure **I**. White solid (92.5 mg, 97%). All analytical data for **3ab** were in accordance with the literature data¹². R_f (Petroleum ether:EA = 10:1): 0.73. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 6.88 – 6.79 (m, 2H), 6.26 (d, *J* = 16.2 Hz, 1H), 6.13 (d, *J* = 16.2 Hz, 1H), 3.81 (s, 3H), 1.12 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 158.60, 139.82, 130.85, 127.04, 123.86, 113.90, 55.27, 33.21, 29.68.

3ac was prepared according to the general procedure **I**. White solid (96.0 mg, >99%). All analytical data for **3ac** were in accordance with the literature data¹³. R_f (Petroleum ether:EA = 10:1): 0.49. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (m, 2H), 7.42 (m, 2H), 6.39 (d, *J* = 16.2 Hz, 1H), 6.30 (d, *J* = 16.2 Hz, 1H), 1.13 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 146.07, 142.82, 132.46, 126.66, 123.62, 119.32, 110.06, 33.86, 29.47. HRMS (ESI+) calcd. for C₁₃H₁₆N [M+H]: 186.1283, found: 186.1286.

3ad was prepared according to the general procedure **I**. Yellow oil (100 mg, 92%). R_f (Petroleum ether:EA = 10:1): 0.9. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (m, 2H), 7.40 (m, 2H), 6.39 (d, *J* = 16.2 Hz, 1H), 6.32 (d, *J* = 16.2 Hz, 1H), 3.89 (s, 3H), 1.13 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 167.10, 144.71, 142.76, 129.96, 125.98, 124.09, 52.05, 33.69, 29.52. HRMS (ESI+) calcd. for C₁₄H₁₉O₂ [M+H]: 219.1385, found 218.1387.

3ae was prepared according to the general procedure **I**. Clear oil (81.6 mg, 84%). All analytical data for **3ae** were in accordance with the literature data¹⁴. R_f (Hexanes): 1. ¹H NMR (400 MHz, CDCl₃) δ 7.27 (m, 4H), 6.34 – 6.17 (m, 2H), 1.09 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 142.52, 136.57, 132.24, 128.56, 127.23, 123.50, 33.40, 29.51.

3af was prepared according to the general procedure **I**. Yellow oil (101.6 mg, 88%). R_f (Hex:EA = 1:1): 0.28. ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.26 (m, 5H), 6.29 (s, 2H), 3.07 (s, 3H), 2.96 (s, 3H), 1.10 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 171.86, 143.52, 139.69, 134.67, 127.81, 126.12, 124.27, 39.90, 35.69, 33.77, 29.80. HRMS (ESI+) calcd. for $C_{15}H_{22}NO$ [M+H]: 232.1701, found: 232.1703.

3ag was prepared according to the general procedure **I**. Clear oil (69.4 mg, 78%). R_f (Hexanes): 1. ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.19 (m, 1H), 7.10 (m, 1H), 7.08 – 7.03 (m, 1H), 6.90 – 6.83 (m, 1H), 6.26 (s, 2H), 1.12 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 164.37 (s), 143.20 (s), 140.51 (d, *J* = 7.5 Hz), 129.80 (d, *J* = 8.4 Hz), 123.68 (s), 121.90 (s), 113.45 (d, *J* = 21.5 Hz), 112.39 (d, *J* = 21.6 Hz), 33.40 (s), 29.46 (s). HRMS (EI+) calcd. for C₁₂H₁₅F [M]: 178.11578, found: 178.11617.

3ah was prepared according to the general procedure **I**. Yellow oil (66.0 mg, 69%). R_f (Hex:EA = 5:1): 0.19. ¹H NMR (500 MHz, CDCl₃) δ 7.39 (s, 1H), 7.29 (d, *J* = 4.5 Hz, 2H), 7.18 (m, 1H), 6.36 – 6.25 (m, 2H), 4.67 (s, 2H), 1.13 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 142.24, 141.04, 138.40, 128.70, 125.48, 125.35, 124.49, 124.34, 65.36, 33.37, 29.56. HRMS (ESI+) calcd. for C₁₃H₁₈ONa [M+Na]: 213.1255, found: 213.1249.

3ai was prepared according to the general procedure **I**. Clear oil (92.0 mg, 98%). R_f (Hex:EA = 5:1): 0.78. ¹H NMR (400 MHz, CDCl₃) δ 10.01 (s, 1H), 7.87 (s, 1H), 7.69 (d, *J* = 7.5 Hz, 1H), 7.60 (d, *J* = 7.7 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 1H), 6.41 – 6.26 (m, 2H), 1.14 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 192.64, 143.96, 139.23, 136.80, 132.22, 129.25, 128.26, 126.97, 123.56, 33.66, 29.60. HRMS (ESI+) calcd. for C₁₃H₁₇O [M+H]: 189.1279, found: 189.1280.

3aj was prepared according to the general procedure **I**. Yellow oil (77.0 mg, 79%). R_f (Hex): 0.70. ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.52 (m, 1H), 7.36 – 7.33 (m, 1H), 7.23 – 7.12 (m, 2H), 6.72 (d, *J* = 16.1 Hz, 1H), 6.25 (d, *J* = 16.1 Hz, 1H), 1.15 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 144.65, 136.14, 132.83, 129.55, 127.75, 126.69, 126.57, 121.14, 33.76, 29.50. HRMS (EI+) calcd. for C₁₂H₁₅Cl [M]: 194.08623, found: 194.08650.

3aj was prepared according to the general procedure **I**. White solid (62.4 mg, 58%). R_f (Hex:EA = 5:1): 0.65. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.74 (d, *J* = 8.3 Hz, 1H), 7.42 (q, *J* = 3.3 Hz, 1H), 7.37 (d, *J* = 5.4 Hz, 1H), 7.28 (t, *J* = 6.2 Hz, 1H), 6.42 (d, *J* = 16.1 Hz, 1H), 6.33 (d, *J* = 16.2 Hz, 1H), 1.15 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 142.43, 140.80, 138.94, 135.05, 126.43, 124.97, 124.13, 123.88, 123.02, 120.36, 33.93, 30.10. HRMS (EI+) calcd. for C₁₄H₁₆S [M]: 216.09727, found: 216.09769.

3ak was prepared according to the general procedure **I**. Clear oil (86.2 mg, 80%). R_f (Hex:EA = 5:1): 0.37. ¹H NMR (500 MHz, CDCl₃) δ 7.59 (s, 1H), 7.35 (d, *J* = 8.4 Hz, 1H), 7.32 – 7.27 (m, 1H), 6.38 (d, *J* = 16.1 Hz, 1H), 6.23 (d, *J* = 16.1 Hz, 1H), 2.60 (s, 3H), 1.13 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 164.10, 150.11, 141.98, 141.56, 134.76, 124.31, 122.73, 116.54, 109.83, 31.56, 29.58, 14.52. HRMS (ESI+) calcd. for C₁₄H₁₈NO [M+H]: 216.1388, found: 216.1387.

3al was prepared according to the general procedure **I**. Yellow oil (92.6 mg, 97%). R_f (Hex:EA = 5:1): 0.70. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 2.3 Hz, 1H), 7.64 (dd, *J* = 8.6, 2.4 Hz, 1H), 6.68 (d, *J* = 8.6 Hz, 1H), 6.22 (d, *J* = 16.2 Hz, 1H), 6.12 (d, *J* = 16.2 Hz, 1H), 3.92 (s, 3H), 1.11 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 163.14, 144.97, 141.26, 135.24, 127.11, 120.69, 110.65, 53.38, 33.37, 29.54. HRMS (ESI+) calcd. for C₁₂H₁₇NO [M+H]: 192.1388, found: 192.1387.

3ba was prepared according to the general procedure **I**, using 2 equiv of styrene **2a** and 1 equiv of alkyl iodide **1b**. White solid (100 mg, 84%). R_f (Hex:EA = 5:1): 0.67. All analytical data for **3ac** were in accordance with the literature data¹⁵.¹H NMR (400 MHz, CDCl₃) δ 7.37 (m, 2H), 7.29 (m, 2H), 7.18 (m, 1H), 6.25 (d, *J* = 16.3 Hz, 1H), 6.11 (d, *J* = 16.3 Hz, 1H), 2.04 (s, 3H), 1.27 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 142.09, 138.20, 128.43, 126.67, 125.96, 124.49, 42.23, 36.89, 29.69, 28.48.

3ca was prepared according to the general procedure **I**, using 2 equiv of styrene **2a** and 1 equiv of alkyl iodide **1c**. Clear oil (89.8 mg, 72%). R_f (Hexanes): 0.54. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.38 (m, 2H), 7.36 – 7.26 (m, 4H), 7.21 (m, 4H), 6.38 (d, *J* = 16.2 Hz, 1H), 6.27 (d, *J* = 16.2 Hz, 1H), 2.60 (m, 2H), 1.78 – 1.68 (m, 2H), 1.21 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 143.18, 140.20, 137.96, 128.52, 128.32, 126.88, 126.26, 126.07, 125.59, 45.31, 36.46, 31.36, 29.72, 27.25. HRMS (EI+) calcd. for C₁₉H₂₂ [M]: 250.17215, found: 250.17158.

3cn was prepared according to the general procedure **I**, 2 equiv of acrylonitrile **2n** and 1 equiv of alkyl iodide **1c**. Colorless oil (58.4 mg, 59%). R_f (Hx:EA = 9:1): 0.36. ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.22 (m), 7.17 (m), 6.73 (dd, J = 16.7, 3.1 Hz, 1H(**a**)), 6.34 (dd, J = 12.3, 3.2 Hz, 1H(**b**)), 5.33 (dd, J = 12.3, 3.2 Hz, 1H(**a**)), 5.28 (dd, J = 16.7, 3.1 Hz, 1H(**b**)), 2.62 – 2.54 (m, 2H(**a**)), 2.54 – 2.46 (m, 2H(**b**)), 1.84 – 1.72 (m, 2H(**a**)), 1.72 – 1.61 (m, 2H(**b**)), 1.33 (d, J = 3.2 Hz, 6H(**a**)), 1.13 (d, J = 3.1 Hz, 6H(**b**)). ¹³C NMR (126 MHz, CDCl₃) δ 164.35, 162.31, 142.02, 141.83, 128.49, 128.45, 128.28, 128.20, 126.01, 125.92, 117.84, 116.62, 109.57, 97.06, 96.59, 44.87, 43.94, 38.80,

38.16, 31.21, 31.03, 29.69, 26.91, 26.72, 25.78. HRMS (ESI+) calcd. for C₁₄H₁₈N [M+H]: 200.1439, found: 200.1445.

3da was prepared according to the general procedure **II**. Colorless oil (50.7 mg, 92%). R_f (Hex:EA = 5:1): 0.52. All analytical data for **3ac** were in accordance with the literature data¹⁶. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (m, 2H), 7.31 (m, 2H), 7.24 (m, 1H), 6.42 (m, 2H), 4.15 (q, J = 7.1 Hz, 2H), 1.41 (s, 6H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.42, 143.45, 137.30, 134.65, 128.65, 128.05, 127.50, 126.46, 60.92, 44.51, 25.21, 14.30.

3ea was prepared according to the general procedure **III**, using 5 mol % Xantphos Pd G3, 2 equiv of styrene **2a** and 1 equiv of **1e**. Brown oil (60.0 mg, 85%). R_f (Hex:Acetone = 1:1): 0.46. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (m, 2H), 7.30 (m, 2H), 7.24 – 7.18 (m, 1H), 6.46 (dd, *J* = 16.2, 4.8 Hz, 1H), 6.34 (dd, *J* = 16.2, 5.7 Hz, 1H), 4.10 (p, *J* = 7.1 Hz, 4H), 1.40 (d, *J* = 16.7 Hz, 6H), 1.29 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 137.14 (s), 131.88 (d, *J* = 8.7 Hz), 129.74 (d, *J* = 11.8 Hz), 128.52 (s), 127.42 (s), 126.34 (s), 62.39 (d, *J* = 7.4 Hz), 22.38 (d, *J* = 4.4 Hz), 16.51 (d, *J* = 5.5 Hz). HRMS (EI+) calcd. for C₁₅H₂₄O₃P [M+H]: 283.1463, found: 283.1459.

3fa was prepared according to the general procedure **III**, using 2 equiv of styrene **2a** and 1 equiv of **1f** on a 0.5 mmol scale. White solid (128 mg, 85%). R_f (Hex:EA = 5:1): 0.31. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (m, 2H), 7.36 – 7.31 (m, 4H), 7.26 (m, 3H), 6.41 – 6.20 (m, 2H), 2.41 (s, 3H), 1.55 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 144.51, 136.12, 133.30, 132.38, 130.53, 129.06, 128.67, 128.23, 128.01, 126.62, 64.53, 21.60, 21.20. HRMS and LRMS failed to provide the HR mass for this compound.

3gb was prepared according to the general procedure **II**, using 2 equiv of **2b** and 1 equiv of **1g**. Colorless oil (41.3 mg, 54%). R_f (Hex:EA = 5:1): 0.15. All analytical data for **3gb** were in accordance with the literature data¹⁷. 1H NMR (400 MHz, CDCl3) δ 7.34 (m, 2H), 6.85 (m, 2H), 6.55 (d, *J* = 16.4 Hz, 1H), 6.44 (d, *J* = 16.4 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 4H), 3.81 (s, 3H), 1.65 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.44, 159.57, 130.32, 127.94, 125.57, 114.10, 61.76, 55.75, 55.45, 29.85, 20.54, 14.18. HRMS (ESI+) calcd. for C₁₇H₂₂O₅ [M+H]: 307.1545, found: 307.1552.

3go was prepared according to the general procedure **III**, using 2 equiv of **2o** and 1 equiv of **1g**. Yellow oil (33.0 mg, 47%). R_f (Hex:EA = 3:1): 0.1. ¹H NMR (500 MHz, CDCl₃) δ 7.04 (d, *J* = 14.9 Hz, 1H), 5.39 (d, *J* = 14.9 Hz, 1H), 4.19 (dd, *J* = 13.6, 6.7 Hz, 4H), 3.55 (t, *J* = 7.1 Hz, 2H), 2.48 (t, *J* = 8.1 Hz, 2H), 2.18 – 2.03 (m, 2H), 1.60 (s, 3H), 1.25 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 173.49, 171.41, 125.45, 110.01, 61.83, 54.33, 45.26, 31.33, 29.82, 20.08, 17.56, 14.13. HRMS (ESI+) calcd. for C₁₄H₂₂NO₅ [M+H]: 284.1511, found: 284.1509.

3gp was prepared according to the general procedure **III**, using 2 equiv of **2p** and 1 equiv of **1g**. Clear oil (32.3 mg, 51%). R_f (Hex:EA = 10:1, KMnO₄ stain): 0.5. ¹H NMR (500 MHz, CDCl₃) δ 5.42 (s, 1H), 4.16 (q, *J* = 7.1 Hz, 4H), 2.73 (s, 2H), 2.25 (m, 2H), 2.14 (m, 2H), 1.84 – 1.78 (m, 2H), 1.37 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 172.55, 139.22, 129.28, 61.46, 61.33, 53.33, 37.02, 35.78, 32.44, 29.83, 23.88, 20.12, 14.15. HRMS (ESI+) calcd. for C₁₄H₂₃O₄ [M+H]: 255.1586, found: 255.1587.

3ha was prepared according to the general procedure **III** and purified on silica gel that was dried in the oven at 180 °C overnight. White solid (68.0 mg, >99%). R_f (Hex:Acetone = 10:1): 0.53. ¹H NMR (500 MHz, CDCl₃) δ 7.35 (m, 2H), 7.28 (m, 2H), 7.17 (m, 1H), 6.38 (d, *J* = 16.2 Hz, 1H), 6.29 (d, *J* = 16.1 Hz, 1H), 1.23 (s, 12H), 1.18 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 138.95, 138.40, 128.36, 126.45, 125.95, 125.64, 83.24, 29.69, 24.56, 23.91. HRMS (EI+) calcd. for $C_{17}H_{25}BO_2$ [M]: 272.19477, found: 272.19495.

3hb was prepared according to the general procedure **III** and purified on silica gel that was dried in the oven at 180 °C overnight. White solid (68.0 mg, 90%). R_f (Hex:Acetone = 10:1): 0.72. ¹H NMR (500 MHz, CDCl₃) δ 7.29 (m, 2H), 6.83 (m, 2H), 6.23 (m, 2H), 3.79 (s, 3H), 1.22 (s, 12H), 1.16 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 158.57, 136.97, 131.43, 127.52, 127.14, 125.17, 114.04, 113.96, 111.71, 83.34, 55.42, 43.97, 24.91, 24.85, 24.72, 24.17. HRMS (ESI+) calcd. for C₂₈H₂₈BO₃ [M+H]: 303.2132, found: 303.2126.

3hc was prepared according to the general procedure **III** and purified on silica gel that was dried in the oven at 180 °C overnight. White solid (65.0 mg, 88%). R_f (Hex:Et₂O = 1:1): 0.63. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (m, 2H), 7.40 (m, 2H), 6.52 (d, *J* = 16.1 Hz, 1H), 6.26 (d, *J* = 16.2 Hz, 1H), 1.21 (s, 12H), 1.17 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.49, 132.29, 126.47, 124.35, 119.29, 109.60, 83.52, 24.62, 23.73. HRMS (ESI+) calcd. for C₁₈H₂₅BNO₂ [M+H]: 298.1978, found 298.1971.

3hf was prepared according to the general procedure **III** and purified on silica gel that was dried in the oven at 180 °C overnight. Brown solid (80.9 mg, 94%). R_f (Hex:Acetone = 7:3): 0.33. ¹H NMR (500 MHz, CDCl₃) δ 7.35 (m, 4H), 6.42 (d, *J* = 16.1 Hz, 1H), 6.27 (d, *J* = 16.1 Hz, 1H), 3.08

(s, 3H), 2.98 (s, 3H), 1.21 (s, 12H), 1.16 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 171.72, 140.58, 139.84, 134.21, 127.55, 125.84, 125.08, 83.43, 39.72, 35.49, 24.67, 23.94. HRMS (ESI+) calcd. for C₂₀H₃₁BNO₃ [M+H]: 344.2397, found: 344.2413.

3hg was prepared according to the general procedure **III** and purified on silica gel that was dried in the oven at 180 °C overnight. Yellow solid (65.0 mg, 90%). R_f (Hex:Acetone = 20:1): 0.38. ¹H NMR (500 MHz, CDCl₃) δ 7.22 (dd, *J* = 14.1, 7.8 Hz, 1H), 7.11 (d, *J* = 7.7 Hz, 1H), 7.06 (d, *J* = 10.3 Hz, 1H), 6.85 (td, *J* = 8.3, 1.9 Hz, 1H), 6.39 (d, *J* = 16.1 Hz, 1H), 6.24 (d, *J* = 16.1 Hz, 1H), 1.23 (s, 12H), 1.17 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 162.94 (d, *J* = 291.0 Hz), 140.83 (d, *J* = 7.7 Hz), 140.46 (s), 129.70 (d, *J* = 8.4 Hz), 124.65 (s), 121.86 (s), 113.16 (d, *J* = 21.4 Hz), 112.29 (d, *J* = 21.5 Hz), 83.32 (s), 24.55 (s), 24.24 (s), 23.80 (s). HRMS (EI+) calcd. for C₁₇H₂₄BFO₂ [M]: 290.18534, found: 290.18541.

3hj was prepared according to the general procedure **III** and purified on silica gel that was dried in the oven at 180 °C overnight. White solid (66.6 mg, 81%). R_f (Hex:Acetone = 20:1): 0.52. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.72 (d, *J* = 8.3 Hz, 1H), 7.42 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.35 (d, *J* = 5.4 Hz, 1H), 7.27 (d, *J* = 5.5 Hz, 1H), 6.45 (d, *J* = 16.1 Hz, 1H), 6.39 (d, *J* = 16.1 Hz, 1H), 1.24 (s, 12H), 1.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 140.27, 139.11, 138.28, 134.96, 125.79, 125.57, 123.63, 123.29, 122.61, 119.73, 83.27, 24.58, 23.97. HRMS (ESI+) calcd. for C₁₉H₂₆BO₂S [M+H]: 329.1747, found: 329.1755.

3hk was prepared according to the general procedure **III** and purified on silica gel that was dried in the oven at 180 °C overnight. White solid (73.8 mg, 98%). R_f (Hex:Acetone = 10:1): 0.17 . ¹H NMR (500 MHz, CDCl₃) δ 7.59 (s, 1H), 7.34 (d, *J* = 8.5 Hz, 1H), 7.30 (d, *J* = 8.5 Hz, 1H), 6.40 – 6.30 (m, 2H), 2.60 (s, 3H), 1.22 (s, 12H), 1.18 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 164.02,

149.98, 141.92, 138.73, 135.16, 125.38, 122.75, 116.45, 109.75, 24.56, 23.92, 14.55. HRMS (ESI+) calcd. for C₁₉H₂₇BNO₃ [M+H]: 328.2084, found 328.2077.

4a was prepared according to the general procedure **III** in the presence of 2 equiv of CsOPiv instead of N(*i*Pr)Me₂ on a 0.5 mmol scale. Colorless oil (162 mg, 82%). R_f (Hex:EA = 9:1): 0.30. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (m, 2H), 7.01 (m, 1H), 6.89 (m, 2H), 6.62 – 6.50 (m, 1H), 4.28 – 4.06 (m, 4H), 2.64 (dd, *J* = 14.5, 8.0 Hz, 1H), 2.42 (dd, *J* = 14.5, 3.0 Hz, 1H), 1.53 (s, 3H), 1.22 (dt, *J* = 12.6, 7.1 Hz, 6H), 1.13 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 177.26, 171.72, 171.43, 155.91, 129.64, 123.19, 117.04, 94.04, 61.73, 61.58, 51.54, 39.54, 38.98, 26.97, 20.18, 14.10, 14.04. HRMS (ESI+) calcd. for C₂₁H₃₀O₇Na [M+Na]: 417.1889, found: 417.1884.

Compound **4b** was prepared according to the general procedure **III** in the presence of 2 equiv of benzyl alcohol on a 0.5 mmol scale. Yellow oil (80.2 mg, 40%). R_f (Hex:EA = 5:1): 0.6 (KMnO₄ stain). ¹H NMR (500 MHz, CDCl₃) δ 7.30-7.26 (m, 7H), 7.04-6.9 (m, 3H), 5.51 (t, *J* = 5.2 Hz, 1H), 4.72 (d, *J* = 11.4 Hz, 1H), 4.52 (d, *J* = 11.2 Hz, 1H), 4.19-4.05 (m, 4H), 2.57-2.48 (m, 2H), 1.50 (s, 3H), 1.23-1.12 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 171.77, 156.89, 137.18, 129.53, 128.26, 128.10, 127.70, 122.13, 117.19, 99.46, 68.25, 61.36, 51.56, 39.44, 29.68, 20.53, 13.93, 13.87. HRMS (ESI+) calcd. for C₂₃H₂₈O₆Na [M+Na]: 423.1784, found: 423.1785.

5. Representative Procedures for 1 mmol Scale Reactions

Synthesis of compound 3am:

An oven dried 3 mL Wheaton V-vial containing a stirring bar was charged with $Pd(OAc)_2$ (22.5 mg, 0.1 mmol, 10 mol %), Xantphos (116 mg, 0.2 mmol, 20 mol %) and Cs_2CO_3 (652 mg, 2 mmol, 2 equiv) under N₂ atmosphere (glovebox). Next, dry benzene (2 mL), *tert*-butyl iodide **1a** (240 µL, 2 mmol, 2 equiv), and alkene **2m** (135 µL, 1 mmol, 1 equiv) were added to reaction vessel via syringes. The vessel was capped with a pressure screw cap. The vial was irradiated with 34 W Blue LED lamp (Kessil KSH150B LED Grow Light) for 12 h, with cooling by a fan (vial temperature reached 37 °C). The resulting mixture was directly loaded on silica gel, the vial was washed with CH₂Cl₂, and column chromatography was performed using gradient from pure hexane to hexane:ethyl acetate (5:1). The product **3am** was obtained in isolated 93% yield (178 mg) as orange oil.

Synthesis of compound 3hb:

An oven dried 3 mL Wheaton V-vial containing a stirring bar was charged with alkyl halide **1h** (444 mg, 1.5 mmol, 1.5 equiv), and Xantphos Pd G3 (95.0 mg, 0.010 mmol, 10 mol %) under N₂ atmosphere (glovebox). Next, dry benzene (2 mL), 4-vinylanisole **2b** (133 μ L,1 mmol, 1 equiv), and *i*Pr₂NEt (350 μ L, 2 mmol, 2 equiv) were added to the reaction vessel via syringes. The vessel was capped with a pressure screw cap. The reaction was stirred at 40 °C in a preheated aluminum block for 12 h. At that point, GC-MS showed only presence of the product **3hb** in the reaction mixture. The resulting mixture was directly loaded on silica gel (dried at 180 °C in the oven overnight), the vial was washed with acetone, and column chromatography was performed using gradient from pure hexane to hexane:acetone (10:1). The product **3hb** was obtained in 96% isolated yield (290 mg) as white solid.

6. Mechanistic Studies

Radical clock experiment:

Reaction of electronically different alkyl halides 1 with the radical clock 2t resulted in regioselective radical-ring opening of the cyclopropyl unit 7. Formation of a product of Pd- β -C elimination¹⁸ of the cyclopropane component (6), or the coupling adduct possessing an intact cyclopropane unit (5), was not detected.

Compound **7a** was obtained in 36% NMR (*E*:*Z* = 1:1) yield using general procedure **I** on a 0.1 mmol scale and CH₂Br₂ as standard (10 μ L). Characteristic NMR data are provided for both isomers. ¹H NMR (400 MHz, CDCl₃) δ 6.89 (dd, *J* = 15.6, 11.0 Hz, 1H(**a**)), 6.64 (d, *J* = 15.5 Hz, 1H(**a**)), 6.57 (d, *J* = 15.7 Hz, 1H(**b**)), 6.53 (d, *J* = 11.1 Hz, 1H(**a**)), 6.28 (d, *J* = 10.9 Hz, 1H(**b**)), 2.74 (s, 2H), 2.48 (s, 2H), 0.85 (s, 7H), 0.80 (s, *J* = 8.7 Hz, 9H).

Compound **7d** was obtained in 29% NMR (*E*:*Z* = 4.3:1) yield using general procedure **II** on a 0.1 mmol scale and CH₂Br₂ as standard (10 μ L). Characteristic NMR data are provided only for the major isomer. ¹H NMR (400 MHz, CDCl₃) δ 6.68 (d, *J* = 15.3 Hz, 1H), 6.53 (d, *J* = 10.9 Hz, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 3.09 (s, 2H).

Compound **7h** was obtained in 37% NMR (*E*:*Z* = 3.8:1) yield using general procedure **III** on a 0.1 mmol scale and CH₂Br₂ as standard (10 μ L). Characteristic NMR data are provided only for the major isomer. ¹H NMR (400 MHz, CDCl₃) δ 6.59 (d, *J* = 15.6 Hz, 1H), 6.41 (d, *J* = 11.2 Hz, 1H), 2.84 (s, 2H), 1.12 (s, 6H), 1.04 (s, 12H).

Trapping with TEMPO:

Photophysical studies:

Photophysical studies was conducted in order to understand the role of visible light. For these studies, $Pd(PPh_3)_4$ was used since it was found to be a competent catalyst for the tertiary Heck reaction reaction (see Optimization Table, entry 12). The absorption spectra of $Pd(PPh_3)$, *tert*-butyl iodide **1a** and styrene **2a** showed that Pd(0) is the only light absorbing species between 400 and 500 nm (Fig. 1). Next, emission spectrum was recorded by irradiated Pd(0) catalyst at 450 nm (Kessil blue LED's maximum absorption), to show the emission band at 620 nm. Subsequently, different amounts of *tert*-butyl iodide **1a** were added to Pd(0) catalyst. The emission intensity decreased gradually by increasing concentration of **1a** (Fig. 2). The obtained linear correlation between I₀/I and concentration of **1a** for Stern–Volmer studies (Fig. 3) indicated that the alkyl iodide presumably engages in an SET event with Pd(0) species.

Fig. 1. Abroption of Pd(PPh₃)₄ (8.65 × 10^{-4} M in THF) (black line); *tert*-butyl iodide (**1a**) (red line) and styrene (**2a**) (blue line).

Fig. 2. Emission quenching of Pd(PPh₃)₄ (8.65×10^{-4} M in THF) by the concentration range of 0-300 mol % of *tert*-butyl iodide (**1a**) with respect to Pd(PPh₃)₄ after irradiation at 450 nm at 25 °C.

Fig. 3. Stern-Volmer plot for the emission quenching of $Pd(PPh_3)_4$ by various concentrations of *tert*-butyl iodide **1a** (from 0 to 300 mol % with respect to $Pd(PPh_3)_4$ in THF).

7. NMR Data

¹H NMR of **1h**

¹³C NMR of **1e**

30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 fl(ppm)

¹H NMR of **3ad**

¹H NMR of **3ae**

- 1.10

¹³C NMR of **3af**

1 H NMR of **3ag**

¹H NMR of **3ai**

¹H NMR of **3ba**

¹H NMR of **3cn**

¹³C NMR of **3cn**

¹³C NMR of **3da**

176.42	143.45 137.50 128.65 128.05 127.50 127.50 127.50	60.92	44.51	25.21
1		I	I	

¹H NMR of **3ea**

¹H NMR of **3gb**

¹³C NMR of **3gb**

¹H NMR of **3go**

¹H NMR of **3gp**

¹H NMR of **3hb**

¹H NMR of **3hg**

8. References

1. Khazdooz, L.; Zarei, A.; Aghaei, H.; Azizi, G.; Gheisari, M. M. *Tetrahedron Lett.* 2016, 57, 168.

2. Marti, C.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 11505.

3. Meyers, C. Y.; Chan-Yu-King, R.; Hua, D. H.; Kolb, V. M.; Matthews, W. S.; Parady, T.

E.; Horii, T.; Sandrock, P. B.; Hou, Y.; Xie, S. J. Org. Chem. 2003, 68, 500.

4. Dudnik, A. S.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 10693.

5. Kurandina, D.; Parasram, M.; Gevorgyan, V. Angew. Chem., Int. Ed. 2017, 56, 14212.

6. Masing, F.; Mardyukov, A.; Doerenkamp, C.; Eckert, H.; Malkus, U.; Nusse, H.; Klingauf, J.; Studer, A. *Angew. Chem. Int. Ed.* **2015**, *54*, 12612.

7. Steadman, V. A.; Pettit, S. B.; Poullennec, K. G.; Lazarides, L.; Keats, A. J.; Dean, D. K.; Stanway, S. J.; Austin, C. A.; Sanvoisin, J. A.; Watt, G. M.; Fliri, H. G.; Liclican, A. C.; Jin, D.; Wong, M. H.; Leavitt, S. A.; Lee, Y.-J.; Tian, Y.; Frey, C. R.; Appleby, T. C.; Schmitz, U.; Jansa, P.; Mackman, R. L.; Schultz, B. E. *J. Med. Chem.* **2017**, *60*, 1000.

8. Yang, K.; Song, Q. *Green Chem.* **2016**, *18*, 932.

9. Knapp, D. M.; Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2009, 131, 6961.

10. Arai, Y.; Tomita, R.; Ando, G.; Koike, T.; Akita, M. Chem. Eur. J. 2016, 22, 1262.

11. Liu, P.; Pan, Y.-M.; Hu, K.; Huang, X.-C.; Liang, Y.; Wang, H.-S. *Tetrahedron* **2013**, *69*, 7925.

12. Joshi-Pangu, A.; Wang, C.-Y.; Biscoe, M. R. J. Am. Chem. Soc. 2011, 133, 8478.

13. Huang, B.; Wang, P.; Hao, W.; Cai, M.-Z. J. Organomet. Chem. 2011, 696, 2685.

14. Liu, J.-T.; Jang, Y.-J.; Shih, Y.-K.; Hu, S.-R.; Chu, C.-M.; Yao, C.-F. *J. Org. Chem.* **2001**, *66*, 6021.

15. Brase, S.; Waegell, B.; deMeijere, A. P Synthesis 1998, 148.

16. Liu, C.; Tang, S.; Liu, D.; Yuan, J.; Zheng, L.; Meng, L.; Lei, A. Angew. Chem., Int. Ed. **2012**, *51*, 3638.

17. Noda, Y.; Nishikata, T. Chem. Commun. 2017, 53, 5017.

18. Miura, M.; Satoh, T. *Palladium in Organic Synthesis;* Tsuji, J., Ed.; Springer Berlin Heidelberg, Berlin, 2005.