Supporting Information

Insights into Base Metal Pre-catalyst Activation Relevant to C-H Functionalization

Jennifer V. Obligacion, Hongyu Zhong, and Paul J. Chirik*

pchirik@princeton.edu

Department of Chemistry Princeton University, Princeton NJ 08544, United States

pchirik@princeton.edu

Table of Contents

I. General Considerations	
II. Reaction of 1-(O₂C^tBu) ₂ with B ₂ Pin ₂	S4
III. Reaction of 1-(O₂C^tBu) ₂ with HBPin	S5
IV. Reaction of 1-(H) ₂ BPin with HSi(OEt) ₃	S7
V. Reaction of 1-CH₃ with HSi(OEt) ₃	S9
VI. Synthesis of 1-Ph	S11
VII. Reaction of 1-Ph with HSi(OEt) ₃	S13
VIII. Evaluation of the Cobalt Pre-catalysts for C-H Silylation	S15
IX. Synthesis of 2	S16
X. Evaluation of 2 for C-H Borylation	S17
XI. Reaction of 2-Cl₂ with LiCH ₂ SiMe ₃	S18
XII. Synthesis of 2-CI	S20
XIII. Reaction of 2-CI with LiCH ₂ SiMe ₃	S22
XIV. References	S23

I. General Considerations. All air- and moisture-sensitive manipulations were carried out using standard high vacuum line, Schlenk or cannula techniques or in an M. Braun inert atmosphere drybox containing an atmosphere of purified nitrogen. The M. Braun drybox was equipped with a cold well designed for freezing samples in liquid nitrogen. Solvents for air- and moisture-sensitive manipulations were dried and deoxygenated using literature procedures.¹ Deuterated solvents for NMR spectroscopy were distilled from sodium metal under an atmosphere of argon and stored over 4 Å molecular sieves. All other reagents were used as received.

¹H NMR spectra were recorded on a Varian Inova 400 or Bruker 300 AVANCE spectrophotometers operating at 400 MHz, and 300 MHz, respectively. All chemical shifts are reported relative to SiMe₄ using ¹H (residual) chemical shifts of the solvent as a secondary standard. ¹³C NMR spectra were recorded on a Bruker 500 spectrometer operating at 125 MHz. ¹³C chemical shifts are reported relative to SiMe₄ using chemical shifts of the solvent as a secondary standard. ¹³C chemical shifts are reported relative to SiMe₄ using chemical shifts of the solvent as a secondary standard where applicable. ³¹P NMR spectra were collected on a Bruker 300 AVANCE spectrometer operating at 300 MHz and were referenced to 85 % H₃PO₄ as an external standard. ¹¹B NMR spectra were collected on a Bruker 300 AVANCE spectrometer operating at 299.763 MHz and were referenced to BF₃(OEt₂) as an external standard. All coupling constants are reported in Hertz (Hz). Elemental analyses were performed at Robertson Microlit Laboratories, Inc., in Ledgewood, NJ.

S3

II. Reaction of 1-(O₂C^tBu)₂ with B₂Pin₂

In a nitrogen-filled glovebox, a scintillation vial was charged with B_2Pin_2 (0.070 g, 0.28 mmol), **1-(O₂C^tBu)**¹ (0.017 g, 0.028 mmol), and 0.5 mL of THF-d₈. The vial was swirled until the mixture became homogeneous and the resulting solution was transferred to a J-Young tube. The tube was sealed, brought out of the glovebox and was heated in an oil bath at 80 °C for 1 hour. The reaction was cooled to room temperature and analyzed using ¹H and ³¹P NMR spectroscopy.

NMR Resonances of Co[PinB(O₂C^tBu)₂]₂

¹*H NMR (THF-d_g, 23 °C):* δ 14.20 (s, 12H, BPin *Me*), -3.05 (s, 36H, OPiv *Me*), -24.02 (s, 12H, BPin *Me*).

III. Reaction of 1-(O₂C^tBu)₂ with HBPin

In a nitrogen-filled glovebox, a scintillation vial was charged with HBPin (0.025 g, 0.20 mmol), $1-(O_2C^tBu)_2^1$ (0.030 g, 0.049 mmol), and 0.5 mL of THF-d₈. The vial was swirled until the mixture became homogeneous and the resulting solution was transferred to a J-Young tube. The tube was sealed, brought out of the glovebox and and analyzed using ¹H and ³¹P NMR spectroscopy.

Figure S2. ³¹P NMR spectrum (THF-d₈, 23 °C) of the reaction of **1-(O₂C^tBu)**₂ with HBPin.

Figure S3. ¹H NMR spectrum (THF-d₈, 23 °C) of the reaction of $1-(O_2C^tBu)_2$ with HBPin.

IV. Reaction of 1-(H)₂BPin with HSi(OEt)₃

In a nitrogen-filled glovebox, a scintillation vial was charged with $HSi(OEt)_3$ (0.009 g, 0.05 mmol), **1-(H)₂BPin²** (0.030 g, 0.055 mmol), and 0.5 mL of C₆D₆. The vial was swirled until the mixture became homogeneous and the resulting solution was transferred to a J-Young tube. The tube was sealed, brought out of the glovebox and the reaction was analyzed using ¹H and ³¹P NMR spectroscopy. The resulting compound was identified as **1-(H)₂Si(OEt)₃**.

¹*H NMR* (*benzene-d₆, 23 °C*): δ 6.28 (s, 2H, meta py C*H*), 4.10 (q, *J* = 7.08 Hz, 6H, -OC*H*₂CH₃), 2.94 – 2.87 (m, 4H, -PC*H*₂), 2.51 – 2.36 (m, 4H, PC*H*Me₂), 1.74 (s, 3H, py *Me*), 1.55 – 1.45 (m, 12H, PCH*Me*₂), 1.38 (t, *J* = 7.13 Hz, 9H, -OCH₂C*H*₃), 1.11 – 1.03 (m, 12H, PCH*Me*₂), -9.02 (t, *J* = 43.5 Hz, 2H, Co-*H*).

{¹*H*}¹³*C NMR* (*benzene-d₆, 23 °C*): δ 161.08 (*ortho* py *C*), 143.51 (*para* py *C*), 119.16 (*meta* py *C*H), 57.29 (-O*C*H₂CH₃), 38.83 (-P*C*H₂), 25.31 (P*C*HMe₂), 20.31 (py *Me*), 19.36 (PCH*Me*₂), 18.95 (-OCH₂*C*H₃), 17.82 (PCH*Me*₂).

³¹*P*{¹*H*} *NMR (benzene-d₆, 23 °C):* δ 98.67 (br s, *P*-CHMe₂).

Figure S4. ¹H NMR spectrum (C₆D₆, 23 °C) of the reaction of **1-(H)₂BPin** with HSi(OEt)₃.

Figure S5. ³¹P NMR spectrum (C₆D₆, 23 °C) of the reaction of 1-(H)₂BPin with HSi(OEt)₃.

V. Reaction of 1-CH₃ with HSi(OEt)₃

In a nitrogen-filled glovebox, a scintillation vial was charged with $HSi(OEt)_3$ (0.006 g, 0.04 mmol), **1-CH₃²** (0.020 g, 0.04 mmol), and 0.5 mL of C₆D₆. The vial was swirled until the mixture became homogeneous and the resulting solution was transferred to a J-Young tube. The tube was sealed, brought out of the glovebox and the reaction was analyzed using ¹H and ³¹P NMR spectroscopy. The resulting compound is tentatively assigned as **1-(N₂)Si(OEt)**₃.

¹*H NMR* (*benzene-d₆*, *23* °*C*): δ 6.33 (s, 2H, meta py C*H*), 3.94 (q, J = 7.07 Hz, 6H, -OC*H*₂CH₃), 3.44 – 3.05 (m, 4H, -PC*H*₂), 2.89 – 2.29 (m, 4H, PC*H*Me₂), 1.69 (s, 3H, py *Me*), 1.56 – 1.14 (overlapping m, 36H, PCH*Me*₂, -OCH₂C*H*₃).

³¹*P*{¹*H*} *NMR (benzene-d₆, 23 °C):* δ 76.39 (br s, *P*-CHMe₂).

IR (benzene-d₆. 23 °C): vN₂ = 2053.71 cm⁻¹.

Figure S7. ³¹P NMR spectrum (C₆D₆, 23 °C) of the reaction of 1-CH₃ with HSi(OEt)₃.

VI. Synthesis of 1-Ph

In a nitrogen-filled glovebox, a 100 mL round bottom flask was charged with **1-Cl**² (0.287 g, 0.640 mmol) and 30 mL of toluene. In a separate vial, PhLi (0.337 mL of a 1.9 M solution in dibutyl ether, 0.640 mmol) was diluted with 5 mL of toluene. The round bottom flask containing **1-Cl** and the vial containing PhLi were chilled in a cold well filled with liquid nitrogen for 20 mins. The cold solution of PhLi was then added dropwise to a cold, stirring solution of **1-Cl** in toluene. The reaction was allowed to cool to room temperature and was stirred for 3 hours. The solution was filtered through Celite and the volatiles were evaporated in vacuo to yield a red-brown solid identified as **1-Ph** (0.279 g, 89% yield).

¹*H* NMR (benzene-d₆, 23 °C): δ 7.32 (d, J = 8.03 Hz, 2H, Co-*Ph*), 7.03 (t, J = 8.03 Hz, 2H, Co-*Ph*), 6.79 (d, J = 7.64 Hz, 1H, Co-*Ph*), 5.77 (s, 2H, meta py CH), 2.25 – 2.10 (overlapping m, 8H, PC*H*Me₂ and -PC*H*₂), 1.28 – 1.16 (overlapping m, 24H, PCH*Me*₂), 0.63 (s, 3H, py *Me*).

{¹*H*}¹³*C NMR* (*benzene-d₆, 23 °C*): δ 157.84 (*ortho* py *C*), 139.18 (Co-*Ph*), 124.43 (Co-*Ph*), 122.12 (Co-*Ph*), 118.26 (Co-*Ph*), 35.46 (-P*C*H₂), 23.13 (P*C*HMe₂), 22.69 (py *Me*), 18.95 (PCH*Me*₂), 17.97 (PCH*Me*₂).

³¹*P*{¹*H*} *NMR (benzene-d₆,23 °C):* δ 45.98 (br s, *P*-CHMe₂).

Figure S9. ³¹P NMR spectrum (C_6D_6 , 23 °C) of 1-Ph.

VII. Reaction of 1-Ph with HSi(OEt)₃

In a nitrogen-filled glovebox, a scintillation vial was charged with $HSi(OEt)_3$ (0.010 g, 0.06 mmol), **1-Ph** (0.030 g, 0.061 mmol), and 0.5 mL of C₆D₆. The vial was swirled until the mixture became homogeneous and the resulting solution was transferred to a J-Young tube. The tube was sealed, brought out of the glovebox and the reaction was analyzed using ¹H and ³¹P NMR spectroscopy. The resulting compound is tentatively assigned as **1-(N₂)Si(OEt)**₃.

¹*H NMR* (*benzene-d₆*, *23* °*C*): δ 6.33 (s, 2H, meta py C*H*), 3.94 (q, J = 7.07 Hz, 6H, -OC*H*₂CH₃), 3.44 – 3.05 (m, 4H, -PC*H*₂), 2.89 – 2.29 (m, 4H, PC*H*Me₂), 1.69 (s, 3H, py *Me*), 1.56 – 1.14 (overlapping m, 36H, PCH*Me*₂, -OCH₂C*H*₃).

³¹*P*{¹*H*} *NMR (benzene-d₆, 23 °C):* δ 76.39 (br s, *P*-CHMe₂).

IR (benzene-d₆, 23 °C): vN₂ = 2053.71 cm⁻¹.

Figure S10. ¹H NMR spectrum (C₆D₆, 23 °C) of the reaction of 1-Ph with HSi(OEt)₃.

Figure S11. ³¹P NMR spectrum (C_6D_6 , 23 °C) of the reaction of 1-Ph with HSi(OEt)₃.

VIII. Evaluation of the Cobalt Pre-catalysts for C-H Silylation

In a nitrogen-filled glovebox, a scintillation vial was charged with arene (0.78 mmol), HSi(OEt)₃ (0.78 mmol), cyclohexene (0 mmol or 0.78 mmol) and cobalt precatalyst (5 mol%) (see table below). The vial was sealed at was heated to 80 °C for 16 hours. The reaction was quenched by exposure to air and an aliquot of the mixture was analyzed by gas chromatography. No silylation product(s) were observed under these conditions.

Pre-catalyst	Acceptor?	Arene	Entry
1-(H)₂BPin	No	FCF3	1
(^{iPr} PNP)CoCH₂SiMe₃ ³	No	FCF3	2
1-(H)₂BPin	Yes	FCF3	3
(^{iPr} PNP)CoCH₂SiMe₃ ³	Yes	FCF3	4
1-(O ₂ C ^t Bu) ₂	Yes	FCF3	5
4-BPin-	No	FCF ₃	6
(^{iPr} PNP)CoCH ₃ ²		Ť	
4-BPin-	No		7
(^{iPr} PNP)CoCH ₃ ²		~~~	

In a nitrogen-filled glovebox, a scintillation vial was charged with anhydrous $Co(O_2C^tBu)_2^4$ (0.100 g, 0.384 mmol), ^{iPr}PONOP⁵ (0.132 g, 0.384 mmol), and 10 mL of THF. The resulting solution was stirred at room temperature for 1 hour. The solution was filtered through Celite on a glass frit and the volatiles are removed in vacuo. The resulting residue was dissolved in Et₂O to form a saturated solution. Recrystallization at -35 °C overnight yielded orange crystals (0.083 g, 36 % yield). ¹H NMR (300 MHz, C₆D₆, 23 °C): δ -16.92 ($\Delta v_{\frac{1}{2}} = 72$ Hz), δ -9.93 ($\Delta v_{\frac{1}{2}} = 144$ Hz), δ 13.35 ($\Delta v_{\frac{1}{2}} = 596$ Hz), δ 57.65 ($\Delta v_{\frac{1}{2}} = 726$ Hz).

Anal Calcd for $C_{22}H_{34}CoN_2O_4P_2$: C, 51.67; H, 6.70; N, 5.48, Found: C, 51.76; H, 6.79; N, 5.40.

Effective magnetic moment (Evans Method, 23 °C): μ_{eff} = 1.8 u_B.

Figure S12. ¹H NMR spectrum (C₆D₆, 23 °C) of 2.

X. Evaluation of 2 for C-H Borylation

$$\begin{array}{c} 5 \mod \% \mathbf{2} \\ 23 \ ^{\circ}C, \text{ neat, } 20 \text{ h} \\ - \text{H}_2 \end{array}$$

In a nitrogen-filled glovebox, a scintillation vial was charged with heteroarene (0.55 mmol), HBPin (0.55 mmol), and **2** (5 mol%). The vial was sealed at was heated to 80 °C for 20 hours. The reaction was quenched by exposure to air and an aliquot of the mixture was analyzed by gas chromatography.

XI. Reaction of 2-Cl₂ with LiCH₂SiMe₃

In a nitrogen-filled glovebox, a 100 mL round bottom flask was charged with 2-Cl₂⁶ (0.200 g, 0.423 mmol) and 30 mL of toluene. In a separate vial, SiMe₃CH₂Li (0.080 g, 0.850 mmol) was diluted with 5 mL of toluene. The round bottom flask containing 2-Cl₂ and the vial containing SiMe₃CH₂Li were chilled in a cold well filled with liquid nitrogen for 20 mins. The cold solution of SiMe₃CH₂Li was then added dropwise to a cold, stirring solution of 2-Cl₂ in toluene. The reaction was allowed to cool to room temperature and was stirred for 3 hours. The crude reaction mixture was analyzed using ¹H and ³¹P NMR spectroscopy. The volatile materials were then collected and analyzed using ¹H and ³¹P NMR NMR spectroscopy.

Figure S13. ¹H NMR spectrum (C_6D_6 , 23 °C) of the reaction of **2-Cl₂** with LiCH₂SiMe₃ (unpurified reaction mixture).

Figure S14. ¹H NMR spectrum (C_6D_6 , 23 °C) of the reaction of **2-Cl**₂ with LiCH₂SiMe₃ (volatiles).

Figure S15. ³¹P NMR spectrum (C₆D₆, 23 °C) of the reaction of 2-Cl₂ with LiCH₂SiMe₃ (volatiles).

XII. Synthesis of 2-Cl

In a nitrogen-filled glovebox, a 100 mL round bottom flask was charged with 2-Cl₂⁵ (0.500 g, 1.06 mmol) and 40 mL of toluene. In a separate vial, NaHBEt₃ (1.06 mL of a 1.0 M solution in toluene, 1.06 mmol) was diluted with 5 mL of toluene. The round bottom flask containing 2-Cl₂ and the vial containing NaHBEt₃ were chilled in a cold well filled with liquid nitrogen for 20 mins. The cold solution of NaHBEt₃ was then added dropwise to a cold, stirring solution of 1-Cl₂ in toluene. The reaction was allowed to cool to room temperature and was stirred for 3 hours. The solution was filtered through Celite and the volatiles were evaporated in vacuo to yield a blue residue that was recrystallized twice at -35 °C in toluene to yield blue crystals identified as **2-CI** (0.164 g, 35% yield).

¹*H NMR (benzene-d₆, 23 °C):* δ 6.87 (t, *J* = 7.80 Hz, 1H, para py C*H*), 5.75 (d, *J* = 7.87 Hz, 2H, meta py C*H*), 2.52 – 2.35 (m, 4H, PC*H*Me₂), 1.65 – 1.50 (m, 12H, PCH*Me*₂), 1.44 – 1.33 (m, 12H, PCH*Me*₂).

{¹H}³¹P NMR (benzene-d₆, 23 °C): δ 195.57 (br s, P-CHMe₂).

Figure S16. ¹H NMR spectrum (C_6D_6 , 23 °C) of 2-Cl.

Figure S17. ³¹P NMR spectrum (C₆D₆, 23 °C) of 2-Cl.

XIII. Reaction of 2-CI with LiCH₂SiMe₃

In a nitrogen-filled glovebox, a scintillation vial was charged with **2-CI** (0.034 g, 0.078 mmol) and 5 mL of toluene. In a separate vial, SiMe₃CH₂Li (0.007 g, 0.074 mmol) was diluted with 2 mL of toluene. The vial containing **2-CI** and the vial containing SiMe₃CH₂Li were chilled in a cold well filled with liquid nitrogen for 20 mins. The cold solution of SiMe₃CH₂Li was then added dropwise to a cold, stirring solution of **2-CI** in toluene. The reaction was allowed to cool to room temperature and was stirred for 1 hour. The crude reaction mixture was analyzed using ¹H NMR spectroscopy.

0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.(f1 (ppm)

Figure S18. ¹H NMR spectrum (C_6D_6 , 23 °C) of the reaction of **2-CI** with LiCH₂SiMe₃ (crude reaction mixture).

XIV. References

- [1] J. V. Obligacion, M. J. Bezdek, P. J. Chirik, J. Am. Chem. Soc. 2017, 139, 2825-2832.
- [2] J. V. Obligacion, S. P. Semproni, I. Pappas, P. J. Chirik, J. Am. Chem. Soc. 2016, 138, 10645-10653.
- [3] J. V. Obligacion, S. P. Semproni, P. J. Chirik, *J. Am. Chem. Soc.* 2014, 136, 4133-4136

- [4] G. Aromi, A. S. Batsanov, P. Christian, M. Helliwell, A. Parkin, S. Parsons, A. A. Smith,G. A. Timco, R. E. Winpenny, *Chem. Eur. J.* 2003, *9*, 5142-5161.
- [5] H. Salem, L. J. W. Shimon, Y. Diskin-Posner, G. Leitus, Y. Ben-David, D. Milstein, Organometallics 2009, 28, 4791-4806.
- [6] A. D. Smith, A. Saini, L. M. Singer, N. Phadke, M. Findlater, Polyhedron 2016, 114, 286-291.