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l. General Considerations.

All air- and moisture-sensitive manipulations were carried out using vacuum line,
Schlenk and cannula techniques or in an MBraun inert atmosphere (nitrogen) dry box
unless otherwise noted. All glassware was stored in a pre-heated oven prior to use. The
solvents used for air- and moisture-sensitive manipulations were dried and
deoxygenated using literature procedures.” Cyclopentylmethyl ether (CPME, Acros
Organics) was dried and deoxygenated with sodium-benzophenone ketyl, distilled under
reduced pressure, and stored over 4 A molecular sieves prior to use. Heptane
(Sure/Seal™, anhydrous, Sigma Aldrich) and dodecane (Sure/Seal™, anhydrous,
Sigma Aldrich) were brought into the glovebox and used without further purification.
Benzene-ds (Cambridge Isotope Laboratories) was dried over sodium metal, distilled
under reduced pressure, and stored over 4 A molecular sieves prior to use. Chloroform-
d (Cambridge Isotope Laboratories) was used without further purification. Solid
substrates or non-volatile oils were dried under reduced pressure prior to use. Volatile
liquid substrates were dried over CaH, or LiAlHs and distilled under reduced pressure
prior to use.

The following cobalt complexes were prepared according to (scaled) literature
procedures:  (**PDI)CoMe,> (R)- and (S)-(F""M*“PDI)CoMe,** (P'DI)CoCl,,°
[(P'DI)CoCl]2,° (P'DI)Co(n3-CsHs), (YADI)Co(CH2SiMes),.” See substrate preparation
and Table S1 for structures corresponding to ligand and catalyst abbreviations. The
following substrates were prepared according to (scaled) literature procedures: 3-(4'-
methoxylphenyl)-1H-indene,* 4-methyl-1,2-dihydronaphthalene,* 2-phenyl-3-methyl-1-

butene,® m-tolylboronic acid pinacol ester,® 4-methylbenzylboronic acid pinacol ester,’
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benzylboronic acid pinacol ester,” (3-phenylpropyl)boronic acid pinacol ester,?
diisopropyl(3-phenylpropyl)amine,”®  (rac) 3-Phenylbutan-1-ol tert-butyldimethylsilyl
ether,’” (rac)-2-phenyl-3-methylbutane,® (rac) 1-indanylboronic acid pinacol ester."’ The
'H and *C NMR data of the deuterium labeled substrates reported herein are
consistent with the previously reported data in the references cited for substrate
preparation.

Deuterium incorporation was determined by analysis of quantitative 'H and '*C
spectra of crude reaction mixtures following labeling procedures (see section V: General
Procedures for Hydrogen Isotope Exchange for details). '"H NMR spectra were recorded
on either Bruker ADVANCE 300 or 500 spectrophotometers operating at 300.13 MHz,
and 500.46 MHz, respectively. *C NMR spectra (proton decoupled; {'"H}) were recorded
on either Bruker ADVANCE 300 or 500 spectrometer operating at 75.48 MHz and
125.85 MHz, respectively. The NMR spectra of all deuterated substrates were taken
using chloroform-d as the solvent. Carbons that are directly attached to boron atoms
were not observed due to quadrupolar relaxation.'? The compositions of crude reaction
mixtures and the positions and degrees of deuterium incorporation were determined by
integration of characteristic peaks in the '"H NMR or the quantitative ">°C NMR spectra.
All 'H and "*C NMR chemical shifts are reported in ppm relative to SiMey4 using the 'H
(chloroform-d: 7.26 ppm; benzene-ds: 7.16 ppm) and 3c (chloroform-d: 77.16 ppm,;
benzene-ds: 128.06 ppm) chemical shifts of the solvent as a standard. '"H NMR data are
reported as follows: unlabeled proton chemical shift (multiplicity, [coupling], integration,
assignment); labeled proton chemical shift (multiplicity, % labeled, [coupling],

integration, assignment). Quantitative >*C NMR data are reported as follows: unlabeled
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carbon chemical shift (multiplicity, integration, [coupling], assignment, [2° isotopic shift:
degree of shift (Hz), integration, % of label on adjacent C]); labeled carbon chemical
shift (multiplicity, integration, % labeled, [coupling], assignment, [2° isotopic shift: degree
of shift (Hz), integration, % of label on adjacent C]). Multiplicities abbreviated as follows:
s = singlet; d = doublet; t = triplet; q = quartet; br = broad, m = multiplet, app = apparent,
obsc = obscured).

Chiral gas chromatography was performed on a Shimadzu GC-2010 gas
chromatogram using a Supelco 30 m x 0.25 mm BETA DEX 120 capillary column as
noted for each product. Enantiospecificity (es) of the HIE reactions reported herein is

defined as: es = (% ee of starting material) / (% ee of product) * 100.

Il. Preparation of Cobalt Complexes.

'P

) "
Co~cy

ipr 2 equiv LiCH,SiMes

iPr —_ - 'Pr .
N {)\ pentane, N—Co—\ _
Cl thawing to 23 °C, 30 min K SiMe,
Pr -2 LiCl ipr SiMe;
2, 70% vyield
(PrD1CoCl, (PrDI)Co(CH,SiMe3),

Modified preparation of ("’rDI)Co(CstiMe3)2 (2). In the glovebox, a 100 mL round
bottom flask was charged with 1.013 g (1.90 mmol) of ("’rDI)CoCIZ, 35 mL of pentane,
and a magnetic stir bar. The resulting green solid suspension was chilled in a liquid N2-
cooled cold well (10 minutes). In a separate 20 mL scintillation vial, 0.357 g (3.79 mmol)
of solid trimethylsilylmethyllithium was dissolved in approximately 5 mL of pentane and
also chilled in the cold well (10 minutes). Both vessels were removed from the cold well

and, while stirring the suspension, the LiCH2SiMes solution was added dropwise,
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resulting in a color change to violet. The solution was allowed to warm to 23 °C and
stirred for 30 minutes, then filtered through celite and concentrated in vacuo.
Recrystallization of the resulting violet solid from concentrated pentane solution at -35
°C yielded 0.848 g (70%) of 2. '"H NMR and other analytical data agree with previously

reported data.’

lll. Preparation of Substrates.

. (V°PDI)CoMe | 99% yield
(rac)
8 mol% [Co]
4 atm H,, toluene,
23°C,20h
%{4:10 000) C
3281 romatogram Peakd# Ret.Time Area Height  Conc.
’ 1 165755 506422969482 4915677
-3.50 2 167.920 523797.07939.2 5084323

-3.75

-4.004

-4.25

50.0

-4.50,

-4.75 b5 0
-5.001

162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 1700 171.0 172.0 730 mnt?

Preparation of (rac) 1-(4’-methoxyphenyl)indan. In a nitrogen-filled glovebox, a
sealable thick-walled glass vessel was charged with 0.045 g (0.095 mmol, 8 mol%) of
(Me*PDI)CoMe, 0.254 g (1.14 mmol) of 3-(4-methoxylphenyl)-1H-indene, and 2.2 mL of
toluene. The vessel was sealed, brought out of the glovebox, and attached to a high-
vacuum line. The entire vessel (including reaction solution) was frozen by submersion in
liquid nitrogen (77 K). Following evacuation of the N, atmosphere in the headspace, 1

atm of H, gas was admitted into the vessel. The vessel was then sealed and warmed to
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room temperature (at which point the internal pressure was ~4 atm at ~298 K). The
reaction mixture was stirred at 23 °C for 20 hours. The vessel was then vented and
diluted with ~15 mL hexanes. The reaction mixture was concentrated in vacuo, then
redissolved in ~5 mL of hexanes and passed through two consecutive plugs of silica (in
Pasteur pipettes), eluting with hexane. Following solvent evaporation, 0.253 g (99%) of
(rac) 1-(4’-methoxyphenyl)indan was isolated. syn- and anti-to-Ar proton resonances
assigned in analogy to the previously assigned (by 2D NMR spectroscopy) resonances
in 1-phenylindan.* "H NMR (500 MHz, chloroform-d, 23 °C) & 7.30 (d, 3Jun = 7.3 Hz, 1H,
8-indanyl CH), 7.20 (app t, *Jux = 7.1 Hz, 1H, 7-indanyl CH), 7.17-7.10 (m, 3H, 6-
indanyl CH and 2 x Ar CH), 6.98 (d, *Jun = 7.4 Hz, 1H, 5-indanyl CH), 6.90-6.84 (app d,
Jun = 8.1 Hz, 2H, 2 x Ar CH), 4.31 (t, *Jun = 8.3 Hz, 1H, 1-indanyl benzylic CH), 3.80
(s, 3H, OCHSs), 3.03 (m, 1H, syn-to-Ar 3-indanyl benzylic CH), 2.95 (m, 1H, anti-to-Ar 3-
indanyl benzylic CH), 2.64-2.46 (m, 1H, anti-to-Ar 2-indanyl homobenzylic CH), 2.03 (m,
1H, syn-to-Ar 2-indanyl homobenzylic CH) ppm. "H NMR data were consistent with
previously reported data.* The product was analyzed by chiral GC according to the
reported* isothermal method to verify racemate: hold at 160 °C for 180 minutes; ramp

20 °C per minute, hold at 200 °C for 6 minutes.
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97% yield
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10,000) c
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Preparation of (S) 1-(4'-methoxyphenyl)indan. Prepared using a modified and scaled
version of the published asymmetric hydrogenation procedure.* In a nitrogen-filled
glovebox, a sealable thick-walled glass vessel was charged with 0.051 g (0.10 mmol, 5
mol%) of (S)-(""NMe¢YPDI)CoMe, 0.445 g (2.00 mmol) of 3-(4’-methoxylphenyl)-1H-
indene, and 8.0 mL of toluene. The vessel was sealed, brought out of the glovebox, and
attached to a high-vacuum line. The entire vessel (including reaction solution) was
frozen by submersion in liquid nitrogen (77 K). Following evacuation of the N>
atmosphere in the headspace, 1 atm of H, gas was admitted into the vessel. The vessel
was then sealed and warmed to room temperature (at which point the internal pressure
was ~4 atm at ~298 K). The reaction mixture was stirred at 23 °C for 18 hours. The
vessel was then vented and diluted with ~15 mL hexanes. The reaction mixture was
concentrated in vacuo, then redissolved in ~5 mL of hexanes and passed through two
consecutive plugs of silica (in Pasteur pipettes), eluting with hexane. Following solvent

evaporation, 0.433 g (97%) of (S) 1-(4-methoxyphenyl)indan was isolated. '"H NMR
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data were identical to those reported for the (rac) arylindan above.* Chiral separation
and enantiomer assignment was achieved using chiral GC according to the reported*
isothermal method: hold at 160 °C for 180 minutes; ramp 20 °C per minute, hold at 200

°C for 6 minutes. Product ee: >98% (S).

8 \Co/ o
Se RS

P 78% yield
L (R)-(PNMeCypDI)CoMe ) 92% ee (S)
5 mol% [Co]
4 atm H2, Et20,
23°C, 36 h
3.5 E ﬂg‘g‘o&)’a Column Temp.(Setting c|:
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Preparation of (S)-1-methyltetralin. Prepared using a modified and scaled version of
the published asymmetric hydrogenation procedure with the opposite enantiomer
catalyst. In a nitrogen-filled glovebox, a sealable thick-walled glass vessel was charged
with 0.051 g (0.10 mmol, 5 mol%) of (R)-(*"NMeYPDI)CoMe, 0.289 g (2.00 mmol) of 4-
methyl-1,2-dihydronaphthalene, and 8.0 mL of diethyl ether. The vessel was sealed,
brought out of the glovebox, and attached to a high-vacuum line. The entire vessel
(including reaction solution) was frozen by submersion in liquid nitrogen (77 K).
Following evacuation of the N, atmosphere in the headspace, 1 atm of H, gas was
admitted into the vessel. The vessel was then sealed and warmed to room temperature

(at which point the internal pressure was ~4 atm at ~298 K). The reaction mixture was
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stirred at 23 °C for 36 hours. The entire vessel (including reaction solution) was again
frozen by submersion in liquid nitrogen, reattached to the high-vacuum line, and the H,
atmosphere was removed by evacuating the headspace. The vessel was again sealed,
thawed, and then brought back into the glovebox. The reaction mixture was
concentrated in vacuo, then the resulting crude residue was dissolved in pentane (~5
mL) and passed through a plug of silica (in a Pasteur pipette), eluting with pentane.
Following solvent evaporation, 0.228 g (78%) of (S)-1-methyltetralin was isolated. 'H
NMR (500 MHz, chloroform-d, 23 °C) & 7.27-7.21 (m, 1H, 9-CH), 7.21-7.06 (m, 3H, 6-8
tetralin positions CH), 3.01-2.88 (m, 1H, 1-tetralin benzylic CH), 2.87-2.70 (m,
overlapping diastereotopic 4-tetralin benzylic CH,), 2.02-1.83 (m, 2H, two of
homobenzylic methylene protons), 1.82-1.70 (m, 1H, one of homobenzylic methylene
protons), 1.63-1.52 (m, 1H, one of homobenzylic methylene protons), 1.33 (d, 3Juy = 7.0
Hz, 3H, chiral CHCHs) ppm. 'H NMR data were consistent with previously reported
data.? Chiral separation and enantiomer assignment was achieved using chiral GC
according to the reported* isothermal method: hold at 90 °C for 75 minutes; ramp 20 °C

per minute, hold at 200 °C for 6 minutes. Product ee: 92% (S).
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Preparation of (R)-2-phenyl-3-methylbutane. Prepared using a modified and scaled

version of the published asymmetric hydrogenation procedure.? In a nitrogen-filled
glovebox, a sealable thick-walled glass vessel was charged with 0.055 g (0.10 mmol, 5
mol%) of (R)-(*"NMeCYPDI)CoMe, 0.303 g (2.07 mmol) of 2-phenyl-3-methyl-1-butene,
and 8.0 mL of diethyl ether. The vessel was sealed, brought out of the glovebox, and
attached to a high-vacuum line. The entire vessel (including reaction solution) was
frozen by submersion in liquid nitrogen (77 K). Following evacuation of the N>
atmosphere in the headspace, 1 atm of H, gas was admitted into the vessel. The vessel
was then sealed and warmed to room temperature (at which point the internal pressure
was ~4 atm at ~298 K). The reaction mixture was stirred at 23 °C for 36 hours. The
entire vessel (including reaction solution) was again frozen by submersion in liquid
nitrogen, reattached to the high-vacuum line, and the H, atmosphere was removed by
evacuating the headspace. The vessel was again sealed, thawed, and then brought

back into the glovebox. The reaction mixture was concentrated in vacuo, then the
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resulting crude residue was dissolved in pentane (~5 mL) and passed through a plug of
silica (in a Pasteur pipette), eluting with pentane. Following solvent evaporation, 0.227 g
(74%) of (R)-2-phenyl-3-methylbutane was isolated. "H NMR (500 MHz, chloroform-d,
23 °C) 5 7.28 (app t, *Jun = 7.6 Hz, 2H, m-CH), 7.21-7.13 (m, 3H, o- and p-CH), 2.43
(app pentet, Jun = 7.0 Hz, benzylic CH), 1.77 (septet, *Jun = 6.8 Hz, 1H, homobenzylic
CH), 1.25 (d, *Jun = 7.0 Hz, 3H, homobenzylic CHs), 0.93 (d, *Juy = 6.8 Hz, 3H, one of
diastereotopic CHs), 0.75 (d, 3Jun = 6.8 Hz, 3H, one of diastereotopic CHs) ppm. H
NMR data were consistent with previously reported data.>* Chiral separation and
enantiomer assignment was achieved using chiral GC according to the reported*
isothermal method: hold at 70 °C for 60 minutes; ramp 20 °C per minute, hold at 200 °C

for 6 minutes. Starting material ee: 72% (R).
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IV. Optimization Data for Toluene Hydrogen Isotope Exchange.

Table S1. Detailed screening data for a-diimine cobalt complexes for hydrogen isotope

exchange of toluene.
[% Bn]

cat. [Co], D, _ [% m]
dodecane - [% p]

temp., 24 h [% m]
iPr
\(LN SiMe @ \(LN - '
—Cof— ’ r N— o L 'Pr l}l—Clo Pr
> @ k SiMe; @ V
Me;Si Pr - SiMe; Pr
1 2 3
(SYADI)Co(CH,SiMe3), (P"DI)Co(CH,SiMe3), (PrDI)Co(m3-C5H5)
[Co] | % loading | Temp. | atm % % m | %p | %reduced
(°C) D, Bn arene
1 5 80 4 >905 11 14 12
2 5 80 4 >905 35 37 20
3 5 80 4 5 0 0 0
32 5 80 4 6 0 0 0
2 5 80 1 92 52 60 20
2 5 50 1 70 <5 <5 <5
1 5 50 1 0 0 0 0
2 10 50 1 >905 11 15 8

®Repeat experiment under identical conditions to verify low catalyst activity using 3.

Procedure for Optimization of Hydrogen Isotope Exchange Using Different o.-
Diimine Cobalt Precursors at Different Conditions. In a nitrogen-filled glovebox, an
oven-dried, sealable thick-walled glass vessel was charged with a magnetic stir bar, the
desired amount of cobalt precatalyst (5 or 10 mol%), 0.55 mmol of toluene, and 0.55 mL
of dodecane. The vessel was sealed, brought out of the glovebox, and attached to a
high-vacuum line. The reaction solution was frozen by submersion of the vessel

containing the solution in liquid nitrogen (77 K). For 1 atm D, gas, only the bottom
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portion of the vessel containing the solution was submerged (upon thawing sealed
vessel, internal pressure ~1 atm D). For 4 atm D, gas, the whole vessel was
submerged (upon thawing of sealed vessel 298K, reaches ~4 atm). Following
evacuation of the N, atmosphere in the headspace, 1 atm of D, gas was admitted into
the vessel. The vessel was then sealed, and the reaction mixture was thawed and
stirred in a silicone oil bath at the desired temperature (50 or 80 °C) for 24 hours, during
which time the solution color changed from purple to red. The vessel was removed from
the oil bath, cooled to room temperature and reattached to a high-vacuum line. The
reaction mixture was again frozen and the D, atmosphere was evacuated. The volatiles
of the reaction mixture were then collected by vacuum distillation into a separate flask,
dissolved in chloroform-d, and analyzed by 'H and "*C NMR spectroscopy to determine
the location and extent of deuterium incorporation. For a representative example of the

analysis of these data, see section VI, labeled product 4.

Scheme S1. Hydrogen isotope exchange of a representative set of alkylarenes using 1

as a precatalyst.
N 5 mol% 1 [% C(sp?)-D] R oo
R 4 atm D, - D
R heptane or dodecane o % g( 3)
A [% C(sp’)-D]
80 °C,20h D

R, R,
[>95%] [>95%] [>95%]
[11%]
[14%)]
[11%] Ph [>95%]
(12% reduction) (reduction of (<5% reduction)
both arenes observed)
[>95%] [94%] [95%]
0 i 17%
[20%] BPin  [17%] [16%]
[17%]
[95%]
(5% reduction) (reduction (7% reduction)
observed)
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Procedure for Hydrogen Isotope Exchange Using Precatalyst 1 at 4 atm D, and 80
°C. In a nitrogen-filled glovebox, an oven-dried, sealable thick-walled glass vessel was
charged with a magnetic stir bar, 0.013 g (0.028 mmol, 5 mol%) of 1, 0.55 mmol of the
desired alkylarene substrate, and 0.55 mL of dodecane (volatile substrates, b.p. <180
°C) or heptane (non-volatile substrates, b.p. >180 °C). The vessel was sealed, brought
out of the glovebox, and attached to a high-vacuum line. The entire vessel (including
reaction solution) was frozen by submersion in liquid nitrogen (77 K). Following
evacuation of the N2 atmosphere in the headspace, 1 atm of D, gas was admitted into
the vessel. The vessel was then sealed and warmed to room temperature (at which
point the internal pressure was ~4 atm at ~298 K). The reaction mixture was stirred in
an 80 £ 2 °C silicone oil bath for 20 hours by submerging only the portion of the vessel
containing the solution in oil. The vessel was removed from the oil bath, cooled to room
temperature. For reactions in dodecane (volatile substrates), the vessel was reattached
to a high-vacuum line, the reaction mixture was again frozen, and the D, atmosphere
was evacuated. The volatiles of the reaction mixture were then collected by vacuum
distillation into a separate flask, dissolved in chloroform-d, and analyzed by 'H and *C
NMR spectroscopy to determine the location and extent of deuterium incorporation. For
reactions in heptane (non-volatile substrates), the reaction was quenched by venting the
vessel and exposing the reaction mixture to air. The reaction mixture was loaded
directly onto the plug of silica gel, and the substrate was eluted with either hexanes.
Following solvent evaporation, the substrate was dissolved in chloroform-d, and

analyzed by 'H and "*C NMR spectroscopy to determine the location and extent of
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deuterium incorporation. For a representative examples of the analyses of these data,

see section VI.

Ineffective substrates for hydrogen isotope exchange with cobalt:

5o

NEt,

Figure S1. Representative substrates for which no hydrogen isotope exchange was
observed using precatalysts 1 or 2.

V. General Procedures Hydrogen Isotope Exchange.

General Note: Analysis of labeled substrates was carried out by quantitative 'H and "*C
NMR of crude reaction mixtures following the workups described for each General
Procedure. Because the focus of this work is on the regioselectivity and degree of
labeling of known compositions of matter, purification and re-isolation of labeled
substrates was not carried out. Common impurities in the NMR spectra include
tetramethylsilane (from catalyst activation), free PD ligand, residual solvent from
reaction or workup, and reduced substrate. Where applicable, these impurities are
identified and quantified (see section VI: Characterization of Deuterated Substrates).
For non-volatiles substrates labeled using General Procedures B and C, percent
recovery of the labeled substrate is estimated based on mass and composition of the

crude reaction mixture.
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General Procedure A: Hydrogen Isotope Exchange of Volatile Substrates in
Dodecane under 1 atm D; at 50 °C. In a nitrogen-filled glovebox, an oven-dried,
sealable thick-walled glass vessel was charged with a magnetic stir bar, 0.035 g (0.055
mmol, 10 mol%) of 2, 0.55 mmol of the desired substrate, and 0.55 mL of dodecane.
The vessel was sealed, brought out of the glovebox, and attached to a high-vacuum
line. The reaction solution was frozen by submersion of the bottom portion of the vessel
containing the solution in liquid nitrogen. Following evacuation of the N, atmosphere in
the headspace, 1 atm of D, gas was admitted into the vessel. The vessel was then
sealed, and the reaction mixture was thawed and stirred in a 50 * 2 °C silicone oil bath
for 24 hours, during which time the solution color changed from purple to red. The
vessel was removed from the oil bath, cooled to room temperature and reattached to a
high-vacuum line. The reaction mixture was again frozen and the D, atmosphere was
evacuated. The volatiles of the reaction mixture were then collected by vacuum
distillation into a separate flask, dissolved in chloroform-d, and analyzed by 'H and *C
NMR spectroscopy to determine the location and extent of deuterium incorporation. Due

to volatility of the substrates, percent recovery was not determined with this method.

General Procedure B: Hydrogen Isotope Exchange of Non-Volatile Substrates in
heptane under 1 atm D; at 50 °C. In a nitrogen-filled glovebox, an oven-dried, sealable
thick-walled glass vessel was charged with a magnetic stir bar, 0.035 g (0.055 mmol, 10
mol%) of 2, 0.55 mmol of the desired substrate, and 0.55 mL of heptane. The vessel
was sealed, brought out of the glovebox, and attached to a high-vacuum line. The

reaction solution was frozen by submersion of the bottom portion of the vessel
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containing the solution in liquid nitrogen. Following evacuation of the N, atmosphere in
the headspace, 1 atm of D, gas was admitted into the vessel. The vessel was then
sealed, and the reaction mixture was thawed and stirred in a 50 * 2 °C silicone oil bath
for 24 hours, during which time the solution color changed from purple to red. The
reaction was quenched by venting the vessel and exposing the reaction mixture to air,
resulting in immediate color change from red to dark blue. The reaction mixture was
loaded directly onto plug of silica gel in a Pasteur pipette and eluted with either hexanes
or ethyl acetate into a 20 mL scintillation vial. Following solvent evaporation, the mass
of the recovered material (sometimes containing free *'DI ligand) was recorded to
determine percent recovery. The material was then dissolved in chloroform-d and
analyzed by 'H and "*C NMR spectroscopy to determine the location and extent of

deuterium incorporation in the substrate.

General Procedure C: Hydrogen Isotope Exchange of Non-Volatile Substrates
under 4 atm D, at 80 °C. In a nitrogen-filled glovebox, an oven-dried, sealable thick-
walled glass vessel was charged with a magnetic stir bar, 0.018 g (0.028 mmol, 5
mol%) or 0.035 g (0.055 mmol, 10 mol%) of 2, 0.55 mmol of the desired substrate, and
0.55 mL of heptane or CPME. The vessel was sealed, brought out of the glovebox, and
attached to a high-vacuum line. The entire vessel (including reaction solution) was
frozen by submersion in liquid nitrogen (77 K). Following evacuation of the N>
atmosphere in the headspace, 1 atm of D, gas was admitted into the vessel. The vessel
was then sealed and warmed to room temperature (at which point the internal pressure

was ~4 atm at ~298 K). The reaction mixture was stirred in an 80 + 2 °C silicone oil bath
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for 24 hours by submerging only the portion of the vessel containing the solution in oil,
during which time the solution color changed from purple to red. The reaction was
quenched by venting the vessel and exposing the reaction mixture to air, resulting in
immediate color change from red to dark blue. When using CPME, the solvent was
evacuated, then the crude residue was dissolved in hexanes (~3 mL) and loaded onto a
plug of silica gel in a Pasteur pipette. When using heptane, the reaction mixture was
loaded directly onto the plug of silica gel. The substrate was eluted with either hexanes
or ethyl acetate into a tared 20 mL scintillation vial. Following solvent evaporation, the
mass of the recovered material (sometimes containing free ©'DI ligand) was recorded to
determine percent recovery. The material was then dissolved in chloroform-d and
analyzed by 'H and "*C NMR spectroscopy to determine the location and extent of

deuterium incorporation.

VI. Characterization of Deuterated Substrates.

[>95%]
[11%]

[15%]
[11%]
4

Toluene 4. Labeled with deuterium according to General Procedure A using 0.051 g
(0.55 mmol) of toluene. Dodecane, tetramethylsilane-d; (from precatalyst activation with
D.), and approximately 8% of deuterated methylcyclohexane were also observed by
NMR spectroscopy. Percent reduction to deuterated methylcyclohexane was
determined by integration of a diagnostic carbon resonance (34.83 ppm, t, "Jcp = 19 Hz,

integrates to 0.16 with respect to toluene, 2 of CHD methylene) in the quantitative 3c
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NMR spectrum. "H NMR (500 MHz, chloroform-d, 23 °C) & 7.33-7.27 (m, 11% labeled,
1.78H, m-CH), 7.25-7.17 (m, 15% labeled, 2.85H, o- and p-CH), 2.41-2.34 (m, >95%
labeled, 2Upp = 2.0 Hz, 0.14H, benzylic CH) ppm. Quantitative "*C{"H} NMR (126 MHz,
chloroform-d, 23 °C) & 137.90 (m, 1C, ipso C), 129.18 (m, 2C, o-C, 2° isotopic shift: 14
Hz, 0.22C, ca. 11% D at m-C), 128.37 (m, 2C, 11% labeled, 'Jcp = 24 Hz, m-C, 2°
isotopic shift: 14 Hz, 0.30C, ca. 15% D at p-C), 125.46 (m, 1C, 15% labeled, "Jcp = 24
Hz, p-C), 21.43-20.23 (m, 1C, >95% labeled, "Jcp = 19 Hz, benzylic C) ppm.

[38%]

F
3-Fluorotoluene 5. Labeled with deuterium according to General Procedure A using
0.061 g (0.55 mmol) of 3-fluorotoluene. Reaction mixture became colorless after 3
hours, likely indicating decomposition of the catalyst. Dodecane, tetramethylsilane-d
(from precatalyst activation with D), and approximately 8% of reduced arene were
observed by NMR spectroscopy. Percent arene reduction was determined by
integration of a diagnostic carbon resonance (34.71 ppm, overlapping t, "Jcp = 18 Hz,
integrates to 0.16 with respect to 3-fluorotoluene, 2 of CHD methylene) in the
quantitative *C NMR spectrum in analogy to deuterated methylcyclohexane observed
in the toluene labeling reaction, but this product was not further characterized. "H NMR
(500 MHz, chloroform-d, 23 °C) & 7.22 (app td, J = 7.8, 6.1 Hz, 1H, 5-CH), 6.96 (app d,
J=7.7 Hz, 1 H, 6-CH), 6.92-6.83 (m, 2H, 2- and 4-CH), 2.40-2.30 (m, 38% labeled, Jip
= 2.0 Hz, 1.85H, benzylic CH) ppm. Quantitative *C{'"H} NMR (126 MHz, chloroform-d,

23 °C) 5 162.87 (d, 1C, "Jcr = 245 Hz, C-F), 140.37 (m, 1C, ipso C), 129.58 (d, 1C, 3Jcr
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= 8.5 Hz, 5-C), 124.71 (d, 1C, *Jcr = 2.7 Hz, 6-C), 115.93 (d, 1C, 2cr = 21 Hz, 2-C),
112.23 (d, 1C, 2Jcr = 21 Hz, 4-C), 21.44-20.13 (m, 1C, "Jop = 19 Hz, °Jor = 1.9 Hz,
benzylic C) ppm.

[61%)]

[9%]@
OMe

6

2-methylanisole 6. Labeled with deuterium according to General Procedure A using
0.067 g (0.55 mmol) of 2-methylanisole. Dodecane tetramethylsilane-d; (from
precatalyst activation with D) were also observed by NMR spectroscopy. 'H NMR (500
MHz, chloroform-d, 23 °C) & 7.23-7.13 (m, 2H, 5- and 6-CH), 6.89 (app t, 3Jun = 7.4 Hz,
9% labeled, 0.91H, 4-CH), 6.86 (app d, ®Jun = 8.1 Hz, 1H, 3-CH), 2.27-2.20 (m, 61%
labeled, 2Jnp = 2.0 Hz, 1.16H, benzylic CH) ppm. Quantitative *C{"H} NMR (126 MHz,
chloroform-d, 23 °C) & 157.86 (s, 1C, COCHgs), 130.73 (m, 1C, 3-C, 2° isotopic shift: 13
Hz, 0.09C, ca. 9% D at 4-C), 126.92 (m, 1C, 5-C, 2° isotopic shift: 14 Hz, 0.09C, ca.
9% D at 4-C), 126.70 (m, 1C, ipso CCHj), 120.38 (m, 1C, 9% labeled, "Jcp = 25 Hz, 4-
C), 109.98 (s, 1C, 6-C), 55.33 (s, 1C, OCH3), 21.43-20.23 (m, 1C, 61% labeled, "Jop =
19 Hz, benzylic C) ppm.
[45%)]
[15%]
tod)
7
N,N-dimethyl-o-toluidine 7. Labeled with deuterium according to General Procedure B
using 0.074 g (0.55 mmol) of N,N-dimethyl-o-toluidine. Eluted with ethyl acetate,

yielding 0.069 g of recovered material following evaporation of solvent. An
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approximately 15% impurity in the recovered substrate was identified as free PD| ligand
by NMR spectroscopy. From these data, the recovery of labeled 7 was determined to be
64%. 'H NMR (500 MHz, chloroform-d, 23 °C) & 7.25-7.18 (obsc m, 7% labeled, 1.93H,
3- and 5-CH), 7.09 (app d, Jun = 8.2 Hz, 1H, 6-CH), 7.01 (app t, *Jun = 7.4,1.2 Hz, 15%
labeled, 0.85H, 4-CH), 2.76 (s, 6H, N(CHz)2), 2.41-2.32 (m, 45% labeled, Jip = 2.1 Hz,
1.66H, benzylic CH) ppm. Quantitative ">*C{’"H} NMR (126 MHz, chloroform-d, 23 °C) &
152.84 (s, 1C, CN(CHs;)2), 132.20 (m, 1C, ipso CCHj3), 130.25 (m, 1C, 3-C, 2° isotopic
shift: 14 Hz, 0.15C, ca. 15% D at 4-C), 126.54 (m, 1C, 7% labeled, 'Jcp = 25 Hz, 5-C, 2°
isotopic shift: 14 Hz, 0.15C, ca. 15% D at 4-C), 122.65 (m, 1C, 15% labeled, "Jcp = 24
Hz, 4-C), 118.44 (m, 1C, 6-C, 2° isotopic shift: 14 Hz, 0.07C, ca. 7% D at 5-C), 55.33
(s, 1C, OCH3), 18.60-17.33 (m, 1C, 45% labeled, "Jcp = 19 Hz, benzylic C) ppm.

[14%] [93%]
[70%]
[9%]

BPin
m-tolylboronic acid pinacol ester 8. Labeled with deuterium according to General
Procedure C using 5 mol% of 2 (0.018 g, 0.028 mmol), 0.12 g (0.55 mmol) of m-
tolylboronic acid pinacol ester in heptane. Eluted with ethyl acetate, yielding 0.141 g of
recovered material following evaporation of solvent. Trace Ethyl acetate, 11% free iPrDI
ligand (by mol), and approximately 53% of reduced arene (by mol; 2 isomers) were also
observed by NMR spectroscopy. Percent arene reduction was determined by
integration of a diagnostic carbon resonance (24.87, 24.82, 24.81 ppm, overlapping s,
integrates to 5.54 with respect to 8, four of reduced arene BPin CHs) in the quantitative

3C NMR spectrum in analogy to deuterated methylcyclohexane observed in the toluene
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labeling reaction, but these products was not further characterized. '"H NMR (500 MHz,
chloroform-d, 23 °C) & 7.69-7.57 (m, 9% labeled at 4-position and 14% labeled at 6-
position, 1.77H, arene 4- and 6-CH), 7.31-7.24 (m, 70% labeled at 5-position, 1.30H,
arene 2- and 6-CH), 2.38-2.30 (m, 93% labeled, Jip = 2.0 Hz, 0.20H, benzylic CH),
1.35 (s, 12H, 4 x BPin CHs) ppm. Quantitative ">C{'"H} NMR (126 MHz, chloroform-d, 23
°C) 6 137.37-136.77 (m, 1C, ipso CCHs, 2° isotopic shift: 11 Hz, 0.14C, ca. 14% D at 6-
C), 135.42 (s, 1C, 2-C), 132.16-131.92 (m, 1C, 9% labeled, 4-C, 2° isotopic shift: 13 Hz,
0.30C at non-shifted signals, 70% labeled at 5-C), 131.92-131.22 (m, 1C, 4% labeled,
'Jep = 24 Hz, 6-C, 2° isotopic shift: 14 Hz, 0.31C at non-shifted signals, 70% labeled at
5-C), 127.86-127.02 (m, 1C, 70% labeled, 'Jep = 24 Hz, 5-C, 2° isotopic shift: 13 Hz),
83.72 (s, 2C, 2 x BPin CO), 24.93 (s, 4C, 4 x BPin CH3), 21.02-19.93 (m, 1C, 93%
labeled, "Jcp = 19 Hz, benzylic C) ppm; one arene carbon resonance (attached to
boron) was not observed.

[93%]

1

[93%] 9

p-Xylene 9. Labeled with deuterium according to General Procedure A using 0.058 g
(0.55 mmol) of p-xylene. Dodecane and tetramethylsilane-d; (from precatalyst activation
with D,) were also observed by NMR spectroscopy. 'H NMR (500 MHz, chloroform-d,
23 °C) 5 7.09 (s, 4H, Ar-CH), 2.33-2.25 (m, 93% labeled, ?Jip = 2.2 Hz, 0.40H, benzylic
CH) ppm. Quantitative *C{"H} NMR (126 MHz, chloroform-d, 23 °C) & 134.72 (m, 2C,
ipso CCH3), 129.05 (s, 4C, Ar CH), 21.26-19.44 (m, 2C, 93% labeled, 'Jcp = 19 Hz,

benzylic C) ppm.
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[16%]

o

10

4-phenyltoluene 10. Labeled with deuterium according to General Procedure B using
0.093 g (0.55 mmol) of 4-phenyltoluene. Eluted with hexanes, yielding 0.098 g of
recovered material following evaporation of solvent. Hexanes and approximately 10% of
reduced arene were also observed by NMR spectroscopy. Percent arene reduction was
determined by integration of a diagnostic carbon resonances (two species attributed to
arene reduction at each ring, each 5%: 34.05, 31.42, 28.07, 26.41 ppm, all t, all 'Jep =
19 Hz, each integrates to 0.10 with respect to 4-phenyltoluene, each corresponds to 2
of CHD methylene) in the quantitative '>*C NMR spectrum in analogy to deuterated
methylcyclohexane observed in the toluene labeling reaction, but these products were
not further characterized. "H NMR (500 MHz, chloroform-d, 23 °C) & 7.58 (dd, *Jun =
8.3, 1.2 Hz, 2H, Ar C-H), 7.50 (d, *Jun = 8.1 Hz, 2H, Ar C—H), 7.41 (t, *Jun = 7.7 Hz, 2H,
Ar C-H), 7.31 (t, ®Jun = 8.0 Hz, 1H, Ar C—H), 7.24 (d, Jun = 8.0 Hz, 2H, Ar C—H), 2.42-
2.34 (m, 16% labeled, *Jip = 2.2 Hz, 2.51H, benzylic CH) ppm. Quantitative "*C{'H}
NMR (126 MHz, chloroform-d, 23 °C) & 141.26 (s, 1C, Ar CHy), 138.46 (s, 1C, Ar CHy),
137.09 (m, 1C, ipso CCH3), 129.60 (s, 2C, Ar CH), 128.83 (s, 2C, Ar CH), 127.15-
127.03 (overlapping s, 5C, Ar CH), 21.41-20.01 (m, 1C, 16% labeled, 'Jcp = 19 Hz,

benzylic C) ppm.
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[13%]

Bu’ :

11

4-tert-butyltoluene 11. Labeled with deuterium according to General Procedure B
using 0.082 g (0.55 mmol) of 4-tert-butyltoluene. Eluted with hexanes, yielding 0.054 g
(66%) of recovered material following evaporation of solvent. "H NMR (500 MHz,
chloroform-d, 23 °C) & 7.38 (d, *Jun = 8.4 Hz, 2H, Ar C—H), 7.20 (d, *Jin = 8.4 Hz, 2H,
Ar C-H), 2.43-2.36 (m, 13% labeled, %Jup = 2.1 Hz, 2.62H, benzylic CH), 1.40 (s, 9H,
C(CHs)3) ppm. Quantitative *C{"H} NMR (126 MHz, chloroform-d, 23 °C) 5 148.21 (s,
1C, CC(CHa)s), 133.94 (m, 1C, ipso CCH3), 128.89 (s, 2C, Ar CH), 125.28 (s, 2C, Ar
CH), 34.45 (s, 1C, C(CHj3)3), 31.58 (s, 1C, C(CHg3)3), 21.13-19.76 (m, 1C, 13% labeled,
'Jep = 19 Hz, benzylic C) ppm.

[62%]

MeO
12 OMe

3,4-dimethoxytoluene 12. Labeled with deuterium according to General Procedure B
using 0.084 g (0.55 mmol) of 3,4-dimethoxytoluene. Eluted with ethyl acetate, yielding
0.103 g of recovered material following evaporation of solvent. An approximately 11%
impurity in the recovered substrate was identified as free PD ligand by NMR
spectroscopy. From these data, the recovery of labeled 12 was determined to be 96%.
'H NMR (500 MHz, chloroform-d, 23 °C) 5 6.80-6.74 (m, 1H, 2-CH), 6.74-6.68 (m, 2H,
5- and 6-CH), 3.87 (s, 3H, one of OCHS3), 3.85 (s, 3H, one of OCHs), 2.33-2.25 (m, 62%

labeled, 2Jip = 2.1 Hz, 1.15H, benzylic CH) ppm. Quantitative *C{'"H} NMR (126 MHz,
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chloroform-d, 23 °C) & 148.68 (s, 1C, one of COCHs), 146.82 (s, 1C, one of COCH3),
130.33 (m, 1C, ipso CCH3), 120.74 (s, 1C, Ar CH), 112.38 (s, 1C, Ar CH), 111.19 (s,
1C, Ar CH), 55.89 (s, 1C, one of OCHs), 55.71 (s, 1C, one of OCHs), 21.12-19.50 (m,
1C, 62% labeled, "Jcp = 19 Hz, benzylic C) ppm.

[60%]

[93%]

BPin 13

4-methylbenzylboronic acid pinacol ester 13. Labeled with deuterium according to
General Procedure C using 5 mol% of 2 (0.018 g, 0.028 mmol), 0.128 g (0.55 mmol) of
4-methylbenzylboronic acid pinacol ester in heptane. Eluted with ethyl acetate, yielding
0.135 g of recovered material following evaporation of solvent. An approximately 4%
impurity in the recovered substrate was identified as free PD ligand by NMR
spectroscopy. From these data, the recovery of labeled 13 was determined to be 99%.
Relative deuterium incorporation on the benzylic positions was determined by a
combination of integration of benzylic proton signals in the 'H NMR spectrum and
analysis of the arene ipso carbon signals in the quantitative ">*C NMR spectrum, which
indicated high incorporation of deuterium on the benzylic methylene (one 13C singlet
signal, mostly CD,BPin) and a mixture of isotopic incorporation in the benzylic methyl
(four 13C singlet signals, indicating CH3, CH2D, CHD,, CD3 all present). 'H NMR (500
MHz, chloroform-d, 23 °C) & 7.02 (ABq, Jas = 7.8 Hz, 4H, Ar-CH), 2.28-2.21 (m, 60%
labeled, 2Jup = 2.0 Hz, 1.21H, benzylic CHs), 2.21-2.18 (br m, 93% labeled, 0.14H,
benzylic CH.BPin), 1.19 (s, 12H, 4 x BPin CH3) ppm. Quantitative "*C{'"H} NMR (126

MHz, chloroform-d, 23 °C) d 135.34 (s, 1C, ipso C-CH2BPin), 134.19-133.84 (m (4 x s),
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1C, ipso CCHj3), 129.01 (s, 2C, Ar CH), 128.85 (s, 2C, Ar CH), 83.35 (s, 2H, 2 x BPin
CO), 24.77 (s, 4C, 4 x BPin CHs), 21.39-19.33 (m, 1C, 60% labeled, "Jcp = 19 Hz, 1°
benzylic C) ppm; one benzylic carbon resonance (attached to boron) was not observed.

[86%]

[93%]
14

p-Cymene 14. Labeled with deuterium according to General Procedure A using 0.074 g
(0.55 mmol) of p-cymene. Dodecane and tetramethylsilane-d; (from precatalyst
activation with D2) were also observed by NMR spectroscopy. 'H NMR (500 MHz,
chloroform-d, 23 °C) & 7.15 (ABq, Jas = 8.0 Hz, 4H, Ar-CH), 2.90 (septet, 93% labeled,
*Jun = 6.8 Hz, 0.07H, benzylic CH(CHs)y), 2.39-2.26 (m, 86% labeled, 2Jip = 2.1 Hz,
0.43H, benzylic CHs), 1.26 (app s, 6H, C(D)(CHs)2) ppm. Quantitative *C{'"H} NMR (126
MHz, chloroform-d, 23 °C) 5 145.86 (m, 1C, ipso C-'Pr), 135.06 (m, 1C, ipso CCHy3),
128.99 (s, 2C, Ar CH), 126.27 (s, 2C, Ar CH), 33.28 (t, 93% labeled, "Jcp = 19 Hz,
benzylic C(CH3)z), 24.02 (s, 2C, C(CH3)2), 21.11-19.61 (m, 1C, 86% labeled, "Jcp = 19
Hz, 1° benzylic C) ppm.

[79%]

[79%] [79%]
15

Mesitylene 15. Labeled with deuterium according to General Procedure A using 0.066
g (0.55 mmol) of mesitylene. Dodecane and tetramethylsilane-d; (from precatalyst

activation with D2) were also observed by NMR spectroscopy. 'H NMR (500 MHz,
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chloroform-d, 23 °C) 5 6.83 (s, 3H, Ar-CH), 2.35-2.20 (m, 79% labeled, Jup = 2.0 Hz,
1.93H, benzylic CH) ppm. Quantitative ">*C{’"H} NMR (126 MHz, chloroform-d, 23 °C) &
137.75 (m, 3C, ipso CCH3), 127.05 (s, 3C, Ar CH), 21.46-19.97 (m, 3C, 79% labeled,
'Jep = 19 Hz, benzylic C) ppm.

[23%]

[23%]
[23%]
[23%]
[23%]

16

[23%]
Hexamethylbenzene 16. Labeled with deuterium according to General Procedure C
using 10 mol% (0.035 g, 0.055 mmol) of 2, 0.089 g (0.55 mmol) of hexamethylbenzene
in CPME. Reaction mixture became colorless after 3 hours, likely indicating
decomposition of the catalyst. Eluted with hexanes following quench, yielding 0.087 g
(97%) of recovered material following evaporation of solvent. A naphthalene internal
standard (0.071 g, 0.55 mmol, 1.0 equiv) was added to the NMR sample for
quantification of deuterium incorporation. "H NMR (500 MHz, chloroform-d, 23 °C) &
2.55-2.44 (m, 23% labeled, 2Jup = 2.0 Hz, 13.80H, benzylic CH) ppm. Quantitative
3C{"H} NMR (126 MHz, chloroform-d, 23 °C) & 132.08 (m, 6C, CCH3), 17.08-15.60 (m,
6C, 23% labeled, 'Jcp = 19 Hz, benzylic C) ppm.

[92%]

.

Ethylbenzene 17. Labeled with deuterium according to General Procedure A using
0.058 g (0.55 mmol) of ethylbenzene. Dodecane and tetramethylsilane-d; (from

precatalyst activation with D) were also observed by NMR spectroscopy. 'H NMR (500

S27



MHz, chloroform-d, 23 °C) 6 7.31 (app t, 3Jun = 7.5 Hz, 2H, m-CH), 7.25-7.17 (m, 3H, o-
and p-CH), 2.72-2.60 (m, 92% labeled, *Jun = 7.6 Hz, 2Jup = 2.0 Hz, 0.17H, benzylic
CH), 1.25 (s, 3H, C(D)2.CHs) ppm. Quantitative ">C{'"H} NMR (126 MHz, chloroform-d,
23 °C) 5 144.19 (m, 1C, ipso C), 128.31 (s, 2C, Ar CH), 127.86 (s, 2C, Ar CH), 125.59
(s, 1C, p-CH), 28.94-27.76 (m, 1C, 92% labeled, 'Jcp = 19 Hz, benzylic C),15.49 (s, 1C,
CH>CHj3) ppm.

[94%]
BPin

18
Benzylboronic acid pinacol ester 18. Labeled with deuterium according to General
Procedure B using 0.074 g (0.55 mmol) of benzylboronic acid pinacol ester. Eluted with
ethyl acetate, yielding 0.135 g of recovered material following evaporation of solvent. An
approximately 10% impurity in the recovered substrate was identified as free PD| ligand
by NMR spectroscopy. From these data, the recovery of labeled 18 was determined to
be 95%. "H NMR (500 MHz, chloroform-d, 23 °C) & 7.23-7.10 (m, 4H, o- and m-CH),
7.08 (t, ®Ju = 7.0 Hz, 1H, p-CH), 2.28-2.21 (br m, 94% labeled, 0.13H, benzylic CH),
1.19 (s, 12H, 4 x BPin CHs) ppm. Quantitative ">C{'"H} NMR (126 MHz, chloroform-d, 23
°C) 0 138.60 (m, 1C, ipso C), 128.99 (s, 2C, Ar CH), 128.29 (s, 2C, Ar CH), 124.86 (s,
1C, p-CH), 83.41 (s, 2H, 2 x BPin CO), 24.77 (s, 4C, 4 x BPin CH3) ppm; benzylic

carbon resonance (attached to boron) was not observed.
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[76%]
Si(OEt),

19

Benzyltriethoxysilane 19. Labeled with deuterium according to General Procedure B
using 0.140 g (0.55 mmol) of benzyltriethoxysilane. Eluted with ethyl acetate, yielding
0.087 g of recovered material following evaporation of solvent. An approximately 28%
impurity in the recovered substrate was identified as free PD ligand by NMR
spectroscopy. From these data, the recovery of labeled 19 was determined to be 43%.
'H NMR (500 MHz, chloroform-d, 23 °C) & 7.28-7.16 (m, 4H, o- and m-CH), 7.15-7.08
(m, 1H, p-CH), 3.79 (q, ®Jun = 7.1 Hz, 6H, 3 x CHCH3), 2.26-2.19 (br m, 76% labeled,
0.48H, benzylic CH), 1.20 (t, *Jun = 7.0 Hz, 3 x CH,CHj3) ppm. Quantitative "*C{'H}
NMR (126 MHz, chloroform-d, 23 °C) & 137.60 (m, 1C, ipso C), 128.94 (s, 2C, Ar CH),
128.28 (s, 2C, Ar CH), 124.66 (s, 1C, p-CH), 58.77 (s, 3C, 3 x CH,CHj3), 20.38-19.40
(m, 1C, 76% labeled, "Jcp = 18 Hz, benzylic C),18.30 (s, 3C, 3 x CH,CH3) ppm.
[90%]

[16%] m
[23%]

(16%] 20
Benzylcyclopropane 20. Labeled with deuterium according to General Procedure B
using 0.073 g (0.55 mmol) of benzylcyclopropane. Eluted with hexanes, yielding 0.054 g
of recovered material following evaporation of solvent. Two impurities were observed in
the recovered substrate and were identified as free T'DI ligand (approximately 3%) and
reduced arene (approximately 10%; diagnostic 'H signals for cyclopropyl: 0.71 (m, 1H),
0.42 (m, 2H), 0.02 (m, 2H) ppm; diagnostic *C signal: 32.91 (t, 1C, "Jecp = 21 Hz, CHD))

by NMR spectroscopy. Products from ring-opening of the cyclopropane, such as n-
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butylbenzene or isobutylbenzene, were not observed. "H NMR (500 MHz, chloroform-d,
23 °C) 8 7.36-7.27 (m, 16% labeled at m-CH, 3.68H, o- and m-CH), 7.27-7.19 (obsc m,
23% labeled, 0.77H + free ligand integration, p-CH), 2.61-2.54 (m, 90% labeled, Juy =
7.2 Hz, 2Jup = 1.9 Hz, 0.20H, benzylic CH), 1.02 (m, 1H, cyclopropyl methine), 0.59-
0.54 (m, 2H, 2 of cyclopropyl methylene CH), 0.28-0.21 (m, 2H, 2 of cyclopropyl
methylene CH) ppm. Quantitative "*C{'"H} NMR (126 MHz, chloroform-d, 23 °C) &
142.21 (m, 1C, ipso C), 128.48 (obsc m, 2C, 0-C), 128.36 (m, 2C, 16% labeled, "Jcp =
24 Hz, m-C, 2° isotopic shift: 14 Hz, 0.46C, ca. 23% D at p-C), 125.96 (m, 1C, 23%
labeled, 'Jcp = 24 Hz, p-C, 2° isotopic shift: 14 Hz, 0.16C, ca. 26% D at m-C), 40.88-
38.80 (m, 1C, 90% labeled, 'Jcp = 19 Hz, benzylic C), 11.89 (m, 1C, cyclopropyl
methine CH), 4.73 (m, 2C, cyclopropyl CH>) ppm.

[90%]

21 BPin

(3-Phenylpropyl)boronic acid pinacol ester 21. Labeled with deuterium according to
General Procedure B using 0.135 g (0.55 mmol) of (3-phenylpropyl)boronic acid pinacol
ester. Eluted with ethyl acetate, yielding 0.154 g of recovered material following
evaporation of solvent. An approximately 10% impurity in the recovered substrate was
identified as free "Dl ligand by NMR spectroscopy. From these data, the recovery of
labeled 21 was determined to be 98%."H NMR (500 MHz, chloroform-d, 23 °C) & 7.27
(app t, 3Jun = 7.4 Hz, 2H, m-CH), 7.22-7.14 (m, 3H, o- and p-CH), 2.67-2.52 (br m, 90%
labeled, ®Ji = 7.8 Hz, 0.20H, benzylic CH), 1.75 (t, *Jun = 8.1 Hz, 2H, C(D).CH>), 1.26
(s, 12H, 4 x BPin CHs), 0.85 (t, *Jun = 8.1 Hz, CH2BPin) ppm. Quantitative ">*C{'"H} NMR

(126 MHz, chloroform-d, 23 °C) & 142.66 (m, 1C, ipso C), 128.60 (s, 2C, Ar CH), 128.23
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(s, 2C, Ar CH), 125.63 (s, 1C, p-CH), 82.96 (s, 2C, 2 x BPin CO), 38.55-37.38 (m, 1C,
90% labeled, "Jcp = 19 Hz, benzylic C), 26.05 (s, 1C, PhC(D)2CH,), 24.91 (s, 4C, 4 x
BPin CH3) ppm; one carbon resonance (attached to boron) was not observed.

[88%]
[5%]

i
[50/0] 22 N( Pr)Z

Diisopropyl(3-phenylpropyl)amine 22. Labeled with deuterium according to General
Procedure B using 0.121 g (0.55 mmol) of diisopropyl(3-phenylpropyl)amine. Eluted
with ethyl acetate, yielding 0.130 g of recovered material following evaporation of
solvent. An approximately 8% impurity in the recovered substrate was identified as free
DI ligand by NMR spectroscopy. From these data, the recovery of labeled 22 was
determined to be 94%. "H NMR (500 MHz, chloroform-d, 23 °C) & 7.27 (app t, *Jun = 7.4
Hz, 5% labeled, 1.90H, m-CH), 7.20-7.13 (m, 3H, o- and p-CH), 2.99 (septet, *Jun = 6.5
Hz, 2 x N(CH(CHs)2)), 2.62-2.52 (br m, 88% labeled, ®Jun = 7.9 Hz, 0.24H, benzylic
CH), 2.42 (app t, *Jun = 7.6 Hz, 2H, CH,CHoN), 1.71 (app t, ®Jun = 7.4 Hz, 2H,
CH,CH:N), 0.98 (d, 3Jun = 6.5 Hz, 2 x N(CH(CHs)2)) ppm. Quantitative *C{'"H} NMR
(126 MHz, chloroform-d, 23 °C) & 142.77 (m, 1C, ipso C), 128.42 (m, 2C, 5% labeled,
m-CH), 128.28 (m, 2C, o-C, 2° isotopic shift: 14 Hz, 0.10C, ca. 5% D at m-C), 125.59
(m, 1C, p-C, 2° isotopic shift: 14 Hz, 0.05C, ca. 5% D at m-C), 48.50 (s, 2C, 2 x
N(CH(CHs)2), 44.93 (s, 1C, CH,CH;N), 33.65-32.66 (m, 1C, 88% labeled, "Jcp = 19 Hz,

benzylic C), 32.88 (m, 1C, CH,CH,N), 20.81 (s, 4C, 2 x N(CH(CHs),) ppm.
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[14%]

23-(rac) OTBS

(rac) 3-Phenylbutan-1-ol tert-butyldimethylsilyl ether 23-(rac). Labeled with
deuterium according to General Procedure B using 0.145 g (0.55 mmol) of (rac) 3-
Phenylbutan-1-ol tert-butyldimethylsilyl ether. Eluted with hexanes, yielding 0.140 g
(96%) of recovered material following evaporation of solvent. "H NMR (500 MHz,
chloroform-d, 23 °C) & 7.24 (app t, 3Jun = 7.4 Hz, 2H, m-CH), 7.18-7.10 (m, 3H, o- and
p-CH), 3.56-3.40 (m, 2H, CH,OTBS), 2.86 (app hextet, 14% labeled Juy = 7.2 Hz,
0.86H, benzylic CH), 1.77 (app q, 3 =7.0 Hz, 2H, homobenzylic CH-), 1.22 (d, 3Jun =
7.0 Hz, 3H, homobenzylic CH3), 0.86 (s, 9H, SiC(CHs)s), -0.03 (s, 6H, 2 x SiCH3) ppm.
Quantitative *C{"H} NMR (126 MHz, chloroform-d, 23 °C) & 147.36 (m, 1C, ipso C),
128.44 (s, 2C, Ar-CH), 127.18 (s, 2C, Ar-CH), 126.03 (s, 1C, p-C), 61.33 (s, 1C,
COTBS), 41.32 (m, 1C, homobenzylic CH,, 2° isotopic shift: 14 Hz, 0.14C, ca. 14% D at
benzylic C), 36.51-35.54 (m, 1C, 14% labeled, 'Jcp = 20 Hz, benzylic C), 26.11 (s, 3C,
C(CHs)3), 22.49 (m, 1C, homobenzylic CHs, 2° isotopic shift: 14 Hz, 0.14C, ca. 14% D at
benzylic C), 18.44 (s, 1C, SiC(CHs)3), -5.17 (s, 2C, 2 x SiCH3) ppm.

[9%]

[90%]

[27%]

[35%]
[27%] 24~(rac)

(rac) sec-Butylbenzene 24-(rac). Labeled with deuterium according to General

Procedure B using 0.074 g (0.55 mmol) of (rac) sec-butylbenzene. Eluted with hexanes,

yielding 0.045 g (58%) of recovered material following evaporation of solvent.
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'H NMR (500 MHz, chloroform-d, 23 °C) & 7.34-7.27 (m, 27% labeled, 1.47H, m-CH),
7.24-7.16 (m, 35% p-labeled, 2.65H, o- and p-CH), 2.62 (app hextet, 90% labeled *Jny =
6.9 Hz, 0.10H, benzylic CH), 1.62 (q, *Jun = 7.5 Hz, 2H, homobenzylic CH,), 1.26 (m,
9% labeled, 2.72H, homobenzylic CHs), 0.85 (t, *Jun = 7.4 Hz, 3H, terminal CHs) ppm.
Quantitative *C{"H} NMR (126 MHz, chloroform-d, 23 °C) & 147.75 (m, 1C, ipso C),
128.37 (m, 2C, 27% labeled, 'Jeo = 24 Hz, m-C, 2° isotopic shift: 14 Hz, 0.70C, ca.
35% D at p-C), 127.17 (m, 2C, o-C, 2° isotopic shift: 14 Hz, 0.54C, ca. 27% D at m-C),
125.89 (m, 1C, 35% labeled, 'Jcp = 24 Hz, p-C), 41.98-40.93 (m, 1C, 90% labeled, "Jcp
=19 Hz, benzylic C), 41.32 (m, 1C, homobenzylic CH;), 21.89 (m, 1C, homobenzylic

CH3), 12.38 (m, 1C, terminal CH3) ppm.

[79%]

25-(rac)
(rac) 2-Phenyl-3-methylbutane 25-(rac). Labeled with deuterium according to General
Procedure B using 0.082 g (0.55 mmol) of (rac) 2-phenyl-3-methylbutane. Eluted with
hexanes, yielding 0.063 g (77%) of recovered material following evaporation of solvent.
'H NMR (500 MHz, chloroform-d, 23 °C) & 7.26 (app t, *Jun = 7.6 Hz, 2H, m-CH), 7.18-
7.11 (m, 3H, o- and p-CH), 2.41 (app pentet, 79% labeled, 3Jun = 7.2 Hz, 0.21H,
benzylic CH), 1.75 (septet, *Jun = 6.8 Hz, 1H, homobenzylic CH), 1.22 (m, 3H,
homobenzylic CHs), 0.93 (d, Jun = 6.8 Hz, 3H, one of diastereotopic CHs), 0.75 (d, *Jun
= 6.8 Hz, 3H, one of diastereotopic CHs) ppm. Quantitative ">*C{'"H} NMR (126 MHz,

chloroform-d, 23 °C) & 147.17 (m, 1C, ipso C), 128.16 (s, 2C, m-C), 127.77 (s, 2C, 0-C),
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(s, 1C, p-C), 47.18-46.20 (m, 1C, 79% labeled, "Jcp = 19 Hz, benzylic C), 34.60 (m, 1C,
homobenzylic CH), 21.34 (m, 1C, one of CH3), 20.34 (m, 1C, one of CH3), 18.93 (m, 1C,

one of CHz) ppm.

E;xlﬂ 000) [
romatogram Column Temp.(Setting)
125.0
1.5 Peak®  Ret.Time Area Height  Conc.
93% 1 48155 853628 32194 13.75706
[ ] D \Me 2 49245 535139.415021.0 86.24294 1000
- 1.01
[75.0
[16%]
0.5 oo
0,
[23%] . / . bs.0
. ~ ¥
16%
[ ] 25'(R) 45.0 47.0 43, 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 min o

(R) 2-Phenyl-3-methylbutane 25-(R). Labeled with deuterium according to General
Procedure B using 0.082 g (0.55 mmol) of (R) 2-phenyl-3-methylbutane (72% ee).
Eluted with hexanes, yielding 0.069 g (82%) of recovered material following evaporation
of solvent. "H NMR (500 MHz, chloroform-d, 23 °C) & 7.26 (app t, 16% labeled, 3Jun =
7.6 Hz, 1.69H, m-CH), 7.18-7.11 (m, 23% p-labeled, 2.77H, o- and p-CH), 2.41 (app
pentet, 93% labeled, *Juy = 7.2 Hz, 0.21H, benzylic CH), 1.75 (septet, *Jun = 6.8 Hz,
1H, homobenzylic CH), 1.22 (m, 3H, homobenzylic CHs), 0.93 (d, *JuH = 6.8 Hz, 3H,
one of diastereotopic CHs), 0.75 (d, 3Jun = 6.8 Hz, 3H, one of diastereotopic CHs) ppm.
Quantitative *C{"H} NMR (126 MHz, chloroform-d, 23 °C) & 147.17 (m, 1C, ipso C),
128.16 (obsc m, 2C, 16% labeled, m-C, 2° isotopic shift: 14 Hz), 127.77 (m, 2C, o-C, 2°
isotopic shift: 14 Hz, 0.30C, ca. 16% D at m-C), 125.82, m, 1C, 23% labeled, 'Jcp = 24
Hz, p-C, 2° isotopic shift: 14 Hz), 47.18-46.20 (m, 1C, 93% labeled, 'Jcp = 19 Hz,
benzylic C), 34.60 (m, 1C, homobenzylic CH), 21.30 (m, 1C, one of CHs), 20.32 (m, 1C,
one of CH3), 18.80 (m, 1C, one of CH3) ppm. Chiral separation and enantiomer
assignment was achieved using chiral GC according to the reported* isothermal

method: hold at 70 °C for 60 minutes; ramp 20 °C per minute, hold at 200 °C for 6
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minutes. Starting material ee: 72% (R); ee of recovered material: 72% (R).

Enantiospecificity: >98% es.

[5%]  [92%]
[21%)]
[21%)]
[5%] [92%]
26

Tetralin 26. Labeled with deuterium according to General Procedure B using 0.073 g
(0.55 mmol) of tetralin. Eluted with hexanes, yielding 0.060 g (78%) of recovered
material following evaporation of solvent. "H NMR (500 MHz, chloroform-d, 23 °C) &
7.20-7.11 (m, 52% labeled, 3.48H, Ar-CH), 2.91-2.77 (m, 92% labeled, Jip = 1.9 Hz,
0.34H, benzylic CH), 1.88 (s, 4H, homobenzylic methylene C(D),CH.) ppm. Quantitative
3C{"H} NMR (126 MHz, chloroform-d, 23 °C) 5 137.17 (m, 1C, ipso C), 129.23 (m, 2C,
5% labeled, "Jcp = 21 Hz, 2-Ar-C, 2° isotopic shift: 14 Hz, 0.50C, ca. 25% D at 3-C),
125.53 (m, 2C, 25% labeled, "Jcp = 24 Hz, 3-Ar-C, 2° isotopic shift: 14 Hz), 29.62-28.25
(m, 2C, 92% labeled, "Jcp = 19 Hz, benzylic C), 23.31-22.81 (m, 2C, homobenzylic C)

ppm.

[90%]

[15o/o]©:>

[15%]

[90%]
27

Indan 27. Labeled with deuterium according to General Procedure B using 0.065 g
(0.55 mmol) of indan. Eluted with hexanes, yielding 0.048 g (70%) of recovered material
following evaporation of solvent. "H NMR (500 MHz, chloroform-d, 23 °C) & 7.24-7.18
(m, 2H, 2-CH), 7.14-7.09 (m, 15% labeled, 1.70H, 3-CH), 2.95-2.81 (m, 90% labeled,

®Jun = 7.6 Hz, 2Jup = 1.2 Hz, 0.40Hz, benzylic CH), 2.02 (m, 2H, homobenzylic
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methylene) ppm. Quantitative ">C{'"H} NMR (126 MHz, chloroform-d, 23 °C) & 144.22
(m, 1C, ipso C), 126.11 (m, 2C, 15% labeled, 'Jcp = 24 Hz, 3-Ar-C, 2° isotopic shift: 14
Hz, 0.30C, ca. 15% D at 3'-C), 124.52 (m, 2C, 2-Ar-C, 2° isotopic shift: 14 Hz, 0.31C,
ca. 15% D at 3-C), 33.29-31.43 (m, 2C, 90% labeled, "Jcp = 20 Hz, benzylic C), 25.52-
24 .47 (m, 1C, homobenzylic C) ppm.

BPin

[>95%]
[34%]

[8%]

[80/0] [56%]
28-(rac)

(rac) 1-indanylboronic acid pinacol ester 28-(rac). Labeled with deuterium according
to a modified General Procedure C using 5 mol% of 2 (0.011 g, 0.017 mmol), 0.084 g
(0.34 mmol) of (rac) 1-indanylboronic acid pinacol ester in heptane. Eluted with ethyl
acetate, yielding 0.091 g of recovered material following evaporation of solvent. An
approximately 6% impurity in the recovered substrate was identified as free "D ligand
by NMR spectroscopy in addition to a 10% impurity of ethyl acetate. From these data,
the recovery of labeled 28-(rac) was determined to be 97%. '"H NMR (500 MHz,
chloroform-d, 23 °C) & 7.22 (m, 8% labeled, 0.92H, 8-indanyl CH), 7.15 (m, 8% labeled,
0.92H, 5-indanyl CH), 7.07-6.99 (m, 2H, 6- and 7-indanyl CH), 2.94-2.77 (m, 56%
labeled, 0.88H, 3-indanyl benzylic CH-; diastereotopic protons not distinguished), 2.72-
2.58 (m; obsc by free ligand, >95% labeled, <0.05H, 1-indanyl benzylic CH a-to-B),
2.18-1.98 (m, obsc by free ligand, 34% labeled, 1.32H, 2-indanyl CH,; diastereotopic
protons not distinguished), 1.18 (s, 6H, 2 x BPin CHs), 1.17 (s, 6H, 2 x BPin CH3) ppm.
Quantitative *C{"H} NMR (126 MHz, chloroform-d, 23 °C) & 145.14 (m, 1C, one of ipso

C), 144.27 (m, 1C, one of ipso C), 137.56 (m, 1C, one of ipso C),
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126.04 (m, 1C, 8% labeled, 8-indanyl C), 126.43 (m, 1C, 8% labeled, 5-indanyl C),
124.43 (obsc m, 1C, 7-indanyl C), 124.32 (m, 1C, 6-indanyl C, 2° isotopic shift: 14 Hz,
0.08C, ca. 8% D at 5-C), 83.36 (s, 2C, 2 x BPin CO), 33.32-32.49 (m, 1C, 56% labeled,
'Jep = 20 Hz, 3-indanyl benzylic C, 2° isotopic shift: 12 Hz), 27.85-26.95 (m, 1C, 34%
labeled, "Jcp = 20 Hz, homobenzylic C), 24.94 (s, 2C, 2 x BPin CHs), 24.78 (s, 2C, 2 x
BPin CHs) ppm; one benzylic carbon resonance (attached to boron) was not observed.

MeO

[90%]

[12%]
7% 5 b
29-(rac) [12%] [90%]
(rac) 1-(4'-methoxyphenyl)indan 29-(rac). Labeled with deuterium according to
General Procedure B using 0.123 g (0.55 mmol) of racemic arylindan substrate. Eluted
with hexanes, yielding 0.110 g of recovered material following evaporation of solvent.
An approximately 7% impurity in the recovered substrate was identified as free D
ligand by NMR spectroscopy. From these data, the recovery of labeled 22 was
determined to be 79%. syn- and anti-to-Ar proton resonances assigned in analogy to
the previously assigned (by 2D NMR spectroscopy) resonances in 1-phenylindan.* 'H
NMR (500 MHz, chloroform-d, 23 °C) & 7.30 (d, 7% labeled, *Juy = 7.3 Hz, 0.93H, 8-
indanyl CH), 7.20 (app t, *Jun = 7.1 Hz, 7-indanyl CH), 7.17-7.10 (m, 3H, 6-indanyl CH
and 2 x Ar CH), 6.98 (d, 7% labeled, *Jun = 7.4 Hz, 0.93H, 5-indanyl CH), 6.90-6.84
(app d, ®Jnn = 8.1 Hz, 2H, 2 x Ar CH), 4.31 (t, 90% labeled, *Ju = 8.3 Hz, 0.10H, 1-

indanyl benzylic CH), 3.80 (s, 3H, OCHs), 3.03 (app d, 12% labeled, 3Ji = 7.7 Hz,
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0.88H, syn-to-Ar 3-indanyl benzylic CH), 2.95 (dt, 90% labeled, *Jun = 15.9, 8.4 Hz,
0.10H, anti-to-Ar 3-indanyl benzylic CH), 2.61-2.50 (m, 12% labeled, 0.88H, anti-to-Ar 2-
indanyl homobenzylic CH), 2.03 (app dd, Jun = 12.2, 8.7 Hz, 1H, syn-to-Ar 2-indanyl
homobenzylic CH) ppm. Quantitative *C{"H} NMR (126 MHz, chloroform-d, 23 °C) &
158.20 (s, 1C, COCHj3), 147.23 (m, 1C, one of ipso C), 144.28 (m, 1C, one of ipso C),
137.56 (m, 1C, one of ipso C), 129.09 (s, 2C, 2 x Ar CH), 126.57 (obsc m, 1C, 7%
labeled, 8-indanyl C), 126.43 (m, 1C, 7% labeled, 5-indanyl C), 124.96 (m, 1C, 7-
indanyl C, 2° isotopic shift: 14 Hz, 0.07C, ca. 7% D at 8-C), 124.44 (m, 1C, 6-indanyl C,
2° isotopic shift: 14 Hz, 0.07C, ca. 7% D at 5-C), 113.93 (s, 2C, 2 x Ar CH), 55.31 (s,
1C, OCHs), 51.28-49.76 (m, 1C, labeled, 'Jcp = 20 Hz, 1-indanyl benzylic C, 2° isotopic
shift: 11 Hz), 37.04-35.85 (m, 1C, labeled, homobenzylic C), 32.09-31.05 (m, 1C,

labeled "Jcp = 20 Hz, 3-indanyl benzylic C, 2° isotopic shift: 12 Hz) ppm.

MeOQO
\x10,000) c
Chromatogram X - Talimn Tamn 7arng)
.2 500 Peak¥  Ret.Time Area Height  Conc.
[79%] 1 163958 215063.3 20465 9963916 125.0
2 169.780 7789 15.4 0.36084
[5%] - ,D 299 100.0
260 75.0
D -2.65 50.0
[9%]
N ) 5.0
[5 0/ (o] ] D\ D 27 +
29-(S) [8%] [86%] 1625 165.0 1675 170.0 1725 0 mnl

(S) 1-(4'-methoxyphenyl)indan 29-(S). Labeled with deuterium according to General
Procedure B using 0.123 g (0.55 mmol) of (S) arylindan substrate (>98% ee). Eluted
with hexanes, yielding 0.141 g of recovered material following evaporation of solvent.
An approximately 7% impurity in the recovered substrate was identified as free D
ligand by NMR spectroscopy. From these data, the recovery of labeled 22 was

determined to be quantitative. syn- and anti-to-Ar proton resonances assigned in
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analogy to the previously assigned (by 2D NMR spectroscopy) resonances in 1-
phenylindan.* "H NMR (500 MHz, chloroform-d, 23 °C) & 7.30 (d, 5% labeled, *Jun = 7.3
Hz, 0.95H, 8-indanyl CH), 7.20 (app t, *Jun = 7.1 Hz, 7-indanyl CH), 7.17-7.10 (m, 3H,
6-indanyl CH and 2 x Ar CH), 6.98 (d, 5% labeled, 3Jun = 7.4 Hz, 0.95H, 5-indanyl CH),
6.90-6.84 (app d, *Jun = 8.1 Hz, 2H, 2 x Ar CH), 4.31 (t, 79% labeled, *Juy = 8.3 Hz,
0.21H, 1-indanyl benzylic CH), 3.80 (s, 3H, OCHj), 3.03 (app d, 8% labeled, ®Jun = 7.7
Hz, 0.92H, syn-to-Ar 3-indanyl benzylic CH), 2.95 (dt, 86% labeled, *Juy = 15.9, 8.4 Hz,
0.14H, anti-to-Ar 3-indanyl benzylic CH), 2.61-2.50 (m, 9% labeled, 0.91H, anti-to-Ar 2-
indanyl homobenzylic CH), 2.03 (app dd, Jun = 12.2, 8.7 Hz, 1H, syn-to-Ar 2-indanyl
homobenzylic CH) ppm. Quantitative *C{"H} NMR (126 MHz, chloroform-d, 23 °C) &
158.18 (s, 1C, COCHj3), 147.22 (m, 1C, one of ipso C), 144.25 (m, 1C, one of ipso C),
137.54 (m, 1C, one of ipso C), 129.07 (s, 2C, 2 x Ar CH), 126.55 (obsc m, 1C, 5%
labeled, 8-indanyl C), 126.43 (m, 1C, 5% labeled, 5-indanyl C), 124.94 (m, 1C, 7-
indanyl C, 2° isotopic shift: 14 Hz, 0.05C, ca. 5% D at 8-C), 124.43 (m, 1C, 6-indanyl C,
2° isotopic shift: 14 Hz, 0.05C, ca. 5% D at 5-C), 113.92 (s, 2C, 2 x Ar CH), 55.27 (s,
1C, OCH3), 51.28-49.76 (m, 1C, labeled, 'Jep = 20 Hz, 1-indanyl benzylic C, 2° isotopic
shift: 11 Hz), 37.04-35.85 (m, 1C, labeled, homobenzylic C), 32.09-31.05 (m, 1C,
labeled, "Jcp = 20 Hz, 3-indanyl benzylic C, 2° isotopic shift: 12 Hz) ppm. Chiral
separation and enantiomer assignment was achieved using chiral GC according to the
reported* isothermal method: hold at 160 °C for 180 minutes; ramp 20 °C per minute,
hold at 200 °C for 6 minutes. Starting material ee: >98% (S); ee of recovered material:

>98% (S). Enantiospecificity: >98% es.
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%:1 000) C
romatogram Column Temp.(Setting)
6.04
Peak# Ret.Time Area Height  Conc. 125.0
0,
Me DI[92%] &4 1 0460 38717 1398 207675
S ol [\ 2 £1.590 182558247866 97.92325 1000
[6%] 30 5.0
2.04
[6%] 1.0 0.0
[8 1% ] 0.0, = = 5.0
1.04
30-(8) 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 62.0 69.0 70.0 mint 0

(S)-1-methyltetralin 30-(S). Labeled with deuterium according to General Procedure B
using 0.080 g (0.55 mmol) of (S)-1-methyltetralin (92% ee). Eluted with hexanes,
yielding 0.069 g (84%) of recovered material following evaporation of solvent. '"H NMR
(500 MHz, chloroform-d, 23 °C) & 7.27-7.21 (m, 1H, 9-CH), 7.21-7.06 (m, 6% labeled at
7-tetralin CH and 6% at 8-tetralin CH, 2.88H, 6-8 tetralin positions CH), 3.01-2.88 (m,
92% labeled, 0.08H, 1-tetralin benzylic CH), 2.87-2.70 (m, 81% labeled, 0.38H, 4-
tetralin benzylic CH,. diastereotopic protons not distinguished), 2.02-1.83 (m, 2H, two of
homobenzylic methylene protons), 1.82-1.70 (m, 1H, one of homobenzylic methylene
protons), 1.63-1.52 (m, 1H, one of homobenzylic methylene protons), 1.33 (s, 3H, chiral
C(D)CHs) ppm. Quantitative ">C{"H} NMR (126 MHz, chloroform-d, 23 °C) & 142.25 (m,
1C, one of ipso C), 136.87 (m, 1C, one of ipso C), 129.12 (m, 1C, 9-tetralin C, 2°
isotopic shift: 14 Hz, 0.06C, ca. 6% D at 8-tetralin C), 128.20 (m, 1C, 6-tetralin C, 2°
isotopic shift: 14 Hz, 0.06C, ca. 6% D at 7-tetralin C), 125.73 (m, 1C, one of 7- or 8-
tetralin C), 32.70-31.82 (m, 1C, 92% labeled, "Jcp = 20 Hz, 1-tetralin benzylic C), 31.56-
31.32 (m, 1C, 2-tetralin C, 2° isotopic shift (3-bond): 6.0 Hz), 30.19-28.94 (m, 1C, 81%
labeled, "Jcp = 19 Hz, 4-tetralin benzylic C), 22.91 (m, 1C, homobenzylic chiral C),
20.59-20.01 (m, 1C, 3-tetralin C, 2° isotopic shift: 18 Hz) ppm. Chiral separation and

enantiomer assignment was achieved using chiral GC according to the reported*
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isothermal method: hold at 90 °C for 75 minutes; ramp 20 °C per minute, hold at 200 °C
for 6 minutes. Starting material ee: 92% (S); ee of recovered material: ~92% (S); chiral
separation deteriorated following deuteration reaction, but ee did not appear to erode.

Enantiospecificity: >98% es.

VIl. Additional Spectroscopic Data.
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Figure S2. "H NMR spectrum (500 MHz, chloroform-d, 23 °C) of labeled toluene 4.
Dodecane, TMS-dy, and reduced arene also present.
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Figure S4. "H NMR spectrum (500 MHz, chloroform-d, 23 °C) of labeled 3-fluorotoluene

5. Dodecane, TMS-dy, and reduced arene also present.
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Figure S5. Quantitative '>*C NMR spectrum (126 MHz, chloroform-d, 23 °C) of labeled
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Figure $21. Quantitative ">C NMR spectrum (126 MHz, chloroform-d, 23 °C) of labeled
methylbenzylboronic acid pinacol ester 13. Free PD ligand and ethyl acetate present.
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Figure $23. Quantitative >*C NMR spectrum (126 MHz, chloroform-d, 23 °C) of labeled
p-cymene 14. Dodecane and TMS-d; also present. Inset spectrum highlights signals of
14.
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Figure S$25. Quantitative >*C NMR spectrum (126 MHz, chloroform-d, 23 °C) of labeled

mesitylene 15. Dodecane and TMS-d; also present. Inset spectrum highlights signals of
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Figure S26. "H NMR spectrum (500 MHz, chloroform-d, 23 °C) of labeled
hexamethylbenzene 16. Naphthalene (internal NMR standard) also present.
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Figure S29. Quantitative "*C NMR spectrum (126 MHz, chloroform-d, 23 °C) of labeled
ethylbenzene 17. Dodecane and TMS-d; also present. Inset spectrum highlights signals
of 17.
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Figure S$31. Quantitative >*C NMR spectrum (126 MHz, chloroform-d, 23 °C) of labeled
benzylboronic acid pinacol ester 18. Free ©'DI ligand and ethyl acetate also present.
Inset spectrum highlights signals of 18.

RS RS R S R RS R BRRR & a8
e N R
|
r ’ |
l l
f |
[ r
/I / JI v
[76%]
(jﬁSi(OEt)3
19
it
| |
- (A
W .AJ _h AL
an] T by i
—
oM o [©9) [v0]
o © Q A o
T T T o= T T T T L T < =L T T
.0 8 5 8.0 7.5 7.0 6.5 6.0 5.5 5 0 4.0 3.5 3 0 2. 5 2.0 1 5 1.0 0.5
fl (ppm)

Figure S32. "H NMR spectrum (500 MHz, chloroform-d, 23 °C) of labeled
benzyltriethoxysilane 19. Free DI ligand also present.
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Figure $33. Quantitative >C NMR spectrum (126 MHz, chloroform-d, 23 °C) of labeled
benzyltriethoxysilane 19. Free DI ligand also present. Inset spectrum highlights
signals of 19.
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Figure S34. "H NMR spectrum (500 MHz, chloroform-d, 23 °C) of labeled
benzylcyclopropane 20. Free ©'DI ligand, hexanes, and reduced arene also present.
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Figure $35. Quantitative >C NMR spectrum (126 MHz, chloroform-d, 23 °C) of labeled
benzylcyclopropane 20 Free F'DI ligand, hexanes, and reduced arene also present.
Inset spectrum highlights signals of 20.
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Figure $36. "H NMR spectrum (500 MHz, chloroform-d, 23 °C) of labeled (3-
phenylpropyl)boronic acid pinacol ester 21. Free PDI ligand and ethyl acetate present.
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Figure $S37. Quantitative ">C NMR spectrum (126 MHz, chloroform-d, 23 °C) of labeled
(3-phenylpropyl)boronic acid pinacol ester 21. Free F'DI ligand and ethyl acetate also
present. Inset spectrum highlights signals of 21.
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Figure $38. '"H NMR spectrum (500 MHz, chloroform-d, 23 °C)
phenylpropyl)amine 22. Free *'DI ligand and ethyl acetate present.

S59

of labeled diisopropyl(3-



g 5 f’: T AN o m ™Mo MW M
[NESNE] 00 00 00 LN L mn o ~N O O 00y do
T ¥ T ANy [volh- o MM Mmoo oD
— vTv—{v—{v—lle A mmmm@ﬁm
—~ — A [ e e
T =~ o 0o o o [u] Mmoo o el
RN v &= in < o a F!czoz%w. g
ooy W W w wnwn 0 <+ Mmoo
Ty 88§ 49 ¥ ¥ cuRre ¢
[ WP \ , ‘
| { [ I~ ‘ )
-
J 1 J l _/
[88%] .
1 |
o J L JJ
) I L,‘_;A e e
[ T A A T T — T
s 22 NP2 1 g ge2 gy 3 5 2 3
o — = O [=X=} o o -~ M
44 142 129 128 127 126 125 49 48 47 46 45 44 43 34 33 21 20
f1 (ppm)
1
| 1
1 1 ] l 1 ‘ } [
by A L T L
[ol} OO ;W < o (o))
o) 0~ 0O o (o] 19
o —— 000 o~ O — ™M
170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
f1 (ppm)

Figure $39. Quantitative >C NMR spectrum (126 MHz, chloroform-d, 23 °C) of labeled
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Figure S41. Quantitative ">*C NMR spectrum (126 MHz, chloroform-d, 23 °C) of labeled
(rac) 3-Phenylbutan-1-ol tert-butyldimethylsilyl ether 23-(rac). Inset spectrum highlights
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Figure S43. Quantitative >*C NMR spectrum (126 MHz, chloroform-d, 23 °C) of labeled
(rac) sec-butylbenzene 24-(rac). Inset spectrum highlights signals of 24-(rac)
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Figure S45. Quantitative >*C NMR spectrum (126 MHz, chloroform-d, 23 °C) of labeled
(rac) 2- phenyl -3-methylbutane 25-(rac). Inset spectrum highlights signals of 25-(rac).
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Figure S47. Quantitative >C NMR spectrum (126 MHz, chloroform-d, 23 °C) of labeled
(R) 2-phenyl-3-methylbutane 25-(R). Inset spectrum highlights signals of 25-(R).
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Figure S51. Quantitative >*C NMR spectrum (126 MHz, chloroform-d, 23 °C) of labeled
indan 27. Hexanes also present. Inset spectrum highlights signals of 27.
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Figure S$53. Quantitative >*C NMR spectrum (126 MHz, chloroform-d, 23 °C) of labeled
racemic 1-indanylboronic acid pinacol ester 28-(rac). Free "Dl ligand and ethyl acetate
also present. Inset spectrum highlights signals of 28- (rac)
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Figure S54. "H NMR spectrum (500 MHz, chloroform- d 23 °C) of labeled racemic
arylindan 29-(rac). Free PD ligand also present.
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Figure S55. Quantitative °C NMR spectrum (126 MHz, chloroform-d, 23 °C) of labeled
racemic arylindan 29-(rac). Free *'DI ligand also present. Inset spectrum highlights

signals of 29-(rac).
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Figure S56. .1H NMR spectrum (500 MHz, chloroform-d, 23 °C) of labeled (S) arylindan
29-(S). Free DI ligand also present.
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