Supporting Information

Phaeophleospora vochysiae Savi & Glienke sp. nov. Isolated from *Vochysia divergens* Found in the Pantanal, Brazil, Produces Bioactive Secondary Metabolites

Daiani C. Savi^{a,b,†}, Khaled A. Shaaban^{b,c, ,†}, Francielly Maria Wilke Ramos Gos^a, Larissa V. Ponomareva^{b,c}, Jon S. Thorson^{b,c}, Chirlei Glienke^{a*} and Jürgen Rohr^{b*}

Department of Genetics, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210. CEP: 81531-970, Curitiba, PR, Brazil^a; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, U.S.A.^b; Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, U.S.A.^c

[†]Authors contributed equally to this work

* Correspondence authors: Jürgen Rohr, +1 859 323 5031, jrohr2@email.uky.edu; Chirlei Glienke, +5533611562, chglienke@gmail.com

Table of Contents:	Page				
General Experimental Procedures	S2				
Physicochemical properties of compounds 1-2	S 3				
Figure S1. Work-up scheme of the metabolites produced by Phaeophleospora vochysiae LGMF1215	S 4				
Figure S2. ¹ H, ¹ H-COSY (—) and selected HMBC (\leftrightarrow) correlations in compounds 1-3	S5				
Figure S3. TOCSY (—) and selected NOESY ($\not f \rightarrow v$) couplings in compounds 1-3					
Figure S4-37. HPLC, UV, HRESI-MS and NMR spectra of compounds 1-3					
Figure S38. Bayesian phylogenetic tree based on actin gene partial sequence of LGMF1213 and					
LGMF1215 and sequence of species of <i>Phaeophleospora</i> genus available in the Genbank. Values on the					
node indicate Bayesian posterior probabilities. The species Botryosphaeria ribis was used as outgroup.					
Scale bar indicates the number of substitutions per site.					
Figure S39. Bayesian phylogenetic tree based on elongation factor gene partial sequence of LGMF1213					
and LGMF1215 and sequence of species of Phaeophleospora genus available in the Genbank. Values on					
the node indicate Bayesian posterior probabilities. The species Botryosphaeria ribis was used as outgroup.					
Scale bar indicates the number of substitutions per site					
Figure S40. Bayesian phylogenetic tree based on LSU gene partial sequence of LGMF1213 and	S42				
LGMF1215 and sequence of species of <i>Phaeophleospora</i> genus available in the Genbank. Values on the					
node indicate Bayesian posterior probabilities. The species Botryosphaeria ribis was used as outgroup.					
Scale bar indicates the number of substitutions per site.					
Figure S41. Chemical structures of compounds 4-6	S43				
Table S1. Collection details and GenBank accession number of isolates included in this study	S44				
Table S2 . Morphological characters of isolate LGMF1215 and related <i>Phaeophleospora</i> species					

General Experimental Procedures

Ultraviolet-visible (UV-VIS) spectra were taken directly from analytical HPLC-PDA runs and show relative intensities. NMR spectra were measured using Varian (Palo Alto, CA) Vnmr 400 (¹H, 400 MHz; ¹³C, 100 MHz) spectrometer where δ-values were referenced to respective solvent signals [CDCl3, $\delta_{\rm H}$ 7.24 ppm, $\delta_{\rm C}$ 77.23 ppm]. High resolution electrospray ionization (HRESI) mass spectra were recorded on AB SCIEX Triple TOF® 5600 system. HPLC-MS analyses were accomplished using a Waters (Milford, MA) 2695 LC module (Waters Symmetry Anal C18, 4.6×250 mm, 5 µm; solvent A: H₂O/0.1% Formic acid, solvent B: CH₃CN/0.1% Formic acid; flow rate: 0.5 mL min-1; 0-4 min, 10% B; 4-22 min, 10-100% B; 22-27 min, 100% B; 27-29 min, 100%-10% B; 29-30 min, 10 % B). HPLC analyses were performed on an Agilent 1260 system equipped with a photodiode array detector (PDA) detector and a Phenomenex C_{18} column (4.6 \times 250 mm, 5 µm; Phenomenex, Torrance, CA). Semi-preparative HPLC was accomplished using Phenomenex (Torrance, CA) C18 column (10×250 mm, 5 µm) on a Varian (Palo Alto, CA) ProStar Model 210 equipped with a photodiode diode array detector and a gradient elution profile (solvent A: H₂O, solvent B: CH₃CN; flow rate: 5.0 mL min-1; 0-2 min, 25% B; 2-15 min, 25-100% B; 15-17 min, 100% B; 17-18 min, 100%-25% B; 18-19 min, 25% B). All solvents used were of ACS grade and purchased from the Pharmco-AAPER (Brookfield, CT). Size exclusion chromatography was performed on Sephadex LH-20 (25-100 µm; GE Healthcare, Piscataway, NJ). A549 and PC3 cells were obtained from ATCC (Manassas, VA). All other reagents used were reagent grade and purchased from Sigma-Aldrich (Saint Louis, MO).

Physicochemical properties of compounds 1-2

(+)-Cercosporin (1): Red solid; UV-absorbing (254 nm); dark-green with 2N NaOH; HPLC- R_t = 21.45 min (Figure S4); UV/vis λ_{max} 220, 270, 450, 470 (sh), 570 (sh) nm; ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz), see Table S1; (+)-APCI-MS: *m/z* 535 [M + H]⁺; (+)-HR-ESI-MS: *m/z* 535.1598 [M + H]⁺ (calcd for C₂₉H₂₇O₁₀, 525.1599); (–)-HR-ESI-MS: *m/z* 533.1441 [M – H]⁻ (calcd for C₂₉H₂₅O₁₀, 533.1453).

(+)-**Isocercosporin (2):** Red solid; UV-absorbing (254 nm); dark-green with 2N NaOH; HPLC- R_t = 21.85 min (Figure S15); UV/vis λ_{max} 220, 270, 450, 470 (sh), 570 (sh) nm; ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz), see Table S1; (+)-APCI-MS: *m/z* 535 [M + H]⁺; (+)-HR-ESI-MS: *m/z* 535.1599 [M + H]⁺ (calcd for C₂₉H₂₇O₁₀, 525.1599); (–)-HR-ESI-MS: *m/z* 533.1444 [M – H]⁻ (calcd for C₂₉H₂₅O₁₀, 533.1453).

Figure S1. Work-up scheme of the metabolites produced by *Phaeophleospora vochysiae* LGMF1215

Figure S2. ¹H, ¹H-COSY (-) and selected HMBC (\leftrightarrow) correlations in compounds 1-3

Figure S3. TOCSY (-) and selected NOESY (*) couplings in compounds 1-3

Figure S4. HPLC/UV analyses of (+)-cercosporin (1). HPLC-conditions: Detection wavelength 254 nm; solvent A: H₂O/0.1% TFA; solvent B: acetonitrile; flow rate: 1.0 mL min⁻¹; 0-35 min, 95-0% A (linear gradient); 35-40 min 0% A; 40-41 min 0-95% A (linear gradient); 41-45 min 95% A.

Figure S5. HPLC/MS analyses of (+)-cercosporin (1). HPLC-conditions: Detection wavelength 254 nm; solvent A: H₂O/0.1% Formic acid, solvent B: CH₃CN/0.1% Formic acid; flow rate: 0.5 mL min⁻¹; 0-4 min, 10% B; 4-22 min, 10-100% B; 22-27 min, 100% B; 27-29 min, 100%-10% B; 29-30 min, 10 % B.

Figure S6. (+)-HRESI-MS spectrum of (+)-cercosporin (1)

Figure S7. (-)-HRESI-MS spectrum of (+)-cercosporin (1)

Figure S8. ¹H NMR spectrum (CDCl₃, 400 MHz) of (+)-cercosporin (1)

Figure S9. ¹³C NMR spectrum (CDCl₃, 100 MHz) of (+)-cercosporin (1)

Figure S10. ¹H-¹H COSY correlation (CDCl₃, 400 MHz) of (+)-cercosporin (1)

Figure S11. HSQC spectrum (CDCl₃, 400 MHz) of (+)-cercosporin (1)

Figure S12. HMBC spectrum (CDCl₃, 400 MHz) of (+)-cercosporin (1)

Figure S13. TOCSY spectrum (CDCl₃, 400 MHz) of (+)-cercosporin (1)

Figure S14. ROESY spectrum (CDCl₃, 400 MHz) of (+)-cercosporin (1)

Figure S15. HPLC/UV analyses of (+)-isocercosporin (**2**). HPLC-conditions: Detection wavelength 254 nm; solvent A: H₂O/0.1% TFA; solvent B: acetonitrile; flow rate: 1.0 mL min⁻¹; 0-35 min, 95-0% A (linear gradient); 35-40 min 0% A; 40-41 min 0-95% A (linear gradient); 41-45 min 95% A.

Figure S16. HPLC/MS analyses of (+)-isocercosporin (2). HPLC-conditions: Detection wavelength 254 nm; solvent A: H₂O/0.1% Formic acid, solvent B: CH₃CN/0.1% Formic acid; flow rate: 0.5 mL min⁻¹; 0-4 min, 10% B; 4-22 min, 10-100% B; 22-27 min, 100% B; 27-29 min, 100%-10% B; 29-30 min, 10 % B.

Figure S17. (+)-HRESI-MS spectrum of (+)-isocercosporin (2)

Figure S18. (-)-HRESI-MS spectrum of (+)-isocercosporin (2)

Figure S19. ¹H NMR spectrum (CDCl₃, 400 MHz) of (+)-isocercosporin (2)

Figure S20. ¹³C NMR spectrum (CDCl₃, 100 MHz) of (+)-isocercosporin (2)

Figure. S21. ¹H-¹H COSY spectrum (CDCl₃, 400 MHz) of (+)-isocercosporin (2)

Figure. S22. HSQC spectrum (CDCl₃, 400 MHz) of (+)-isocercosporin (2)

Figure. S23. HMBC spectrum (CDCl₃, 400 MHz) of (+)-isocercosporin (2)

Figure. S24. TOCSY spectrum (CDCl₃, 400 MHz) of (+)-isocercosporin (2)

Figure. S25. NOESY spectrum (CDCl₃, 400 MHz) of (+)-isocercosporin (2)

Figure. S26. HPLC/UV analyses of compound **3**. HPLC-conditions: Detection wavelength 254 nm; solvent A: H₂O/0.1% TFA; solvent B: acetonitrile; flow rate: 1.0 mL min⁻¹; 0-35 min, 95-0% A (linear gradient); 35-40 min 0% A; 40-41 min 0-95% A (linear gradient); 41-45 min 95% A.

Figure. S27. HPLC/MS analyses of compound 3. HPLC-conditions: Detection wavelength 254 nm; solvent A: H₂O/0.1% Formic acid, solvent B: CH₃CN/0.1% Formic acid; flow rate: 0.5 mL min⁻¹; 0-4 min, 10% B; 4-22 min, 10-100% B; 22-27 min, 100% B; 27-29 min, 100%-10% B; 29-30 min, 10 % B.

Figure. S28. (+)-HRESI-MS spectrum of compound 3

Figure. S29. (-)-HRESI-MS spectrum of compound 3

Figure. S30. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 3

Figure. S31. ¹³C NMR spectrum (CDCl₃, 100 MHz) of compound 3

S33

Figure. S32. APT NMR spectrum (CDCl₃, 100 MHz) of compound 3

S34

Figure. S33. ¹H-¹H COSY spectrum (CDCl₃, 400 MHz) of compound 3

Figure. S34. HSQC spectrum (CDCl₃, 400 MHz) of compound 3

Figure. S35. HMBC spectrum (CDCl₃, 400 MHz) of compound ${\bf 3}$

Figure. S36. TOCSY spectrum (CDCl₃, 400 MHz) of compound 3

Figure. S37. ROESY spectrum (CDCl₃, 400 MHz) of compound 3

Figure S38. Bayesian phylogenetic tree based on actin gene partial sequence of LGMF1213 and LGMF1215 and sequence of species of *Phaeophleospora* genus available in the Genbank. Values on the node indicate Bayesian posterior probabilities. The species *Botryosphaeria ribis* was used as outgroup. Scale bar indicates the number of substitutions per site.

Figure S39. Bayesian phylogenetic tree based on elongation factor gene sequence of LGMF1213 and LGMF1215 and sequence of species of *Phaeophleospora* genus available in the Genbank. Values on the node indicate Bayesian posterior probabilities. The species *Botryosphaeria ribis* was used as outgroup. Scale bar indicates the number of substitutions per site.

0.02

Figure S40. Bayesian phylogenetic tree based on LSU sequence of LGMF1213 and LGMF1215 and sequence of species of *Phaeophleospora* genus available in the Genbank. Values on the node indicate Bayesian posterior probabilities. The species *Botryosphaeria ribis* was used as outgroup. Scale bar indicates the number of substitutions per site.

Figure S41. Chemical structures of compounds 4-6

Species	Culture accession numbers	Host/Isolation source	Host family	Tissue source	Country	ITS GenBank accession numbers
Phaeophleospora eugeniae	CPC15143	Eugenia uniflora	Myrtaceae	Leaf spot	Brazil	K901615
	CPC15159	Eugenia uniflora	Myrtaceae	Leaf spot	Brazil	K901742
P. gregaria	CBS110501	Eycalyptus globulus	Myrtaceae	Leaf spot	Australia	KF901524
P. hymenocallidicola	CBS 139912 = CPC 25014	unkown fern	Polypodiaceae	Leaf spot	Thailand	KR476739
		unkown fern	Polypodiaceae	Leaf spot	Thailand	NR137994
P. hymenocallidis	CBS 139911 = CPC 25018	unkown fern	Polypodiaceae	Leaf spot	Thailand	KR476740
		unkown fern	Polypodiaceae	Leaf spot	Thailand	NR137995
P. pteridivora	CPC 24683 = COAD 1182	Serpocaulon triseriale	Polypodiaceae	Leaf spot	Brazil	KT037547
P. scytalidii	CBS 118493 = CPC 10998	Eucalyptus urophylla	Myrtaceae	Leaf spot	Colombia	KF901631
	CBS 516.93 = CPC 653	Eucalyptus globulus	Myrtaceae	Leaf spot	Brazil	LC121138
P. stonei	CBS 120830 = CPC 13330	Eucalyptus sp.	Myrtaceae	Leaf spot	Australia	KF901525
P. stramenti	CBS 118909 = CPC 11545	Eucalyptus sp.	Myrtaceae	leaf	Brazil	KF901617
P. atkinsonii	CBS 124565	Hebe sp.	Plantaginaceae	Leaf spot	New Zealand	GU214643
	CBS 124566	Hebe sp.	Plantaginaceae	Leaf spot	New Zealand	GU214644
P. capensis	CPC 13981	Protea repens	Proteaceae	Leaf spot	Portugal	EU707887
P. concentrica	CPC 3615	Protea caffra	Proteaceae	Leaf spot	Kenya	FJ493187
P. elaeocarpi	CPC 13309	Elaeocarpus sp.	Elaeocarpaceae	Leaf spot	Australia	EU040212
P. eucalypticola	CPC 26523	Eucalyptus robusta	Myrtaceae	leaf	France	KX228267
		Eucalyptus robusta	Myrtaceae	leaf	France	NR145123
P. eugeniicola	CPC 2558	Eugenia uniflora	Myrtaceae	Leaf spot	Brazil	FJ493191
	CPC 2557	Eugenia uniflora	Myrtaceae	Leaf spot	Brazil	FJ493190
P. parsoniae	CBS 137979	Parsonia straminea	Apocynaceae	Leaf spot	Australia	KJ869131
P. abyssinicae	BPI 38386	Protea gaguedi	Proteaceae	Leaf spot	Ethiopia	No sequence available
P. congestum	BPI 368056	Protea caffra	Proteaceae	Leaf spot	South Africa	No sequence available
P. faureae		Faurea saligna	Proteaceae	Leaf spot	South Africa	No sequence available
P. indica	CBS97153	Achras sapota	Sapotaceae	Leaf spot	Bangalore	No sequence available
P. vochysiae	LGMF1215	Vochysia divergens	Vochysiaseae	leaf	Brazil	K Y754582
	LGMF1213	Vochysia divergens	Vochysiaseae	leaf	Brazil	KY754583

Table S1. Collection details and GenBank accession number of isolates included in this study.

Structure	P. eugeniicola		P. gregaria		P. scytalidii		P. vochysiae		
	Description	Measurement	Description	Measurement	Description	Measurement	Description	Measurement	
Conidiophores	Mostly reduced to conidiogenous cells, or multi- septate, subcylindrical, branched or not, brown	15-25 × 4-5 μm	lack the asexual state		aggregated in loose fascicles arising from the upper cells of a brown stroma up to 50 μm wide and 30 μm high, or situated on the top of the ascomata; brown, finely verruculose, 1–4-septate, subcylindrical, straight to geniculate–sinuous, unbranched,	20-40 × 2-4 μm.	aggregated arising from the upper cells of an irregular brown stroma	up to 30 µm.	
Conidiogenous Cells	terminal, discrete, brown, verruculose, subcylindrical or doliiform, with 1–5 inconspicuous percurrent proliferations, or at times with sympodial proliferation	$8-15 \times 4-6$ µm	lack the asexual state		terminal, unbranched, medium brown, smooth to verruculose, tapering to the flattipped apical loci, proliferating sympodially	$7-15 \times 2-3$ µm	terminal, unbranched, medium brown, smooth to verruculose,	9.3 (7.4–11.2) × 5.0 (3.9– 6.0) μm.	
Conidia	solitary, exuded in cirri, subcylindrical to obclavate, apex obtuse, base obconically truncate, widest in middle or basal third of conidium, thick-walled	60-80 × 5-6 μm	lack the asexual state		solitary, or in simple chains, medium brown, verruculose, subcylindrical to ellipsoidal, apex obtuse, base subtruncate, 1–2-septate, frequently constricted at the septa	7–15 × 3–3.5 μm	solitary, or in simple chains, brown, verruculose, subcylindrical to oval, apex obtuse, base subtruncate, 1–2 septate, frequently constricted at the septa,	8.8 (7.0–13.7) × 4.7 (3.8– 6.6) μm	
Culture	Colonies pale white (surface), and pale mouse-		Growth of single-spore cult	ures on malt-	Colonies on MEA reaching 18–30 mm diam		Mycelium consisting of septate, branched,		
characteristics	grey (reverse), with smooth, slightly irregular marging obtaining 13 mm diam after 14 dr 25°C		extract agar at 25° was relati	ively fast with	after 3 wk; colonies erumpent, folding, margin smo		, verruculose hyphae, 2–3 µm wide, in some		
	in the dark on ME.	A	months. Aerial hyphae in the c	entre of cultures	olivaceousgrey;		presence of cercosporin and isocercosporin.		
			was whitish grey and slightly r	aised, becoming	reverse iron-grey; on PDA with moderate aerial		Colonies spreading, erumpent, lobed margins		
			grey at the irregular outer edge	e. Cultures were	mycelium, olivaceous-grey with patches of pale olivaceous-grey; reverse olivaceous-black; on OA pale		after 14 days at 28 °C On PDA medium the		
			dark grey to reddish black on	the reverse. If	olivaceous-grey with patches of olivaceous-grey and		surface is olivaceus-grey with vinaceus margin,		
			cultures are left for more than 2	2 months central	iron-grey.		the reverse side showed the same		
			pigment develops in th	e media.			nigment On OA surface olivaceus-grey with		
			r o		yellow cente		yellow center, and on MEA g	r, and on MEA green-grey and	
Material			Nous Nous on losse CT	1			Reverse iron-grey		
Material examined	Бтаzн, Belem, on leaves of Eugenia klotzschiana		nowa nowa, on leaves of <i>Euc</i>	aiyptus grandis	urophylla,		leaves of Vochysia divergens		

Table S2. Morphological characters of isolate P. vochysiae LGMF1215 and related Phaeophleospora species