SUPPLEMENTARY INFORMATION TO

Ixr1 Regulates Ribosomal Gene Transcription and Yeast Response to Cisplatin

Ángel Vizoso-Vázquez, Mónica Lamas-Maceiras, M. Isabel González-Siso and M. Esperanza Cerdán*

Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A Coruña, Spain. Runing Head: Ixr1 master rRNA regulator and cisplatin response

Figure S1. Fold changes in rRNAs and precursors expression change in W303 cells after cisplatin treatment *versus* untreated cells. Relative positions of the primers designed for qPCR quantitation of the rRNAs and precursors have been depicted in Figure 3C.

Figure S2. Schematic view (modified from ^{78, 107} showing how *IXR1* deletion alters the transcription of several genes encoding proteins involved in TOR and other nutrient sensing pathways. In the signal pathways, genes are represented by squares and proteins by ellipses. Color shading of either squares or ellipses represents that these components of the pathways are transcriptionally influenced by Ixr1. The color intensity code represents the fold change values (*ixr1* Δ *versus* W303), as indicated on the scale. Red stars are genes in whose promoter regions an Ixr1 binding site was detected by ChIP on chip experiments.

 Table S7.-Oligonucleotides used in this study

Oligo Name	Sequence	Gene	Strand	Position
AVV220	AGAACTTGGCGATTGCTGACA	ROX1	W	-408
AVV221	AAGACCGTTACATTACGCAAAGTG	ROX1	С	-275
AVV222	CATACACATCGTGCTTAGCGATC	IXR1	W	-526
AVV223	CCCATTCGTTCTCTCACCAAG	IXR1	С	-376
AVV224	CATAAAGGGTCTCTTTCACCTATACG	TIR1	W	-273
AVV225	CTTCACTTTTTCTCTGTCAAGGG	TIR1	С	-178
AVV226	TCAAACCATTTCCTGCGGAG	HEM13	W	-539
AVV227	TGCCTATGACGGTAATCCCAG	HEM13	С	-406
Primer A ChIP	GTTTCCCAGTCACGGTCNNNNNNNN	-	-	-
Primer B ChIP	GTTTCCCAGTCACGGTC	-	-	-
AVV35q	GACCACAAGTAAGGGCAAGAA	HHO1	W	+28
AVV36q	GCCTTGGAAGTTGATTTCTCC	HHO1	С	+89
AVV37q	GAGGAGATTCTAGAGATGATGGACA	TAF10	W	+223
AVV38q	AGTCTATTACTGCATCGGGAATG	TAF10	С	+283
AVV379	CACTAGTTCATCAGTTCGTATGACAA	SFP1	W	+732
AVV380	GGCCATGTTATTCTGCAGGT	SFP1	С	+801
AVV381	TCATGGTAATGACAGCGGTAAC	ABF1	W	+630
AVV382	TTTCGTCATTTGGGTATGGAC	ABF1	С	+696
AVV383	CTGGACTGGGTGCTAAATCG	TEC1	W	+224
AVV384	TCTGCTTGTCAGTGAACGTAGC	TEC1	С	+292
AVV385	TTCCTGAACAGTGGCCGTA	SOK2	W	+188
AVV386	GCAGTTGCTGTTGAGACTGG	SOK2	С	+253
AVV387	TGCTCCAGAACAACAACAGC	UME6	W	+1936
AVV388	GCGTTTCCAACTGACCTTCT	UME6	С	+2003
AVV389	GCTTATTTTGCCACGGAAAT	DAL81	W	+1861
AVV390	CAGTTCCTTTGGAGTTTGAGGA	DAL81	С	+1935
AVV391	AACTGTCGTCCTTTCATCCAA	CRF1	W	+111
AVV392	ATAGAGGGGTCCCAAAGAGC	CRF1	С	+170
AVV363	CCAGCAACTACTTTCCAGAGTG	SPT15	W	+106
AVV364	GCGGAGGTGTCTTTTCAGA	SPT15	С	+177
AVV365	CCCCACCGGTATAGAGACAA	RRN6	W	+1513
AVV366	CCTCCTCTCCGAGATTCA	RRN6	С	+1577
AVV367	CCCAGACAAACCGACTTCTAGT	RRN7	W	+1071
AVV368	CCATCCACTTCAAAAACTCTAGG	RRN7	С	+1144
AVV369	AGTGTGACGCCCGAAAGA	TGS1	W	+229
AVV370	CAGTATTCTTTCGGCATTTGG	TGS1	С	+306
AVV371	CTGGGGGTTGACTTCATTGT	MRM1	W	+793
AVV372	GCTTGTCTTGGACACCACAG	MRM1	С	+865
AVV373	CCCCAGGCAAGAAAGTTTTA	NOP1	W	+494
AVV374	CCAACAACATCTGAAACGTGA	NOP1	С	+566
AVV375	TGGGTTACTTTCTACTATACGAGTCCA	HMT1	W	+401
AVV376	CCGCCTTCTACCAAATAGTGG	HMT1	С	+476
AVV377	CATGCAATTCCGAGAGACG	SRD1	W	+323
AVV378	TGCACAACTATGGTAGCCTTCA	SRD1	С	+390
AVV406	CCGGGGCCTAGTTTAGAGAGAAG	RDN37-1 (37S)	W	+6682

Table S7.-Oligonucleotides used in this study (continued)

AVV407	AATACATGTTTTTACCCGGATCATAG	RDN37-1 (37S)	С	+6773
AVV408	GCTGGCCTTTTCATTGGATG	RDN37-1 (27S)	W	+3077
AVV409	CCGTACTTGCATTATACCTCAAGC	RDN37-1 (27S)	С	+3150
AVV410	TGGTCAGAAAGTGATGTTGACGC	RDN37-1 (25S)	W	+5410
AVV411	CTTAAGAGAGTCATAGTTACTCCCGC	RDN37-1 (25S)	С	+5523
AVV412	CGGTGAGAGATTTCTGTGCTTTTG	RDN37-1 (20S)	W	+2657
AVV413	TGAAAACTCCACAGTGTGTTGTATTG	RDN37-1 (20S)	С	+2729
AVV414	TACAGTGAAACTGCGAATGGCTC	RDN37-1 (18S)	W	+777
AVV415	GCTCTAGAATTACCACAGTTATACCATG	RDN37-1 (18S)	С	+866
AVV416	GCATCGATGAAGAACGCAGC	RDN37-1 (5.8S)	W	+2892
AVV417	AATGTGCGTTCAAAGATTCGATG	RDN37-1 (5.8S)	С	+2975

Sea also datasets

Table S1. DEGs upregulated in $ixr1\Delta$ compared with W303 in absence of cisplatin treatment.

Table S2. DEGs downregulated in $ixr1\Delta$ compared with W303 in absence of cisplatin

treatment.

Table S3. DEGs upregulated in $ixr1\Delta$ compared with W303 after cisplatin treatment.

Table S4. DEGs downregulated in $ixr1\Delta$ compared with W303 after cisplatin treatment.

Table S5. Ixr1 DNA-binding in absence of cisplatin.

 Table S6. Ixr1 DNA-binding after cisplatin treatment.