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Supplementary Figures 

 

 

 

 

Supplementary Figure 1: Schematic of workflow of discovery of Duke model. 
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Supplementary Figure 2: Schematic workflow of discovery of Sage LR and Sage RF models. 
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Supplementary Figure 3: Schematic of workflow of discovery of Stanford model. 
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Supplementary Figure 4: Model performance showing individual ROC curves and summary 

ROC curve with confidence intervals (black and grey). 
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Supplementary Figure 5: Boxplots of other performance metrics for each model in individual 

datasets, with cutoffs set to the sensitivity nearest to 90%. 
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A. 

 

B. 

Dataset Model 
Difference of slopes 

p-value 

Difference of groups 

p-value 

GSE21802 

Duke 0.5053 0.475 

Sage LR 0.6216 0.005 

Sage RF 0.3007 0.010 

Stanford 0.2372 0.012 

GSE54514 

Duke 0.1846 7.1x10
-8

 

Sage LR 0.7405 0.006 

Sage RF 0.2309 7.5x10
-7

 

Stanford 0.4107 3.8x10
-9

 

 

Supplementary Figure 6: Longitudinal analysis of gene expression severity scores. Two datasets 

(GSE21802 and GSE54514) had available longitudinal samples from patients with sepsis over 

several days of hospital stay. There were no significant differences in slope (score over time) 

between the survivor and non-survivor groups. However, the scores remained significantly 

higher over time in non-survivors than in survivors in all but one comparison.   
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Supplementary Figure 7: Rank order correlation between sample scores across the four models 

for all samples. 
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Supplementary Figure 8: Cell type enrichments of the entire set of 58 genes used across all four 

prediction models.  
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Supplementary Tables 

Supplementary Table 1: Summary AUROCs for genomic models 

Category Parameter Duke Sage LR Sage RF Stanford 

Discovery 

Summary 0.73 0.79 1.0 0.85 

95% CI 0.62-0.82 0.69-0.87 1.0-1.0 0.77-0.91 

Range 0.46-0.96 0.69-0.87 1.0-1.0 0.72-1.0 

Validation 

Summary 0.88 0.76 0.87 0.89 

95% CI  0.62-0.98  0.64-0.86 0.61-0.97 0.57-0.98 

Range 0.70-1.0 0.70-0.95 0.64-1.0 0.79-0.99 

HAI 

Summary 0.87 0.81 0.53 0.87 

95% CI  0.62-0.98  0.64-0.86 0.61-0.97  0.57-0.98 

Range 0.70-1.0 0.70-0.95 0.64-1.0 0.79-0.99 
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Supplementary Table 2: Individual AUROCs for genomic models 

Dataset Duke Sage LR Sage RF Stanford 

Discovery datasets 

E-MEXP-3567 0.806 0.556 1.000 0.833 

E-MEXP-3850 0.947 0.916 1.000 1.000 

E-MTAB-1548 0.818 0.867 1.000 0.847 

GSE10474 0.463 0.698 1.000 0.719 

GSE13015a 0.787 0.831 1.000 0.835 

GSE13015b 0.964 0.804 1.000 0.804 

GSE27131 0.700 0.700 1.000 1.000 

GSE32707 0.514 0.712 0.996 0.810 

GSE40586 0.632 0.868 1.000 0.842 

GSE63042 0.689 0.879 1.000 0.784 

GSE66099 0.806 0.916 1.000 0.881 

GSE66890 0.802 0.711 1.000 0.834 

Validation datasets 

E-MTAB-4421 0.695 0.810 0.714 0.829 

GSE21802 0.714 0.750 0.643 0.786 

GSE33341 1.000 0.949 1.000 0.990 
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GSE54514 0.936 0.701 0.902 0.816 

GSE63990 0.802 0.833 0.859 0.805 

HAI datasets 

Duke HAI 0.905 0.963 0.522 0.875 

Glue Burns D1-D30 0.850 0.731 0.656 0.769 

Glue Trauma D1-D30 1.000 0.938 0.333 1.000 

UF P50 12H 0.573 0.652 0.400 0.682 
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Supplementary Table 3: Comparison to genes previously associated with mortality. We 

found a total of 119 over-expressed and 1,164 under-expressed unique genes previously 

associated with mortality, which we assessed for prognostic accuracy in the validation datasets. 

We then compared the results to the output from the four models using paired t-tests.  

 

Dataset 
AUROC of combined 

1,273 genes 

EMTAB4421 0.581 

GSE21802 0.679 

GSE 33341 0.969 

GSE 54514 0.761 

GSE 63990 0.68 

  

Duke HAI 0.83 

Glue Burns D1-D30 0.417 

Glue Trauma D1-D30 0.958 

UF P50 12H 0.624 

 

 

 Duke Sage LR Sage RF Stanford 

mean 

difference 
0.108 0.092 -0.052 0.117 

P value 0.046 0.059 0.595 0.014 

  



13 

 

Supplementary Table 4: Ensemble model performance characteristics 

 

Dataset AUROC (NS) AUPR (NS) PPV (NS) NPV (NS) PPV (S) NPV (S) 

Discovery datasets 

EMEXP3567 0.667 0.606 1.000 0.667 0.545 1.000 

EMEXP3850 0.937 0.685 1.000 0.950 0.783 0.000 

EMTAB1548 0.899 0.684 1.000 0.685 0.671 0.000 

GSE10474 0.711 0.577 1.000 0.733 0.690 0.500 

GSE13015a 0.881 0.624 1.000 0.778 0.723 0.000 

GSE13015b 0.804 0.623 0.778 1.000 1.000 0.500 

GSE27131 1.000 0.500 1.000 1.000 0.667 0.000 

GSE32707 0.788 0.578 0.455 1.000 1.000 0.357 

GSE40586 0.842 0.098 1.000 0.950 0.900 0.000 

GSE63042 0.892 0.731 1.000 0.776 0.728 0.000 

GSE66099 0.924 0.687 1.000 0.886 0.859 0.000 

GSE66890 0.862 0.542 1.000 0.782 0.750 0.000 

Average 0.851 0.578 0.936 0.851 0.776 0.196 

Std.Dev 0.095 0.165 0.165 0.127 0.139 0.325 

Validation datasets 

EMTAB4421 0.743 0.523 0.800 0.824 1.000 0.333 

GSE21802 0.786 0.519 0.571 1.000 1.000 0.400 
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GSE33341 1.000 0.500 1.000 1.000 0.960 0.000 

GSE54514 0.791 0.420 0.474 1.000 1.000 0.281 

GSE63990 0.714 0.180 1.000 0.928 0.917 0.100 

Average 0.807 0.428 0.769 0.950 0.975 0.223 

Std.Dev 0.113 0.145 0.242 0.077 0.037 0.167 
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Supplementary Table 5: AUPR for genomic models (Individual datasets) 

Dataset Duke Sage LR Sage RF Stanford 

Discovery datasets 

E-MEXP-3567 0.686 0.530 0.833 0.746 

E-MEXP-3850 0.616 0.475 0.800 0.800 

E-MTAB-1548 0.558 0.637 0.958 0.620 

GSE10474 0.321 0.525 0.909 0.594 

GSE13015a 0.568 0.502 0.923 0.535 

GSE13015b 0.816 0.600 0.857 0.623 

GSE27131 0.163 0.208 0.500 0.500 

GSE32707 0.333 0.533 0.938 0.658 

GSE40586 0.176 0.225 0.500 0.238 

GSE63042 0.378 0.670 0.964 0.555 

GSE66099 0.374 0.662 0.964 0.468 

GSE66890 0.541 0.408 0.929 0.597 

Validation datasets 

E-MTAB-4421 0.350 0.540 0.407 0.519 

GSE21802 0.442 0.519 0.392 0.519 

GSE33341 0.500 0.208 0.500 0.292 



16 

 

GSE54514 0.694 0.372 0.713 0.613 

GSE63990 0.246 0.204 0.240 0.182 

HAI datasets 

Duke HAI 0.514 0.804 0.145 0.545 

Glue Burns D1-D30 0.491 0.205 0.144 0.172 

Glue Trauma D1-D30 0.000 0.250 0.015 0.000 

UF P50 12H 0.085 0.157 0.054 0.129 
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Supplementary Table 6: Test characteristics at a high-sensitivity and a high-specificity 

cutoff. Shown are mean +/- sd of test characteristics across datasets within the three testing 

groups (discovery, validation, and HAI), for each of the four gene models, plus the baseline 

model (where all patients are judged all to be either survivors or nonsurvivors). All datasets are 

included. 

Model 
Data

sets 

True  

positive 

(percent) 

False 

negative 

(percent) 

False  

Positive 

(percent) 

True 

negative 

(percent) 

Sensitivity Specificity Accuracy 

High-sensitivity cutoff (sensitivity chosen near 95%)  

Duke 

Disc

over

y 

0.27 +/- 0.11 0.02 +/- 0.02 0.4 +/- 0.18 0.3 +/- 0.19 0.94 +/- 0.05 0.43 +/- 0.27 0.58 +/- 0.18 

Sage.LR 0.27 +/- 0.11 0.02 +/- 0.02 0.32 +/- 0.16 0.39 +/- 0.23 0.94 +/- 0.05 0.53 +/- 0.28 0.66 +/- 0.15 

Sage.RF 0.27 +/- 0.11 0.02 +/- 0.02 0 +/- 0.01 0.71 +/- 0.12 0.94 +/- 0.05 1 +/- 0.01 0.98 +/- 0.02 

Stanford 0.27 +/- 0.11 0.02 +/- 0.02 0.27 +/- 0.18 0.44 +/- 0.23 0.94 +/- 0.05 0.6 +/- 0.3 0.72 +/- 0.18 

Baseline model 

(all nonsurvivors) 
0.29 +/- 0.12 0 +/- 0 0.71 +/- 0.12 0 +/- 0 1 +/- 0 0 +/- 0 0.29 +/- 0.12 

Duke 

Valid

ation 

0.2 +/- 0.13 0.01 +/- 0.02 0.22 +/- 0.21 0.57 +/- 0.24 0.95 +/- 0.07 0.72 +/- 0.23 0.77 +/- 0.21 

Sage.LR 0.2 +/- 0.13 0.01 +/- 0.02 0.29 +/- 0.14 0.5 +/- 0.23 0.95 +/- 0.07 0.61 +/- 0.2 0.69 +/- 0.14 

Sage.RF 0.2 +/- 0.13 0.01 +/- 0.02 0.22 +/- 0.14 0.57 +/- 0.26 0.95 +/- 0.07 0.69 +/- 0.2 0.76 +/- 0.15 

Stanford 0.2 +/- 0.13 0.01 +/- 0.02 0.27 +/- 0.16 0.52 +/- 0.25 0.95 +/- 0.07 0.64 +/- 0.21 0.72 +/- 0.17 

Baseline model 

(all nonsurvivors) 
0.21 +/- 0.14 0 +/- 0 0.79 +/- 0.14 0 +/- 0 1 +/- 0 0 +/- 0 0.21 +/- 0.14 

Duke 

HAI 

0.07 +/- 0.04 0.01 +/- 0.01 0.35 +/- 0.36 0.57 +/- 0.37 0.94 +/- 0.07 0.62 +/- 0.39 0.64 +/- 0.36 

Sage.LR 0.07 +/- 0.04 0.01 +/- 0.01 0.32 +/- 0.38 0.6 +/- 0.37 0.94 +/- 0.07 0.66 +/- 0.41 0.67 +/- 0.37 

Sage.RF 0.07 +/- 0.04 0.01 +/- 0.01 0.63 +/- 0.17 0.29 +/- 0.17 0.94 +/- 0.07 0.32 +/- 0.18 0.36 +/- 0.17 

Stanford 0.07 +/- 0.04 0.01 +/- 0.01 0.32 +/- 0.27 0.6 +/- 0.29 0.94 +/- 0.07 0.64 +/- 0.29 0.67 +/- 0.27 

Baseline model 

(all nonsurvivors) 
0.08 +/- 0.05 0 +/- 0 0.92 +/- 0.05 0 +/- 0 1 +/- 0 0 +/- 0 0.08 +/- 0.05 

High-specificity cutoff (specificity chosen near 95%) 

Duke 

Disc

over

y 

0.11 +/- 0.1 0.18 +/- 0.1 0.03 +/- 0.02 0.68 +/- 0.1 0.37 +/- 0.25 0.96 +/- 0.02 0.79 +/- 0.1 

Sage.LR 0.1 +/- 0.06 0.19 +/- 0.1 0.04 +/- 0.02 0.67 +/- 0.11 0.37 +/- 0.22 0.95 +/- 0.03 0.78 +/- 0.1 

Sage.RF 0.29 +/- 0.12 0 +/- 0 0.03 +/- 0.02 0.68 +/- 0.1 1 +/- 0 0.96 +/- 0.02 0.97 +/- 0.02 

Stanford 0.15 +/- 0.11 0.14 +/- 0.1 0.04 +/- 0.02 0.67 +/- 0.11 0.51 +/- 0.28 0.95 +/- 0.03 0.82 +/- 0.11 

Baseline model 

(all survivors) 
0 +/- 0 0.29 +/- 0.12 0 +/- 0 0.71 +/- 0.12 0 +/- 0 1 +/- 0 0.71 +/- 0.12 

Duke 
Valid

ation 

0.06 +/- 0.08 0.15 +/- 0.16 0.05 +/- 0.02 0.74 +/- 0.16 0.45 +/- 0.42 0.93 +/- 0.04 0.8 +/- 0.18 

Sage.LR 0.09 +/- 0.12 0.12 +/- 0.09 0.05 +/- 0.02 0.74 +/- 0.16 0.37 +/- 0.29 0.93 +/- 0.04 0.83 +/- 0.09 
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Sage.RF 0.05 +/- 0.07 0.16 +/- 0.15 0.05 +/- 0.02 0.74 +/- 0.16 0.4 +/- 0.42 0.93 +/- 0.04 0.79 +/- 0.17 

Stanford 0.13 +/- 0.11 0.08 +/- 0.05 0.05 +/- 0.02 0.74 +/- 0.16 0.61 +/- 0.31 0.93 +/- 0.04 0.87 +/- 0.06 

Baseline model 

(all survivors) 
0 +/- 0 0.21 +/- 0.14 0 +/- 0 0.79 +/- 0.14 0 +/- 0 1 +/- 0 0.79 +/- 0.14 

Duke 

HAI 

0.03 +/- 0.02 0.05 +/- 0.04 0.04 +/- 0 0.88 +/- 0.05 0.48 +/- 0.43 0.95 +/- 0 0.91 +/- 0.04 

Sage.LR 0.04 +/- 0.06 0.04 +/- 0.03 0.04 +/- 0 0.88 +/- 0.05 0.28 +/- 0.43 0.95 +/- 0 0.91 +/- 0.03 

Sage.RF 0.01 +/- 0.01 0.07 +/- 0.05 0.04 +/- 0 0.88 +/- 0.05 0.06 +/- 0.12 0.95 +/- 0 0.88 +/- 0.05 

Stanford 0.04 +/- 0.04 0.04 +/- 0.03 0.04 +/- 0 0.88 +/- 0.05 0.51 +/- 0.42 0.95 +/- 0 0.91 +/- 0.03 

Baseline model 

(all survivors) 
0 +/- 0 0.08 +/- 0.05 0 +/- 0 0.92 +/- 0.05 0 +/- 0 1 +/- 0 0.92 +/- 0.05 
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Supplementary Table 7: Test characteristics at a high-sensitivity and a high-specificity 

cutoff in combination with clinical severity score. Shown are mean +/- sd of test 

characteristics across datasets within the three testing groups (discovery, validation, and HAI), 

for each of the four gene models, plus the baseline model (where all patients are judged to be 

either all survivors or all nonsurvivors). Only those datasets with available subject-level clinical 

data (Supplementary Table 5) are included. 

Model Datasets 

True 

positive 

(%) 

False 

negativ

e (%) 

False 

Positive 

(%) 

True 

negativ

e (%) 

Sens-

itivity 

Spec-

ificity 

Acc-

uracy 

True 

positive 

(%) 

False 

negativ

e (%) 

False 

Positive 

(%) 

True 

negativ

e (%) 

Sens-

itivity 

Spec-

ificity 

Acc-

uracy 

High-sensitivity 

cutoff 

(sensitivity 

chosen near 

95%) 

Gene score or severity score (separately) Joint severity score + gene score model 

Severity 

only 

Disc

over

y 

0.26 +/- 

0.07 

0.01 +/- 

0.01 

0.36 +/- 

0.24 

0.37 +/- 

0.26 

0.95 +/- 

0.03 

0.5 +/- 

0.34 

0.63 +/- 

0.25 
N/A  

Duke 
0.25 +/- 

0.07 

0.02 +/- 

0.01 

0.41 +/- 

0.15 

0.32 +/- 

0.2 

0.94 +/- 

0.04 

0.43 +/- 

0.25 

0.58 +/- 

0.16 

0.25 +/- 

0.07 

0.02 +/- 

0.01 

0.3 +/- 

0.22 

0.43 +/- 

0.26 

0.94 +/- 

0.04 

0.57 +/- 

0.34 

0.68 +/- 

0.23 

Sage.LR 
0.25 +/- 

0.07 
0.02 +/- 

0.01 
0.35 +/- 

0.15 
0.38 +/- 

0.21 
0.94 +/- 

0.04 
0.51 +/- 

0.25 
0.64 +/- 

0.15 
0.25 +/- 

0.07 
0.02 +/- 

0.01 
0.26 +/- 

0.21 
0.47 +/- 

0.26 
0.94 +/- 

0.04 
0.63 +/- 

0.33 
0.73 +/- 

0.22 

Sage.RF 
0.25 +/- 

0.07 

0.02 +/- 

0.01 

0 +/- 

0.01 

0.73 +/- 

0.08 

0.94 +/- 

0.04 

1 +/- 

0.01 

0.98 +/- 

0.02 

0.25 +/- 

0.07 

0.02 +/- 

0.01 
0 +/- 0 

0.73 +/- 

0.08 

0.94 +/- 

0.04 
1 +/- 0 

0.98 +/- 

0.01 

Stanford 
0.25 +/- 

0.07 
0.02 +/- 

0.01 
0.26 +/- 

0.19 
0.47 +/- 

0.22 
0.94 +/- 

0.04 
0.64 +/- 

0.27 
0.73 +/- 

0.2 
0.25 +/- 

0.07 
0.02 +/- 

0.01 
0.24 +/- 

0.17 
0.49 +/- 

0.21 
0.94 +/- 

0.04 
0.65 +/- 

0.26 
0.74 +/- 

0.18 

Severity 

only 

Vali

dati

on 

0.3 +/- 

0.09 

0.02 +/- 

0.02 

0.41 +/- 

0.04 

0.27 +/- 

0.09 

0.92 +/- 

0.08 

0.39 +/- 

0.1 

0.57 +/- 

0.06 
 N/A  

Duke 
0.3 +/- 

0.09 

0.02 +/- 

0.02 

0.25 +/- 

0.14 

0.43 +/- 

0.22 

0.92 +/- 

0.08 

0.62 +/- 

0.26 

0.73 +/- 

0.13 

0.3 +/- 

0.09 

0.02 +/- 

0.02 

0.26 +/- 

0.18 

0.42 +/- 

0.25 

0.92 +/- 

0.08 

0.6 +/- 

0.3 

0.72 +/- 

0.17 

Sage.LR 
0.3 +/- 
0.09 

0.02 +/- 
0.02 

0.34 +/- 
0.13 

0.34 +/- 
0.15 

0.92 +/- 
0.08 

0.5 +/- 
0.21 

0.64 +/- 
0.12 

0.3 +/- 
0.09 

0.02 +/- 
0.02 

0.4 +/- 
0.03 

0.28 +/- 
0.07 

0.92 +/- 
0.08 

0.41 +/- 
0.07 

0.58 +/- 
0.03 

Sage.RF 
0.3 +/- 

0.09 

0.02 +/- 

0.02 

0.29 +/- 

0.08 

0.39 +/- 

0.14 

0.92 +/- 

0.08 

0.57 +/- 

0.14 

0.69 +/- 

0.09 

0.3 +/- 

0.09 

0.02 +/- 

0.02 

0.27 +/- 

0.11 

0.41 +/- 

0.17 

0.92 +/- 

0.08 

0.59 +/- 

0.19 

0.71 +/- 

0.12 

Stanford 
0.3 +/- 
0.09 

0.02 +/- 
0.02 

0.32 +/- 
0.1 

0.36 +/- 
0.09 

0.92 +/- 
0.08 

0.53 +/- 
0.12 

0.66 +/- 
0.1 

0.3 +/- 
0.09 

0.02 +/- 
0.02 

0.32 +/- 
0.07 

0.35 +/- 
0.05 

0.92 +/- 
0.08 

0.52 +/- 
0.07 

0.65 +/- 
0.07 

Severity 

only 

HAI 

0.05 +/- 

0.03 
0 +/- 0 

0.38 +/- 

0.39 

0.57 +/- 

0.41 
1 +/- 0 

0.6 +/- 

0.43 

0.62 +/- 

0.39 
N/A   

Duke 
0.05 +/- 

0.03 
0 +/- 0 

0.43 +/- 

0.41 

0.51 +/- 

0.43 
1 +/- 0 

0.53 +/- 

0.44 

0.57 +/- 

0.41 

0.05 +/- 

0.03 
0 +/- 0 

0.21 +/- 

0.2 

0.74 +/- 

0.23 
1 +/- 0 

0.78 +/- 

0.22 

0.79 +/- 

0.2 

Sage.LR 
0.05 +/- 

0.03 
0 +/- 0 

0.53 +/- 
0.41 

0.42 +/- 
0.44 

1 +/- 0 
0.44 +/- 

0.44 
0.47 +/- 

0.41 
0.05 +/- 

0.03 
0 +/- 0 

0.27 +/- 
0.29 

0.68 +/- 
0.31 

1 +/- 0 
0.71 +/- 

0.31 
0.73 +/- 

0.29 

Sage.RF 
0.05 +/- 

0.03 
0 +/- 0 

0.66 +/- 

0.29 

0.29 +/- 

0.32 
1 +/- 0 

0.3 +/- 

0.33 

0.34 +/- 

0.29 

0.05 +/- 

0.03 
0 +/- 0 

0.36 +/- 

0.47 

0.58 +/- 

0.49 
1 +/- 0 

0.61 +/- 

0.51 

0.64 +/- 

0.47 

Stanford 
0.05 +/- 

0.03 
0 +/- 0 

0.41 +/- 
0.36 

0.54 +/- 
0.38 

1 +/- 0 
0.56 +/- 

0.38 
0.59 +/- 

0.36 
0.05 +/- 

0.03 
0 +/- 0 

0.22 +/- 
0.23 

0.73 +/- 
0.25 

1 +/- 0 
0.77 +/- 

0.24 
0.78 +/- 

0.23 

 

Model Datasets 

True 

positive 

(%) 

False 

negativ

e (%) 

False 

Positive 

(%) 

True 

negativ

e (%) 

Sens-

itivity 
Spec-

ificity 
Acc-

uracy 

True 

positive 

(%) 

False 

negativ

e (%) 

False 

Positive 

(%) 

True 

negativ

e (%) 

Sens-

itivity 
Spec-

ificity 
Acc-

uracy 
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High-specificity 

cutoff (specificity 

chosen near 95%) 
Gene score or severity score (separately) Joint severity score + gene score model 

Severity 
only 

Disc

over

y 

0.11 +/- 
0.09 

0.16 +/- 
0.12 

0.05 +/- 
0.02 

0.68 +/- 
0.08 

0.43 +/- 
0.36 

0.93 +/- 
0.03 

0.79 +/- 
0.13 

N/A   

Duke 
0.09 +/- 

0.06 

0.18 +/- 

0.1 

0.04 +/- 

0.02 

0.69 +/- 

0.07 

0.35 +/- 

0.25 

0.94 +/- 

0.03 

0.77 +/- 

0.1 

0.13 +/- 

0.08 

0.15 +/- 

0.12 

0.04 +/- 

0.02 

0.69 +/- 

0.07 

0.5 +/- 

0.34 

0.94 +/- 

0.03 

0.81 +/- 

0.12 

Sage.LR 
0.12 +/- 

0.04 
0.15 +/- 

0.08 
0.04 +/- 

0.02 
0.69 +/- 

0.07 
0.46 +/- 

0.19 
0.94 +/- 

0.03 
0.8 +/- 
0.08 

0.16 +/- 
0.07 

0.11 +/- 
0.1 

0.04 +/- 
0.02 

0.69 +/- 
0.07 

0.61 +/- 
0.29 

0.94 +/- 
0.03 

0.84 +/- 
0.11 

Sage.RF 
0.27 +/- 

0.08 
0 +/- 0 

0.04 +/- 

0.02 

0.69 +/- 

0.07 
1 +/- 0 

0.94 +/- 

0.03 

0.96 +/- 

0.02 

0.27 +/- 

0.08 
0 +/- 0 

0.04 +/- 

0.02 

0.69 +/- 

0.07 
1 +/- 0 

0.94 +/- 

0.03 

0.96 +/- 

0.02 

Stanford 
0.14 +/- 

0.08 

0.13 +/- 

0.09 

0.04 +/- 

0.02 

0.69 +/- 

0.07 

0.52 +/- 

0.3 

0.94 +/- 

0.03 

0.83 +/- 

0.1 

0.16 +/- 

0.07 

0.11 +/- 

0.08 

0.04 +/- 

0.02 

0.69 +/- 

0.07 

0.6 +/- 

0.25 

0.94 +/- 

0.03 

0.85 +/- 

0.09 

Severity 

only 

Vali

dati

on 

0.15 +/- 

0.04 

0.17 +/- 

0.03 

0.03 +/- 

0.03 

0.64 +/- 

0.04 

0.46 +/- 

0.04 

0.95 +/- 

0.04 

0.79 +/- 

0.02 
 N/A  

Duke 
0.08 +/- 

0.1 

0.24 +/- 

0.17 

0.07 +/- 

0.03 

0.61 +/- 

0.1 

0.31 +/- 

0.41 

0.9 +/- 

0.06 

0.69 +/- 

0.19 

0.24 +/- 

0.06 

0.09 +/- 

0.05 

0.03 +/- 

0.03 

0.64 +/- 

0.04 

0.74 +/- 

0.16 

0.95 +/- 

0.04 

0.88 +/- 

0.05 

Sage.LR 
0.15 +/- 

0.14 
0.17 +/- 

0.07 
0.07 +/- 

0.03 
0.61 +/- 

0.1 
0.43 +/- 

0.32 
0.9 +/- 
0.06 

0.76 +/- 
0.04 

0.16 +/- 
0.06 

0.17 +/- 
0.03 

0.03 +/- 
0.03 

0.64 +/- 
0.04 

0.47 +/- 
0.12 

0.95 +/- 
0.04 

0.8 +/- 
0.02 

Sage.RF 
0.07 +/- 

0.09 

0.25 +/- 

0.16 

0.07 +/- 

0.03 

0.61 +/- 

0.1 

0.27 +/- 

0.35 

0.9 +/- 

0.06 

0.68 +/- 

0.18 

0.19 +/- 

0.01 

0.13 +/- 

0.07 

0.03 +/- 

0.03 

0.64 +/- 

0.04 

0.62 +/- 

0.14 

0.95 +/- 

0.04 

0.83 +/- 

0.05 

Stanford 
0.21 +/- 

0.08 

0.12 +/- 

0.02 

0.07 +/- 

0.03 

0.61 +/- 

0.1 

0.63 +/- 

0.11 

0.9 +/- 

0.06 

0.82 +/- 

0.01 

0.16 +/- 

0.04 

0.17 +/- 

0.05 

0.03 +/- 

0.03 

0.64 +/- 

0.04 

0.5 +/- 

0.06 

0.95 +/- 

0.04 

0.8 +/- 

0.03 

Severity 

only 

HAI 

0.03 +/- 

0.03 

0.02 +/- 

0.01 

0.2 +/- 

0.21 

0.75 +/- 

0.23 

0.43 +/- 

0.4 

0.79 +/- 

0.23 

0.78 +/- 

0.22 
N/A   

Duke 
0.03 +/- 

0.02 

0.03 +/- 

0.03 

0.07 +/- 

0.01 

0.88 +/- 

0.03 

0.62 +/- 

0.4 

0.93 +/- 

0.01 

0.91 +/- 

0.03 

0.04 +/- 

0.02 

0.01 +/- 

0.01 

0.07 +/- 

0.01 

0.88 +/- 

0.03 

0.82 +/- 

0.17 

0.93 +/- 

0.01 

0.92 +/- 

0.02 

Sage.LR 
0.01 +/- 

0.01 
0.04 +/- 

0.04 
0.07 +/- 

0.01 
0.88 +/- 

0.03 
0.4 +/- 
0.53 

0.93 +/- 
0.01 

0.89 +/- 
0.04 

0.03 +/- 
0.03 

0.03 +/- 
0.04 

0.07 +/- 
0.01 

0.88 +/- 
0.03 

0.6 +/- 
0.53 

0.93 +/- 
0.01 

0.9 +/- 
0.04 

Sage.RF 
0 +/- 
0.01 

0.05 +/- 
0.03 

0.07 +/- 
0.01 

0.88 +/- 
0.03 

0.06 +/- 
0.1 

0.93 +/- 
0.01 

0.88 +/- 
0.03 

0.03 +/- 
0.02 

0.02 +/- 
0.03 

0.07 +/- 
0.01 

0.88 +/- 
0.03 

0.66 +/- 
0.43 

0.93 +/- 
0.01 

0.91 +/- 
0.03 

Stanford 
0.02 +/- 

0 

0.04 +/- 

0.03 

0.07 +/- 

0.01 

0.88 +/- 

0.03 

0.46 +/- 

0.47 

0.93 +/- 

0.01 

0.89 +/- 

0.04 

0.03 +/- 

0.02 

0.02 +/- 

0.03 

0.07 +/- 

0.01 

0.88 +/- 

0.03 

0.66 +/- 

0.43 

0.93 +/- 

0.01 

0.91 +/- 

0.03 
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Supplementary Table 8. Agreement between models. Classification labels were obtained from 

study-wise thresholds corresponding to 90% sensitivity (non-survivors). Consensus corresponds 

to patients correctly classified by at least 3 of 4 models, whereas no consensus represents correct 

classifications by 1 or 2 models. 

Dataset Always misclassified No Consensus Consensus 

Discovery datasets 

GSE40586 0.0952 0.5238 0.3810 

GSE10474 0.5152 0.1818 0.3030 

GSE13015a 0.0417 0.3542 0.6042 

GSE13015b 0.0000 0.2000 0.8000 

GSE27131 0.0000 0.4286 0.5714 

GSE32707 0.0625 0.4792 0.4583 

GSE63042 0.1923 0.4615 0.3462 

GSE66099 0.0854 0.2915 0.6231 

GSE66890 0.2456 0.2456 0.5088 

EMTAB1548 0.1216 0.1622 0.7162 

EMEXP3567 0.0000 0.2500 0.7500 

EMEXP3850 0.0000 0.1250 0.8750 

Discovery Average 11.33+/-14.94 30.86+/-13.86 57.81+/-18.49 

Validation datasets 

GSE54514 0.0857 0.2571 0.6571 

EMTAB4421 0.0909 0.2727 0.6364 

GSE21802 0.1818 0.0909 0.7273 

GSE33341 0.0000 0.0000 1.0000 

GSE63990 0.0429 0.2286 0.7286 

Validation Average 8.03+/-6.76 16.99+/-11.91 74.99+/-15.58 
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HAI datasets 

UF P50 12H 0.2394 0.4930 0.2676 

Glue Trauma D1-D30 0.0000 0.0000 1.0000 

Glue Burns D1-D30 0.1087 0.3696 0.5217 

Duke HAI 0.0000 0.3000 0.7000 

HAI Average 8.70+/-11.38 29.06+/-20.95 62.23+/-30.80 

Total Average 10.04+/-12.39 27.22+/-15.23 62.74+/-20.62 

 

 

Supplementary Table 9: Genomic features of sepsis mortality (union of all models)  

Direction  Predictors  

Up-regulated in mortality (31 genes)  

DEFA4, CD163, PER1, RGS1, HIF1A, SEPP1, 

C11orf74, CIT, CFD, DDIT4, IFI27, IL1R2, 

IL8, MAFF, OCLN, B4GALT4, BPI, CD24, 

CEP55, CTSG, G0S2, MPO, MT1G, NDUFV2, 

PAM, PSMA6, TRIB1, CKS2, MKI67, POLD3, 

PLK1  

Down-regulated in mortality (27 genes)  

LY86, TST, OR52R1, KCNJ2, AIM2, APH1A, 

CCR2, EIF5A, GSTM1, HIST1H3H, NT5E, 

RAB40B, VNN3, ABCB4, CTSS, IKZF2, TGFBI, 

CST3, CBFA2T3, RCBTB2, CX3CR1, CD5, 

MTMR11, CLEC10A, EMR3, DHRS7B, 

CEACAM8  
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Supplementary Table 10: Nominally enriched pathways. Significance was set at a 

p value ≤ 0.05 and gene sets were only included with at least 3 genes 

overlapping. FC, fold change. FDR, false discovery rate. 

Supplementary Table 12 (a): Fisher's Exact Test 

Gene Set Name Odds Ratio FDR 

Positive regulation of T cell activation 2.12E+01 2.32E-02 

Positive regulation of T cell proliferation 3.78E+01 2.14E-02 

Process. cytokine-mediated signaling pathway 1.40E+01 3.00E-02 

RHO GTPases activate CIT 1.69E+02 5.16E-03 

Supplementary Table 12 (b): Gene Set Enrichment Analysis 

Enriched in Non-Survivors 

Gene Set Name Log-FC FDR 

Amoebiasis 4.82E-01 0.00E+00 

MAPK signaling pathway 4.82E-01 0.00E+00 

Interleukin-1 signaling 4.82E-01 0.00E+00 

HTLV-I infection 3.11E-01 2.15E-264 

Antigen processing: Ubiquitination & Proteasome degradation 3.54E-01 1.52E-237 

Positive regulation of cell cycle process 3.76E-01 8.00E-199 

Regulation of cellular ketone metabolic process 3.76E-01 8.00E-199 

TCF dependent signaling in response to WNT 3.76E-01 8.00E-199 

Interferon-gamma-mediated signaling pathway 3.49E-01 2.45E-195 

Inflammatory bowel disease (IBD) 3.49E-01 2.45E-195 

Viral myocarditis 3.49E-01 2.45E-195 

Graft-versus-host disease 3.49E-01 2.45E-195 

Antigen processing and presentation 3.49E-01 2.45E-195 

Staphylococcus aureus infection 3.49E-01 2.45E-195 

Influenza A 3.49E-01 2.45E-195 

Epstein-Barr virus infection 3.49E-01 2.45E-195 
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Enriched in Survivors 

GeneSetName Log-FC FDR 

Dendrite development -3.61E-01 5.58E-261 

Regulation of mitosis -3.61E-01 5.58E-261 

Generation of neurons -3.61E-01 5.58E-261 

Golgi organization -3.61E-01 5.58E-261 

Neurogenesis -3.61E-01 5.58E-261 

Transmembrane transport of small molecules -4.06E-01 5.22E-246 

Metabolism of lipids and lipoproteins -4.06E-01 5.22E-246 

PPARA activates gene expression -4.06E-01 5.22E-246 

ATP catabolic process -3.24E-01 5.86E-217 

Mitotic nuclear division -3.01E-01 1.20E-159 

Immunoregulatory interactions between a Lymphoid and a non-

Lymphoid cell 
-3.67E-01 6.96E-137 

Adenylate cyclase-inhibiting G-protein coupled receptor signaling 

pathway 
-3.49E-01 1.20E-129 

Negative regulation of inflammatory response -3.50E-01 5.99E-120 
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Supplementary Notes 

 

HAI Dataset Descriptions 

Glue Grant (Burns & Trauma) Study: The Inflammation and Host Response to Injury Program 

(Glue Grant) whole blood / buffy coat cohorts
1
 were treated as previously described

2
. The Glue 

Grant datasets contain two cohorts: patients admitted with severe trauma, and patients admitted 

with severe burns. The trauma cohorts further include two sub-cohorts, one which sampled buffy 

coat, and the other which sampled sorted cells; the sorted-cells cohort were excluded from 

further study. Trauma patients were sampled at the following days after admission: 0.5, 1, 4, 7, 

14, 21, 28 days; Burn patients were sampled at admission, and then at the time of their burn 

operations. The Glue Grant patients were classified as ‘infected’ if they had a nosocomial 

infection (pneumonia, urinary tract infection, catheter-related bloodstream infection, etc.), a 

surgical infection (excluding superficial wound infections), or underwent surgery for perforated 

viscus. In burn patients, burn wound cultures of <100 CFU/g were not considered as infections. 

Only patients with samples drawn within ± 24 hours of the day of diagnosis of infection were 

included. The initial 24 hours after admission was not included, as the index admissions were not 

for infectious causes. All deaths within 30 days were scored as deaths, regardless of cause. Use 

of the Glue Grant was approved by both the Glue Grant Consortium and the Stanford University 

IRB (protocol 29798). 

 

UF p50 Study: This prospective observational study was performed 

between January 2012 and August 2016 at UF Health Shands Hospital, 

and was reviewed and approved by the Institutional Review Board 

(IRB) prior to initiation. Patients currently in the SICU or recently 

transferred to the SICU suspected of having early sepsis (within 48 

hours of admission), and requiring initiation of a sepsis management 

protocol, were screened for inclusion in the study. Adults (age ≥ 18 

years) with sepsis, severe sepsis, or septic shock as defined by the 

2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions 

https://paperpile.com/c/o17Nr3/P1xDs
https://paperpile.com/c/o17Nr3/5Vj6F
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Conference at index admission (and with no prior entry into the 

sepsis protocol at UF Health during that admission) were included. 

Patients were excluded if any of the following were present: (1) 

Expected lifespan less than 3 months due to severe pre-existing 

comorbidities (e.g. recurrent, advanced, or metastatic cancer); (2) 

Severe traumatic brain injury, defined as evidence of neurologic 

injury on CT scan and a GCS < 8 after resuscitation; (3) Refractory 

shock with anticipated death within 12 hours; (4) Uncontrollable 

sepsis due to an inability to achieve source control (e.g. irreversible 

disease states such as unresectable necrotic bowel); (5) Patient or 

patient’s family not committed to aggressive management of the 

patient’s condition; (6) Severe CHF (NYHA Class IV); (7) Child-Pugh 

Class C liver disease or pre-liver transplant; (8) Known HIV with CD4 

count <200 cells/mm3
; (9) Organ transplant recipients on immunosuppressive agents or 

patients receiving chronic corticosteroids or immunosuppressive agents for other reasons; (10) 

Pregnancy; (11) Incarceration; (12) Institutionalized patients; (13) Inability to obtain informed 

consent; (14) Chemotherapy or radiotherapy within 30 days prior to onset of sepsis; or (15) 

Spinal cord injury resulting in permanent sensory and/or motor deficits. Data were obtained from 

the Sepsis and Critically Illness Research Center (SCIRC) at the University of Florida College of 

Medicine.  Supported in part by P50 GM111152, from NIGMS, SCIRC is conducting a five year 

observational study on the incidence of chronic critical illness in patients with sepsis and their 

long-term physical and functional outcomes.   

 

Duke Hospital-Acquired Infection (HAI) Study: This prospective, multi-center, 

observational cohort study enrolled patients ≥ 18 years of age 

hospitalized within the medical or surgical wards, intensive care 

units, or step-down units of participating medical centers at Duke 

University Health System, Duke Regional Hospital, Durham Veterans 
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Affairs Medical Center, and the University of North Carolina-Chapel 

Hill Hospital System. The purpose of the study was to understand the 

clinic-molecular risk factors and manifestations of HAI, inclusive of 

ventilator-associated pneumonia (VAP) and non-VAP HAI. Serial 

samples were obtained including pre- and post-sepsis onset. For the 

purposes of this analysis, we focused only on the time point 

corresponding to sepsis onset, as determined by a clinical 

adjudication process.  
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Supplementary Methods 

Prognostic Model Analysis Descriptions 

Duke University:  

We propose a two-step process for identifying signatures of mortality in patients with sepsis. As 

seen in the Supplementary Figure 1, the first step consists of a discriminative factor model
3
 that 

attempts to jointly estimate the covariance structure of the data from a low-rank representation 

consisting of sparse factors, while also producing a sparse predictive model of mortality based on 

the latent factor scores also estimated by the model. The model has a clear interpretation by 

virtue of its sparseness property, each factor defines a subset of genes and the predictive model 

identifies which factors are discriminative (associated) with mortality. In addition, since the 

model captures the covariance structure of the data, factors not associated with mortality can 

often be found to be associated with other large sources of variation such as batch effects and/or 

demographic features. One known disadvantage of sparse factor models is that although it 

produces sparse factors, the size of the factors is usually in the hundreds of genes, which is less 

than ideal in applications were translation to targeted platforms admittedly require small gene 

signatures.  

The second step of our methodology consists of down-selecting from the subset(s) of 

genes deemed by the factor model as discriminative of mortality, we call this collection of genes 

our core set. To this end, we perform univariate testing (1-way ANOVA) on each of the genes in 

the core set, individually for each discovery set to better quantify within-cohort mortality 

associations. Next, we filter-out genes not statistically significant in a proportion of the discovery 

sets (25% or 3 studies in the experiments) to then optimize the gene signature by greedy forward 

search on the remaining genes while sorting them by maximum raw p-value across discovery 

datasets. The best signature is one such that the weighted average AUC is maximum. The 

prediction rule of our final predictive model is parameter-free and it is defined as the geometric 

mean of the up-regulated genes minus the geometric mean of the down-regulated genes in the 

original scale of the data, i.e., prior log-transformation. Note that this prediction rule is used 

during the greedy search but is not part of the sparse predictive model of our factor model. We 

opted for a parameter-free prediction rule as opposed to a parametric model, e.g., logistic 

regression, to simplify the final model and to make it less dependent on the scale of the data.  

We applied this method to identify gene signatures associated with mortality in patients 

https://paperpile.com/c/o17Nr3/Bq9xG
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with sepsis. The model estimated 16 factors from which only two were statistically significant 

with respect to survival status at FDR < 0.05. This discriminative factor consisted of 369 genes 

that form our signature core set. In order to obtain a smaller signature and a parameter-free 

classification model, we performed univariate testing on each one of the 12 discovery sets while 

restricting genes to our core set. We discarded genes that were not statistically significant at the p 

< 0.05 level in at least 3 discovery sets (84 of 369). Next we optimized the gene signature by 

greedy search on the remaining 84 genes sorted by raw p-value across datasets and using AUC as 

the performance metric. The greedy algorithm resulted in a final 18 gene set down-selected from 

the original 84 core set, from which 6 were up-regulated in non-survivors (CEACAM8, TRIB1, 

CKS2, MKI67, POLD3 and PLK1), while 12 were down-regulated in non-survivors (TGFBI, 

LY86, CST3, CBFA2T3, RCBTB2, TST, CX3CR1, CD5, MTMR11, CLEC10A, EMR3 and 

DHRS7B).  

 

Sage LR and RF:  

Data Adjustments: For the purpose of selecting features that are relevant to mortality alone, we 

adjusted each cohort using a surrogate variable analysis (SVA)
4
 conditioned on mortality status. 

This step avoids feature sets that could be confounded with other known and unknown covariates 

such as gender, age, severity and batch effects. Therefore, for each cohort, for each gene, we fit a 

regression model with mortality (known covariate) and surrogate variables (unknown 

covariates). The resulting residuals of the model is added back to the mortality coefficients and 

used for all downstream predictions.  

Feature Reduction: Machine learning algorithms tend to perform better with reduced 

feature space
5
. Therefore, SVA adjusted data sets with 9340 genes expressed in all the 12 

different discovery/training datasets is reduced to a smaller feature set using three different 

methodologies. (i) First method fits a regression model for every gene in each cohort with 

mortality (as a dependent variable) and the resulting coefficients were tested for differential 

expression between survivors and nonsurvivors. This method results in 23 differentially 

expressed genes in all the 12 discovery datasets at an FDR of 0.05. This approach, considering a 

maximum p-value of a gene in all studies, is a stringent criterion for selection. (ii) The second 

approach combines differential expression p-values for each gene in every cohort using Fisher’s 

chi-squared statistics with a Brown’s correction
6
 for non-independence/correlated effects 

https://paperpile.com/c/o17Nr3/0rQht
https://paperpile.com/c/o17Nr3/DlAZU
https://paperpile.com/c/o17Nr3/2NZ4X
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between different datasets. This approach is moderately conservative and results in 80 genes for 

prediction at an FDR of 0.05. (iii) The third approach is a rank product
7
 methodology were each 

gene in a given sample were relatively ranked according to their expression values and the ranks 

across samples were combined using a rank product. The significance of the detection is assessed 

by a non-parametric permutation test. At an FDR of 0.05 this method results in 2405 genes 

across 12 different discovery datasets. Finally, we took union of most expressed genes from all 

three methods resulting in 2367 unique genes from the 9340 as significant features for our multi-

cohort analysis.  

Model training: SVA adjusted gene expression of 2367 genes in 12 different datasets 

were used to train a penalized logistic regression (Sage LR)
8
 and probability random forest (Sage 

RF)
9
 models to predict nonsurvivors of sepsis from survivors. Discovery set were split into 100 

different partitions of 80%-20% of training data and only the 80% of training data was used to 

train the models. Coefficients or variable importance scores for every gene in each model is 

relatively ranked and combined across all 100 splits to obtain a final ranking. 897 and 327 genes 

were considered as predictors in at least one of the 100 different Sage LR or Sage RF models, 

respectively.   

Model pruning: All selected features from the 100 models may or may not be relevant. 

Therefore, as a final feature selection process, we pruned the above models based on the relative 

ranking of coefficients obtained from 100 different models and using a BIC criteria
10

, which 

penalizes for increased model complexity. In the end, we obtain 9 up and 9 down regulated genes 

in Sage LR and 13 up and 4 down regulated genes in Sage RF models as predictors of mortality.  

  Sage LR: SVA adjusted data sets were used to infer gene signatures associated with 

mortality. 9340 genes that were commonly expressed in all the 12 different discovery datasets 

were reduced to a smaller feature set using the above mentioned three methodologies. A 

generalised linear model with penalized maximum likelihood calculated via coordinate descent 

methodology
11

 was used to reduce genomic features from the selected 2367 genes. This resulted 

in a 18 gene model for predicting mortality in non-survivors at a summary AUROC of 0.79, 0.76 

and 0.81 in the discovery, validation and HAI datasets, respectively. These 18 genes include 9 

up-regulated (CFD, DDIT4, DEFA4, IFI27, IL1R2, IL8, MAFF, OCLN, RGS1) and 9 down-

regulated (AIM2, APH1A, CCR2, EIF5A, GSTM1, HIST1H3H, NT5E, RAB40B, VNN3) in 

nonsurvivors. 

https://paperpile.com/c/o17Nr3/Ss12C
https://paperpile.com/c/o17Nr3/uPY3F
https://paperpile.com/c/o17Nr3/joUlT
https://paperpile.com/c/o17Nr3/zJv8o
https://paperpile.com/c/o17Nr3/Uxu60
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Sage RF: Like the Sage LR model, the Sage RF model used 2367 significantly 

differentially expressed genes which were at least selected by one of the method as features for 

our multi-cohort analysis. Sage RF model used penalized classification probability-based random 

forest (classRF) algorithm as described in Malley et al
12

. In brief, the classRF algorithm first 

creates a bootstrap sample set with replacement from the available samples by leaving out certain 

percentage of training data. Later a classification tree is built for each bootstrap to the greatest 

extent possible, but requiring at least a minimum of 10% of the samples as nodes. Finally, the 

probability of each sample is calculated as the proportion of predicted non-survivors in the final 

nodes of all the bootstraps. To reduce the set of features that predict mortality, penalised classRF 

is used. In general, sage RF model displayed near perfect prediction in all the discovery data, 

with a summary AUROC of 1. However, the performance decreased in the validation data sets 

and shown significantly reduced performance in the HAI sets. This model resulted in an 

imbalanced 17 gene set with 13 (B4GALT4, BPI, CD24, CEP55, CTSG, DDIT4, G0S2, MPO, 

MT1G, NDUFV2, PAM, PSMA6, SEPP1) of them up-regulated in non-survivors and 4 

(ABCB4, CTSS, IKZF2, NT5E) down-regulated in non-survivors.  

 

Stanford University:  

We applied two analytic methods to discover genes significantly associated with 

mortality (Supplementary Figure 3). After selecting the input datasets, we first combined effect 

sizes within datasets using Hedges’ g
13

, and then evaluated summary effects with a 

DerSimonian-Laird meta-analysis
14

. Significance thresholds were set at a false discovery rate 

(FDR) of 0.05, with a summary effect size greater than 1.3 fold (in non-log space).  

We next performed a meta-regression analysis in the datasets which supplied phenotype 

data of clinical severity and age. For each cohort, for each gene, the model was a regression on 

mortality (dependent) as a function of clinical severity plus age plus gene expression level. To 

keep the scales between datasets similar solely for the regression analysis, (1) all clinical severity 

scores were converted to log-odds mortality, based on models in their describing papers, and (2) 

all datasets were ComBat-normalized
4
 together prior to meta-analysis (this method resets the 

location and scale of each gene, but within-cohort differences are preserved). The meta-

regression was carried out using the closed-form method-of-moments random-effects model 

variation
15

 of the synthesis-of-slopes regression method described by Becker and Wu (2007)
16

. 

https://paperpile.com/c/o17Nr3/IrNyr
https://paperpile.com/c/o17Nr3/r6KVx
https://paperpile.com/c/o17Nr3/AMTak
https://paperpile.com/c/o17Nr3/0rQht
https://paperpile.com/c/o17Nr3/Y6D0U
https://paperpile.com/c/o17Nr3/vS5jz
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Thus, in this case, a gene was considered to be significant if it had statistically conserved 

regression coefficients (betas) across all datasets for the prediction of mortality independent of 

clinical severity and age. An uncorrected p value < 0.01 was deemed significant.  

In the final step of the analysis, we took as significant the union of the gene sets deemed 

to be significant both by standard multi-cohort analysis and by meta-regression. These genes 

were then used in a greedy iterated search model, where a greedy forward search was allowed to 

run to completion, followed by a greedy backward search, and then another greedy forward 

search. This method iterated until it reached a stable gene set. This algorithm is designed to find 

maxima closer to the global maximum than a simple forward search. Only the discovery datasets 

were used in the search, each dataset was evaluated separately, and the functions maximized the 

weighted AUC, which is the sum of the AUC of each discovery dataset multiplied by its sample 

size.  

In the greedy search, and with the final gene set, the gene score is defined as the 

geometric mean of the gene expression level for all positive genes minus the geometric mean of 

the gene expression level of all negative genes multiplied by the ratio of counts of positive to 

negative genes. This was calculated for each sample in a dataset separately. Genes not present in 

an entire dataset were excluded; genes missing for individual samples were set to one. 

The initial multi-cohort meta-analysis for differential gene expression between survivors 

and nonsurvivors at admission yielded 96 genes significant at FDR<0.05 and effect size >1.3-

fold. In the regression analysis there were 35 genes significant at p<0.01. Notably, the top three 

most-significant genes in the meta-regression were all from the same pathway, namely, 

neutrophil azurophilic granules: DEFA4, CTSG, and MPO. The union of the meta-analysis and 

meta-regression gene sets was 122 genes, which we took as our ‘significant’ gene list to feed into 

the iterated greedy search.  The algorithm ran to completion, producing a 12-gene set. The genes 

upregulated in patients with mortality were: DEFA4, CD163, PER1, RGS1, HIF1A, SEPP1, 

C11orf74, and CIT, and the downregulated genes were: LY86, TST, OR52R1, and KCNJ2.  

 

Ensemble Model:  

The aim of the ensemble model is to aggregate the classifications submitted by the individual 

four models, by effectively leveraging the consensus as well as diversity among these 

predictions. We performed a stacking-based penalized SVM, a heterogeneous ensemble 
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methodology. This method learns a meta-classifier (second level predictor) with the prediction 

scores from the four base classifiers. In order to reduce the over-fitting of the ensemble classifier, 

the training set for classifications were generated through a leave-one-cohort-out cross-validation 

procedure applied to all the discovery datasets. To address the potential calibration issue, we also 

investigated two different normalization procedures; z-score based (mean=0, SD=1) and rank 

based scaling (maximum=1, minimum=0), applied to the raw base classification scores. 

Normalized scores were then used to train a meta-classifier model. To this end, we used 

penalisedSVM
17

 package in R with elastic SCAD penalty. 

 

Comparison to Prior Published Gene Sets: 

In order to contrast the present findings with prior published results, we searched for all papers 

that examined transcriptome-wide changes in sepsis associated with increasing severity or 

mortality
18–23

. In each of these papers, genes were classified as ‘over-expressed’ or ‘under-

expressed’ in association with increasing severity. We took the union of all these differentially 

expressed genes as inputs, and took the difference of geometric means of these two sets to make 

a single score. We then measured the AUROC for prediction of mortality using this composite 

score, and compared to the present scores. To compare this level of performance to the four 

current models, we used matched t-tests, as well as calculating the mean difference in AUROCs. 

We did this in the validation cohorts only to prevent bias.  

 

 

  

https://paperpile.com/c/o17Nr3/cSFOV
https://paperpile.com/c/o17Nr3/ZBsQ+8FWU+1G5L+hLND+yTxy+pp9E
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