
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

Interesting report if the criteria for publishing is „retrospective pilot study of a plethora of 

molecular markers prone for many biases and limitations including multiple testings“  

This bias of this reviewer is to be a clinician emphasising the need for rapid simple aid with 

biomarkers for triage decisions on the ER. Based on the daily needs of the reviewer and the 

scientific experience in this respect, the following consideration of major limitation might further 

improve the paper  

 

- Yes, we know that the clinical estimates for prognosis are very limited. Tools for risk stratification 

do not only include clinical severity scores such as APACHE or SOFA as well as blood lactate levels. 

Namely several biomarkers have been proposed. Therefore, to put the current genetic data into 

research „state of the art“ perspective, comparisons with these biomarkers should be done (ideally 

individual data directly compared in the results section) or at least the respective AUCs discussed 

with data of other „biomarkers" in the literature (e.g. reviewed in Schuetz P., et al Biomarker-

guided Personalized Emergency Medicine for All – Hope for another Hype ?. Swiss Med Wkly 2015 

;145:w14079 or Rast A.C., et al. Clinical scores and blood biomarkers for early risk assessment of 

patients presenting to the emergency department – Critical review. OA Emergency Medicine 2014; 

2:1-9)  

- Try to apply net-reclassification statistics in a way that it better examines true clinical utility (e.g. 

like in Kutz A., et al. The TRIAGE-ProADM score for an early risk stratification of medical patients 

in the emergency department - Development based on a multi-national, prospective, observational 

study. PLoS ONE 2016; 11: e0168076 DOI:10.1371/journal.pone.0168076  

- Discussion: "We developed four state-of-the-art data-driven prognostic models using a 

comprehensive survey of available data including 21 different sepsis cohorts (both community- 

acquired and hospital-acquired, N=1,113 patients), with summary AUROCs around 0.85 for 

predicting 30-day mortality.“ Although the number of discovery and validation cohorts, 

respectively seem impressive at first, the relatively small total N limits external validity, namely for 

clinically important subanalyses. Sepsis is merely a syndrome of heterogenous (sites and causes) 

of infection, as the authors state in the beginning of the discussion. To estimate clinical relevance 

the principal causes (i.e. pulmonary, urogenital and abdominal) causes should be subanalysed  

- microbiological subanalyses would further strengthen the data (e.g. blood culture positive / 

negative, antibiotic pretreatment vs naive)  

- What was the course of the prognostic biomarkers during hospital stay and/or follow-up (i.e. 

decreasing with favourable outcome and vice versa?)  

- For emergency care and triage decisions timing is everything (minutes is better than hours and 

far better than days….). So what’s the current estimated turn-around time . . . estimate on 

whether a (needed) turnaround time of minutes will be ever feasible to become accepted for 

clinical routine  

- Define specifically which sepsis definitions were used to classify the patients in the validation 

cohorts (the recently published sepsis III criteria, where basically the old „severe sepsis“ and 

becomes termed „sepsis“, thus the definition is more stringent than the old one). Were all the 

diagnostic criteria similar in all validation cohorts ?  

 

 

Reviewer #2 (Remarks to the Author):  

 

This study provides some convincing evidence that gene expression models can predict the 

outcome of sepsis patients. My main concern with the manuscript is that I would like to see a more 

detailed discussion of the practical significance of the findings. Specifically, I would like to know 

how much the proposed methodology improved prediction accuracy compared to a model that 

uses only standard clinical severity predictors. The authors consider this question to a degree, but 

they merely state that the difference in the AUROC between a model using only standard 



predictors and a model using standard predictors plus genetic predictors was statistically 

significant. However, they do not state how large this difference is. More importantly, the 

difference in the AUROC does not readily translate to practical significance. I would be more 

interested in a more basic question: how many more sepsis patients are correctly classified when 

genetic factors are considered when predicting risk?  

 

AUROC gives a measure of the overall predictive accuracy of a model across a variety of cutoffs. 

However, in practice, one would have to choose a specific cutoff in order to use the model. Thus, I 

would be interested in seeing how these models perform for some specific choices of the cutoff. 

The authors could use a cutoff to set the specificity to be 90% (as they did for Supplementary 

Figure 5) or some other cutoff. Indeed, it would potentially be interesting to see the results for 

several possible cutoffs. For each cutoff, I would like to see (in a supplementary table) the 

confusion matrix for each testing/HAI data set for each of the following models: 1) gene 

expression alone, 2) standard predictors alone, 3) gene expression plus standard predictors, 4) 

baseline error model (all patients are assigned to the largest class, which is usually the "survived" 

class). In addition, I would like to see a figure similar to Supplementary Figure 5 for each of the 

four models listed above (rather than only for the gene expression model). I would also like to 

know the difference between models 2) and 3) with respect to each of the five measures in 

Supplementary Figure 5. In other words, how much does accuracy, sensitivity, specificity, etc. 

increase when gene expression is included in the model (compared to a model that uses only 

standard predictors).  

 

A few other (more minor) comments:  

 

On lines 279-283, the authors write, "The AUPRCs for non-survivor prediction were notably lower 

than the AUROCs, suggesting that the models’ primary utility may be in ruling out mortality for 

individuals much less likely to die within 30 days (those less likely to require substantial 

intervention) as opposed to accurately identifying the minority of patients who are highly likely to 

die within 30 days." I am not sure why that statement follows from the fact that the AUPRCs were 

lower than the AUROCs. We would expect the AUPRCs to be lower since each of the validation data 

sets are highly unbalanced (with more survivors than deaths). The AUROC is always bounded 

below by 0.5, where as the AUPRC is bounded below by D/(D+S), D and S are the number of 

deaths and survivors, respectively. Given that S is significantly larger than D for each validation 

set, it is not surprising that the AUPRCs are lower than the AUROCs.  

 

I will note that some authors have suggested that the AUPRC is a better metric than AUROC when 

the data is unbalanced, as is the case for the validation data sets in this study. (See for example 

Saito and Rehmsmeier, PLoS One. 2015; 10(3): e0118432.) I will let the authors decide if greater 

emphasis should be placed on the AUPRC in this study.  

 

I was also confused as to how the AUROC was calculated for the random forest model. The 

standard random forest algorithm assigns a predicted class for each observation by taking the 

majority vote of the individual trees. Thus, there is only a single binary prediction, not a 

continuous risk score that would allow one to choose a cutoff. One could potentially generate such 

a risk score by calculating the percentage of trees that predicted a death rather than using a 

simple majority vote. If that is the case, that should be spelled out clearly in the description of the 

method.  

 

Finally, I would encourage the authors to make their R source code publicly available to ensure 

that their work is reproducible.  

 

 

Reviewer #3 (Remarks to the Author):  

 

The authors performed a meta-analysis of selected previously published datasets pertaining to 



critical illness due to all causes of sepsis, non-septic admissions such as burns and traumatic injury 

as well as pediatric intensive care patients. Using standard methods in cross-platform 

normalization, batch corrections and statistical models, the authors’ aim was to derive a molecular 

predictor of 30-day mortality (handled in binary fashion). To this aim, the authors resorted to 

constructing no less than four statistical models, which according to the understanding of this 

reviewer were based on the center responsible for the analysis (Duke, Sage Bionetworks and 

Stanford). The accuracy of the derived putative molecular predictors was subsequently assessed in 

selected validation cohorts. Moreover, identified genes per model were combined and further 

refined to an “ensemble” gene set and proposed as a 30-day mortality predictor. Model 

performances were primarily assessed by ROC AUCs and AUPRCs and subsequently gene sets were 

compared to clinical scoring systems to assess predictive performances in isolation or in 

combinations thereof.  

 

Comments  

 

(1) While the research question is an important one, there is a shortage in reporting specific 

methodologies and several components of the analysis, interpretation and conclusions deserve 

clarification. Firstly, the lack of overlap in gene sets identified as 30-day mortality predictors per 

statistical model is a major concern. The NT5E, DEFA4,RGS1 and SEPP1 genes were seemingly an 

exception; albeit also poorly overlapping across models. Not one gene was consistently identified 

across models and, not surprisingly, the authors found poor correlation between models. Although 

this may indicate unaddressed bias in each of the evaluated models, this also brings the 

methodology in combining these datasets (lacking in specifics) into question. For example, what 

was the distribution of principal components before and after normalization, SVA adjustment etc..? 

The reported predictive performances (AUROC and AUPRC) have predominantly low AUCs, very 

broad confidence margins and were not found to possess independent prognostic value as 

compared to clinically-derived scores.  

 

(2) The authors went on to reportedly combine gene expression (molecular) and clinical scores 

into a joint mortality prediction model. Again, specifics in methodology is lacking with only a 

reported probability as result. What were the AUROC and confidence intervals of the clinical scores 

in isolation? The supposed improvement over clinical scores alone in mortality prediction may be 

based on an analysis that is not a level playing field, in that for example APACHE II scores were 

not built on these datasets. A customized clinical risk prediction model may have performed better, 

and the improvement in prediction may have been more modest.  

(3) Insufficient detail is included in the manuscript to describe combining publicly available 

datasets from different platforms, predictive performances considering molecular and clinical 

models as well as pathway analyses. Can the authors please include more information?  

 

(4) In their pathway analysis, why have the authors chosen for targeted enrichment analysis for 

cell types using data from reference 38? In silico deconvolution of gene expression to specific 

peripheral blood cell types has been applied many times using data from benchmark studies, for 

example Abbas etal 2009, and more recently Newman etal 2015? Have the authors considered 

other pathway analysis suites such as ingenuity and/or GSEA? These represent highly curated 

databases and it is unclear to this reviewer why the authors adopted the approach reported in 

their study.  

 

(5) In their comparison to severity scores have the authors assessed all scores in their joint model, 

that is, APACHE II, PELOD, PRISM, SAPS II, SOFA, and the Denver scores? Where they evaluated 

independently? The authors should provide more extensive data and methodology to support their 

claim that “the gene expression-based predictors add significant prognostic utility to standard 

clinical metrics”. Simply reporting a probability is not sufficient.  

 

(6) Line 410, please correct the reference citation style to the journal requirements  

 



Reviewer #1 (Remarks to the Author): 
Interesting report if the criteria for publishing is „retrospective pilot study of a plethora of 
molecular markers prone for many biases and limitations including multiple testings“ 
This bias of this reviewer is to be a clinician emphasising the need for rapid simple aid with 
biomarkers for triage decisions on the ER. Based on the daily needs of the reviewer and the 
scientific experience in this respect, the following consideration of major limitation might further 
improve the paper 

We are pleased that the reviewer agrees with the need for improved biomarkers for risk stratification in 
sepsis.   

 
- Yes, we know that the clinical estimates for prognosis are very limited. Tools for risk 
stratification do not only include clinical severity scores such as APACHE or SOFA as well as blood 
lactate levels. Namely several biomarkers have been proposed. Therefore, to put the current 
genetic data into research „state of the art“ perspective, comparisons with these biomarkers 
should be done (ideally individual data directly compared in the results section) or at least the 
respective AUCs discussed with data of other „biomarkers" in the literature (e.g. reviewed in 
Schuetz P., et al Biomarker-guided Personalized Emergency Medicine for All – Hope for another 
Hype ?. Swiss Med Wkly 2015 ;145:w14079 or Rast A.C., et al. Clinical scores and blood 
biomarkers for early risk assessment of patients presenting to the emergency department – 
Critical review. OA Emergency Medicine 2014; 2:1-9) 

The reviewer brings up an excellent point—many other biomarkers for risk stratification have been 
proposed. Many papers reporting on heavily-studied biomarkers such as proADM, PCT, proET-1, or 
suPAR have not compared these head-to-head. Similarly, and unfortunately, we do not have any data, 
let alone sample-level data, on those novel biomarkers here. Such a test will require prospective study. 
However, to try to answer the reviewer, we examined whether the gene expression levels of these four 
targets (ADM, CALCA, EDN1, and PLAUR, respectively) held any prognostic power in the studied 
datasets. Not surprisingly, as gene levels often poorly correlate with propeptide levels, the mean AUROC 
for prediction of mortality was 0.51, 0.48, 0.53, and 0.46 for these genes, respectively. We have not 
added this to the manuscript as we feel it is a straw-man argument.   

We have added the suggested citations to the introduction, ensuring that the import of peptide 
biomarkers is not overlooked: “Some peptide markers of sepsis severity have been validated (e.g. pro-
adrenomedullin among others), but these are not yet cleared for clinical use.” 

In addition, we have significantly expanded the discussion section to include a brief review of 
the summary characteristics of a few of the better-studied alternative biomarkers to allow for easy 
comparison to our results. The discussion now reads: 

“The derived discriminatory power of the gene models (AUCs near 0.85) are at least similar to 
the AUC of proadrenomedullin (0.83) in a recent large prospective trial (TRIAGE study). However, 
peptide assays have the significant advantage of potentially very rapid turnaround times. Moreover, a 
paucity of randomized data in application of existing biomarkers makes it unclear whether improved risk 
stratification will actually improve health and/or reduce costs.” 
 

- Try to apply net-reclassification statistics in a way that it better examines true clinical utility 
(e.g. like in Kutz A., et al. The TRIAGE-ProADM score for an early risk stratification of medical 
patients in the emergency department - Development based on a multi-national, prospective, 
observational study. PLoS ONE 2016; 11: e0168076 DOI:10.1371/journal.pone.0168076 

The reviewer’s request is a clear theme from all reviewers; namely, the question of added utility of a 
new biomarker vs. standard measures of stratification. The cited work (TRIAGE study) was prospectively 
designed for such a purpose, and so we cannot be as thorough as that work. In particular, the various 



datasets used different clinical risk-stratification scores, preventing us from identifying universal risk 
bands that could evenly apply across all datasets. Thus, to prevent the appearance of ‘p-hacking’, we 
have chosen to implement the continuous net reclassification improvement (cNRI) index, which has an 
absolute range of 0-2, and which can be used to judge the improvement in reclassification of an 
additional risk score (i.e., the gene model in addition to standard model). Supplementary Table 6 shows 
cNRI data for all four gene models compared to clinical severity predictors, along with 95% CI and p-
values for each dataset. The results have been modified to read: 

“We next examined continuous net reclassification improvement (cNRI) index to quantify how 
well the model with gene scores reclassifies survivors over the model with clinical severity scores in each 
of these same datasets (Supplementary Table 6). In the validation and HAI cohorts, the mean NRI was 
0.53-0.84 (potential range 0-2, where 2 reflects all patients with improved classification). For the Duke 
and Stanford scores, half of the validation and HAI datasets showed significant NRI compared to 
standard predictors alone. This suggests that the gene expression-based predictors add significant 
prognostic utility to standard clinical metrics.  
 Finally, we examined test characteristics at a high-sensitivity cutoff (95%) and a high-specificity 
cutoff (95%) for the gene scores in comparison to baseline error models (Supplementary Table 7) and in 
comparison to clinical severity scores (Supplementary Table 8). Overall mean accuracy of the joint 
clinical and gene scores was higher in the validation and HAI datasets (0.58-0.72 and 0.64-0.79 across 
the models, respectively) compared to clinical scores alone (0.57 and 0.62, respectively). “ 

 
 
We note that the cNRI does not produce tables of number of patients reclassified, only an overall 
estimate of gain in performance. Reporting of a traditional NRI requires quite a large table (e.g., Table 4 
(Kutz et al. 2016) has ~60 cells), and here we would need to do this for 4 models for 9 datasets, which 
would be likely too dense for any reader to glean information. Clearly, as we mention in the discussion, 
prospective study is needed to fully evaluate the clinical utility of the proposed models. These data 
merely show the possibility that the gene scores may have clinical utility when tested prospectively. 
 

- Discussion: "We developed four state-of-the-art data-driven prognostic models using a 
comprehensive survey of available data including 21 different sepsis cohorts (both community- 
acquired and hospital-acquired, N=1,113 patients), with summary AUROCs around 0.85 for 
predicting 30-day mortality.“ Although the number of discovery and validation cohorts, 
respectively seem impressive at first, the relatively small total N limits external validity, namely 
for clinically important subanalyses. Sepsis is merely a syndrome of heterogenous (sites and 
causes) of infection, as the authors state in the beginning of the discussion. To estimate clinical 
relevance the principal causes (i.e. pulmonary, urogenital and abdominal) causes should be 
subanalysed 

We see the inclusion of 1,113 patients as relatively large, not relatively small, compared to the average 
reporting of a new biomarker (but obviously much smaller than large studies of established biomarkers, 
such as the TRIAGE study). Still, the reviewer’s point is well-taken; sepsis is a highly heterogeneous 
syndrome, and subgroup analyses are worthy. The datasets included in this study were each largely 
homogenous examinations of a single clinical setting (e.g., ventilated patients with severe influenza, or 
post-surgical patients with bacteremia, etc.). Due to technical batch effects between studies, we cannot 
perform subgroup analyses that would approach statistical significance, and do not want to offer non-
robust conclusions. We have added this point to the ‘weaknesses’ paragraph:  

“Fifth, despite a seemingly large total N (1,113), we were unable to perform robust subgroup 
analyses (such as infection site or pathogen type), although a broad range of clinical circumstances is 
included across the datasets.” 

https://paperpile.com/c/vHzjtw/2Ztt


 
- microbiological subanalyses would further strengthen the data (e.g. blood culture positive / 
negative, antibiotic pretreatment vs naive) 

All patients here were defined as having an infection according to the diagnostic criteria set forth in their 
initial studies. In almost all cases, this was a two-physician retrospective chart review that required 
microbiological evidence of infection. We do not have data on whether this was positive blood culture 
(bacteremia) or other positive culture result. The patients at admission to the hospital are assumed to 
be antibiotic naïve. The hospital-acquired-infection patients were only included if they did not have a 
prior diagnosis of infection. While broad classes of infectious disease (bacterial, viral, fungal) may induce 
different host gene expression responses, almost no datasets had more than one class of infection. We 
have modified Table 1 to add the percent of total subjects that had bacterial infections. We have also 
added the subgroup analysis limitation statement above to the weaknesses paragraph.  

 
- What was the course of the prognostic biomarkers during hospital stay and/or follow-up (i.e. 
decreasing with favourable outcome and vice versa?) 

Only a small subset of studies had longitudinal samples that allowed for this analysis. The data from 
these studies is now available as Supplemental Figure 6. The results now read:  

“We examined the effects of clinical time course on the gene scores in the two validation 
datasets that tracked longitudinal data (GSE21802 and GSE54154; Supplemental Figure 6). We found no 
differences in slope (change in score over time) between the survivors and non-survivors, although the 
scores in non-survivors were significantly higher than in survivors during the entire hospital stay, 
possibly indicating a failure to restore homeostasis.” 

 
- For emergency care and triage decisions timing is everything (minutes is better than hours and 
far better than days….). So what’s the current estimated turn-around time . . . estimate on 
whether a (needed) turnaround time of minutes will be ever feasible to become accepted for 
clinical routine 

A turnaround time of an hour or less is certainly feasible; some rapid PCR techniques can accomplish 
amplification in less than 10 minutes (e.g. isothermal techniques). Although work on translation to a 
potential IVD is underway, we feel the engineering/technical aspects of such a test are outside the scope 
of the present manuscript. We have added this to the weaknesses paragraph: “In addition, while some 
rapid PCR techniques could bring the potential turnaround time of a gene-expression-based assay to 
under 30 minutes, this will require a substantial engineering effort.”  

 
- Define specifically which sepsis definitions were used to classify the patients in the validation 
cohorts (the recently published sepsis III criteria, where basically the old „severe sepsis“ and 
becomes termed „sepsis“, thus the definition is more stringent than the old one). Were all the 
diagnostic criteria similar in all validation cohorts ? 

Diagnostic criteria were, as the reviewer may imagine, not perfectly consistent across the 21 included 
cohorts. In particular, all of the studies, because they are historical cohorts, were designed prior to Feb 
2016, when Sepsis-3 was published. However, we see this as a strength, not a weakness. The host 
response doesn’t know what external labels we place on a patient; we have shown here that the 
classifier is robust to minor variations in the exact definition of sepsis. In clinical application, of course a 
prospective study with appropriate, locked inclusion criteria would be needed.  

 
Reviewer #2 (Remarks to the Author): 
This study provides some convincing evidence that gene expression models can predict the 
outcome of sepsis patients. My main concern with the manuscript is that I would like to see a 



more detailed discussion of the practical significance of the findings. Specifically, I would like to 
know how much the proposed methodology improved prediction accuracy compared to a model 
that uses only standard clinical severity predictors. The authors consider this question to a 
degree, but they merely state that the difference in the AUROC between a model using only 
standard predictors and a model using standard predictors plus genetic predictors was 
statistically significant. However, they do not state how large this difference is. More 
importantly, the difference in the AUROC does not readily translate to practical significance. I 
would be more interested in a more basic question: how many more sepsis patients are correctly 
classified when genetic factors are considered when predicting risk? 

We thank the reviewer for the positive comments. We have added the individual differences gained 
from the joint classifier to the main text; these are merely the subtraction of column 2 from the ‘joint’ 
columns of Supplementary Table 5. The text now reads: “each combination significantly outperformed 
clinical severity scores alone (mean difference Duke 0.077; Sage LR 0.076; Sage RF 0.16; Stanford 0.098; 
all paired t-tests p ≤ 0.01)”. We have also reworked the presentation of this table for clarity.  

In terms of reclassification, we refer the Reviewer to our responses above, namely to the 
addition of NRI statistics (Supplementary Table 6), and the accompanying changes in the text. Although 
this comparison has some weaknesses, we hope that it answers the Reviewer’s concerns.  

 
AUROC gives a measure of the overall predictive accuracy of a model across a variety of cutoffs. 
However, in practice, one would have to choose a specific cutoff in order to use the model. Thus, 
I would be interested in seeing how these models perform for some specific choices of the cutoff. 
The authors could use a cutoff to set the specificity to be 90% (as they did for Supplementary 
Figure 5) or some other cutoff. Indeed, it would potentially be interesting to see the results for 
several possible cutoffs. For each cutoff, I would like to see (in a supplementary table) the 
confusion matrix for each testing/HAI data set for each of the following models: 1) gene 
expression alone, 2) standard predictors alone, 3) gene expression plus standard predictors, 4) 
baseline error model (all patients are assigned to the largest class, which is usually the "survived" 
class). 

The Reviewer is requesting 4 confusion matrices for 4 different scores in at least 9 different cohorts 
(those with severity data), which would come out to 4x4x9 = 126 tables for a single cutoff! While this 
reportage is certainly possible (and we are happy to add it if the reviewer insists), we have instead 
provided two sets of summary data that we think answer this question. The first table (Supplementary 
Table 7) shows mean +/- s.d. for test characteristics aggregated across all cohorts for both the gene 
scores and the baseline error model at two different cutoffs (one with a sensitivity near 95%, the other 
with a specificity near 95%). The second table (Supplementary Table 8) similarly shows mean +/- s.d. for 
test characteristics aggregated across the 9 cohorts for which we have severity data. Here we show the 
test characteristics for the severity score alone, the gene scores alone, and then the joint gene + severity 
model. It is necessary to repeat the gene-score-only data since this is a different group of datasets than 
in Supplementary Table 7. The results have now been updated to read: 

“Finally, we examined test characteristics at a high-sensitivity cutoff (95%) and a high-specificity 
cutoff (95%) for the gene scores in comparison to baseline error models (Supplementary Table 7) and in 
comparison to clinical severity scores (Supplementary Table 8). Overall mean accuracy of the joint 
clinical and gene scores was higher in the validation and HAI datasets (0.58-0.72 and 0.64-0.79 across 
the models, respectively) compared to clinical scores alone (0.57 and 0.62, respectively).” 
 

In addition, I would like to see a figure similar to Supplementary Figure 5 for each of the four 
models listed above (rather than only for the gene expression model). I would also like to know 
the difference between models 2) and 3) with respect to each of the five measures in 



Supplementary Figure 5. In other words, how much does accuracy, sensitivity, specificity, etc. 
increase when gene expression is included in the model (compared to a model that uses only 
standard predictors). 

We hope that the data listed in the answer to the comment above is sufficient. The addition of three 
more supplemental figures to this paper, all of which are redundant with new Supplementary Table 8, 
seems to us only to add complexity without transmitting extra information. We can turn the data from 
Supplementary Table 8 into new figures if the reviewer and editor wish.  

 
A few other (more minor) comments: 
On lines 279-283, the authors write, "The AUPRCs for non-survivor prediction were notably lower 
than the AUROCs, suggesting that the models’ primary utility may be in ruling out mortality for 
individuals much less likely to die within 30 days (those less likely to require substantial 
intervention) as opposed to accurately identifying the minority of patients who are highly likely 
to die within 30 days." I am not sure why that statement follows from the fact that the AUPRCs 
were lower than the AUROCs. We would expect the AUPRCs to be lower since each of the 
validation data sets are highly unbalanced (with more survivors than deaths). The AUROC is 
always bounded below by 0.5, where as the AUPRC is bounded below by D/(D+S), D and S are the 
number of deaths and survivors, respectively. Given that S is significantly larger than D for each 
validation set, it is not surprising that the AUPRCs are lower than the AUROCs. 
I will note that some authors have suggested that the AUPRC is a better metric than AUROC 
when the data is unbalanced, as is the case for the validation data sets in this study. (See for 
example Saito and Rehmsmeier, PLoS One. 2015; 10(3): e0118432.) I will let the authors decide if 
greater emphasis should be placed on the AUPRC in this study. 

We agree with the Reviewer that the AUPRCs were expected to be lower than the AUROCs, but did not 
wish to highlight this in the manuscript because it would seem to be downplaying negative results. The 
statement that the models may be better served at identifying low-risk patients as opposed to high-risk 
patients follows from the unbalanced nature of the data, which is, we agree, a causative factor of the 
low AUPRCs. To avoid any confusion, we have modified the statement to read: “The AUPRCs for non-
survivor prediction were notably lower than the AUROCs, as was expected from the highly unbalanced 
classes (rare mortalities). This suggests that the models’ primary utility may be in ruling out mortality for 
individuals much less likely to die within 30 days”.  

We chose to highlight AUROCs instead of AUPRCs because the latter measure is not familiar to 
physicians (as many of our physician co-authors attested). For instance, we could not find any literature 
reporting AUPRC for other traditional sepsis prognostic markers that would stand as comparators. We 
have included both measures to ensure that interested parties have sufficient data to understand 
classifier performance.  

 
I was also confused as to how the AUROC was calculated for the random forest model. The 
standard random forest algorithm assigns a predicted class for each observation by taking the 
majority vote of the individual trees. Thus, there is only a single binary prediction, not a 
continuous risk score that would allow one to choose a cutoff. One could potentially generate 
such a risk score by calculating the percentage of trees that predicted a death rather than using 
a simple majority vote. If that is the case, that should be spelled out clearly in the description of 
the method. 
We thank the reviewer for this point. As the Reviewer deduced, indeed the classification 

probabilities were computed as the proportion of trees that predicted mortality. To reflect this, we 
added the following paragraph in the Supplemental methods. 

“Sage RF model used a penalized classification probability-based random forest (classRF) 



algorithm as described in Malley et. al.12. In brief, the classRF algorithm first creates a bootstrap sample 
set with replacement from the available samples by leaving out a certain percentage of training data. 
Later a classification tree is built for each bootstrap to the greatest extent possible, but requiring a 
minimum of 10% of the samples as nodes. Finally, the probability of each sample is calculated as the 
proportion of predicted non-survivors in the final nodes of all the bootstraps. To reduce the set of 
features that predicts mortality, penalised classRF is used. “ 

 
Finally, I would encourage the authors to make their R source code publicly available to ensure that their 
work is reproducible. 
We appreciate reviewers encouragement to publish the reproducible code. In the view of reproducing 
our results, we make all the source codes, raw and normalised data along with final classification scores 
for each sample from all four models, available online through Synapse, an open source collaborative 
platform (www.synapse.org). To reflect this change we added the following section in the main text: 
 “To reproduce the discovery of gene sets, all the analysis source code, raw and normalised gene 
expression data (if available in public domain), and final sample scores for the four models. Code to 
reproduce the discovery of the gene sets are made available in Synapse, an open source collaborative 
research platform53” 

 
Reviewer #3 (Remarks to the Author): 
The authors performed a meta-analysis of selected previously published datasets pertaining to 
critical illness due to all causes of sepsis, non-septic admissions such as burns and traumatic 
injury as well as pediatric intensive care patients. Using standard methods in cross-platform 
normalization, batch corrections and statistical models, the authors’ aim was to derive a 
molecular predictor of 30-day mortality (handled in binary fashion). To this aim, the authors 
resorted to constructing no less than four statistical models, which according to the 
understanding of this reviewer were based on the center responsible for the analysis (Duke, Sage 
Bionetworks and Stanford). The accuracy of the derived putative molecular predictors was 
subsequently assessed in selected validation cohorts. Moreover, identified genes per model were 
combined and further refined to an “ensemble” gene set and proposed as a 30-day mortality 
predictor. Model performances were primarily assessed by ROC AUCs and AUPRCs and 
subsequently gene sets were compared to clinical scoring systems to assess predictive 
performances in isolation or in combinations thereof. 

We thank the reviewer for this accurate summary of the work.  
 
Comments 
(1) While the research question is an important one, there is a shortage in reporting specific 
methodologies and several components of the analysis, interpretation and conclusions deserve 
clarification. Firstly, the lack of overlap in gene sets identified as 30-day mortality predictors per 
statistical model is a major concern. The NT5E, DEFA4,RGS1 and SEPP1 genes were seemingly an 
exception; albeit also poorly overlapping across models. Not one gene was consistently identified 
across models and, not surprisingly, the authors found poor correlation between models. 
Although this may indicate unaddressed bias in each of the evaluated models, this also brings 
the methodology in combining these datasets (lacking in specifics) into question. For example, 
what was the distribution of principal components before and after normalization, SVA 
adjustment etc..? The reported predictive performances (AUROC and AUPRC) have 
predominantly low AUCs, very broad confidence margins and were not found to possess 
independent prognostic value as compared to clinically-derived scores.  

The Reviewer has correctly pointed out that there were few genes chosen in common between the 

https://paperpile.com/c/CJoxDr/XJvD


models. However, the point about combining datasets is a red herring. Only the Sage models (LR/RF) 
were SVA-normalized during the discovery phase, and none of the methods used pooled normalization 
methods that would allow for cross-dataset PCA. Instead, in each case, models were jointly optimized 
across a number of disparate datasets. In order to clarify this, we have modified the methods to reflect 
these changes. 

The Reviewer writes that identifying a small number of genes in common is a major concern, but 
without justification. Many genes are highly correlated; it is thus the case that disparate modelling 
techniques that are seeking sparse classification models may choose nearly randomly in removing genes 
that are highly correlated (e.g., lasso regression, Tibshirani, JRSSB, 1996). Moreover, using highly 
disparate methodologies of classification was a way of sampling the possible classifier space, but 
certainly made more likely the possibility of finding disparate models. The advantage of our model is 
that we provide evidence that the classification power demonstrated by the 4 models in our manuscript 
is likely at or near the upper bound of the possible discriminatory power available. We thus argue that 
finding a large number of disparate models with similar discriminatory power should be reassuring, not 
seen as a weakness, since it is evidence that another group is unlikely to substantially outperform our 
results merely by selecting some different genes or a different method. We have added this to the 
discussion: 

“Finally, we note that some may find as a weakness the limited overlap in genes chosen by the 
four models. However, in the search for sparse models using highly collinear data such as gene 
expression, near-random selection of variables can occur. The similar performance of the classifiers 
using disparate gene sets is thus further evidence that these models may be near an upper bound of 
discriminatory model for whole-blood gene expression data.” 

The comment regarding predictive performance will be answered in the Reviewer’s point below. 
 
(2) The authors went on to reportedly combine gene expression (molecular) and clinical scores 
into a joint mortality prediction model. Again, specifics in methodology is lacking with only a 
reported probability as result. What were the AUROC and confidence intervals of the clinical 
scores in isolation? The supposed improvement over clinical scores alone in mortality prediction 
may be based on an analysis that is not a level playing field, in that for example APACHE II scores 
were not built on these datasets. A customized clinical risk prediction model may have performed 
better, and the improvement in prediction may have been more modest.  

The AUROCs of the clinical scores in isolation are reported in the second column of Supplementary Table 
5. These have been broken into Discovery and Validation subgroups for exactly this reason; the ‘fairest’ 
comparison is the Validation and HAI groups. We concur that customized clinical risk predictors may 
have better accuracy for that specific cohort than general clinical scores such as APACHE II. However, a 
score customized for each cohort is by definition not generalized and is unlikely to serve as a useful 
clinical tool. Regarding improvements in prediction, please see our answers to Reviewer 1 that discuss 
NRI.  

 
(3) Insufficient detail is included in the manuscript to describe combining publicly available 
datasets from different platforms, predictive performances considering molecular and clinical 
models as well as pathway analyses. Can the authors please include more information?  

The Supplemental Information contains substantial explanation of how the methods were carried out. 
While we agree that moving these data to the main text would enhance readability, we are limited by 
word limits. If the Reviewer has specific methods that were not addressed in our revisions, we would be 
happy to expand on those specifically. Furthermore, the online methods have been significantly 
expanded.  

 



(4) In their pathway analysis, why have the authors chosen for targeted enrichment analysis for 
cell types using data from reference 38? In silico deconvolution of gene expression to specific 
peripheral blood cell types has been applied many times using data from benchmark studies, for 
example Abbas etal 2009, and more recently Newman etal 2015? Have the authors considered 
other pathway analysis suites such as ingenuity and/or GSEA? These represent highly curated 
databases and it is unclear to this reviewer why the authors adopted the approach reported in 
their study. 

Our approach takes a small number of genes and tries to determine whether their differential 
expression may be due to cell type shifts. In contrast, cellular deconvolution as described by Abbas et al 
or Newman et al is a different approach which takes as input an entire gene expression vector and tries 
to determine the relative presence of all cell types. Deconvolution in this manner would be infeasible for 
two reasons: first, we would get sample-level or dataset-level outputs across all genes present, instead 
of learning interesting biology about our particular genes under study. Second, both described methods 
are heavily influenced by technical effects in their basis matrices, such that their accuracy falls 
substantially outside of Affymetrix arrays (we have shown this in yet-unpublished data). Thus, the 
application of these methods would be impossible across datasets. By contrast, by looking at relative 
differences, we eliminate platform effects, making the present method appropriately suited to the task 
at hand.  

 
(5) In their comparison to severity scores have the authors assessed all scores in their joint 
model, that is, APACHE II, PELOD, PRISM, SAPS II, SOFA, and the Denver scores? Where they 
evaluated independently? The authors should provide more extensive data and methodology to 
support their claim that “the gene expression-based predictors add significant prognostic utility 
to standard clinical metrics”. Simply reporting a probability is not sufficient. 

We only had one score (APACHE II, PRISM, etc.) per dataset. Each score was evaluated both alone and in 
combination with the gene score (Supplementary Table 5). In no cohorts did we have sample-level data 
for two scores, so we could not, as the reviewer suggests, form a joint model of, e.g., SOFA + APACHE II + 
gene score (we have added this statement to the methods). In terms of reporting methods, they have 
been modified to read …  

“We further calculated continuous net reclassification scores for the joint model over clinical 
severity scores alone. Finally, we calculated test characteristics at both a high-sensitivity cutoff and a 
high-specificity cutoff, for both clinical scores and gene scores separately, and for the joint clinical-gene 
models. These are reported as mean +/- standard deviation across datasets in summary tables.”  
Please see our responses to Reviewer 1 regarding the addition of NRI statistics.  

 
(6) Line 410, please correct the reference citation style to the journal requirements 

We thank the reviewer for catching this error; it has been corrected. 
 
 



Reviewers' comments:  

 

Reviewer #2 (Remarks to the Author):  

 

The authors did an excellent job of responding to my concerns in the earlier critique. I have only a 

few minor concerns remaining. The authors use the cNRI measure to evaluate how much gene 

expression can improve classification. I was not familiar with this particular statistic, and it was 

surprisingly difficult to find information about it via an Internet search. I imagine other readers 

may be unfamiliar with this statistic, so some additional context and explanation would be helpful. 

Also, it appears that different sources define this measure differently. (In the first article I found, 

the cNRI can range between -2 and 2, whereas the others appear to use a different version that 

ranges only between 0 and 2.)  

 

I recommend that the authors add a few sentence to the Methods explaining (in general terms) 

how this statistic is calculated and how it should be interpreted. They should also either provide a 

citation to a more detailed description of the statistic or provide such a description in the 

Supplementary Information.  

 

Second, I am grateful to the authors for quantifying the improvement that results from 

incorporating gene expression into the predictive models. However, I would like to see some 

additional discussion of the significance of these findings. Do the results suggest that gene 

expression can produce a big enough increase in predictive accuracy to justify using it in the clinic? 

Or is the improvement too small? If it is too small to be clinically useful, are there other reasons 

the findings are important? Perhaps they provide some insight into the underlying etiology of 

sepsis? The paper could be strengthened by discussing the significance/implications of the results 

in more detail.  

 

 

Reviewer #3 (Remarks to the Author):  

 

Response to authors’ rebuttal:  

 

On comment 1:  

The authors have now included further methodological details in the supplement as suggested. 

However, the lack of overlap between models remains a major concern and major limitation to the 

study (certainly not only to some). No attempt was made to provide objective arguments and 

interpretations on their study design as well as analysis other than a certain degree of circular 

logic. Sure, multicollinearity is a notorious problem in the analysis of high-dimensional data that 

undoubtedly influences parameter estimation due to inflation of variance in regression parameters. 

It becomes a severe problem in disparate analysis when a model is trained on a first set of 

selected studies, and evaluated in another set of selected studies of unknown collinearity 

structure. The motivation to dismiss as “red herring” the concepts in combining blood genomic 

datasets for proper meta-analysis of gene expression data in sepsis, which would have allowed for 

better handling of the differing collinearity structures across different datasets, is unclear and quite 

subjective. If one considers the authors’ stance on the lack of overlap between models, then what 

is the difference between this study and simply combining previously derived and published gene 

expression markers for possible prognosis, for example genes and/or gene sets from Wong HR etal 

Physiol Genomics. 2007;30:146–155 and Dolinay T etal. Am J Respir Crit Care Med. 

2012;185:1225–1234 and Tsalik EL etal. Genome Med. 2014;6:111 and Almansa R etal. J Infect. 

2015;70:445–456 and Scicluna BP etal. Am J Respir Crit Care Med. 2015 Oct 1;192(7):826-35, 

into one predictive model? Not much. Ultimately, the authors do not provide a potential predictive 

tool as they sought, but rather showed that by analyzing blood genomic data derived from 

different studies and analyzed in disparate fashion, using different statistical models and their 

unaddressed baggage of assumptions on the same discovery/validation sets, revealed substantial 

discrepencies between models that did not outperform other candidate prognostic biomarkers such 



as pro-adrenomedullin. The authors should be more clear about these points in their discussion 

and conclusion.  

 

On comment 2:  

The authors have addressed the comment  

 

On comment 3:  

The authors have addressed the comment  

 

On comment 4:  

The authors have not addressed a question on the their pathway analysis methods. Why haven’t 

the authors considered using highly curated databases for pathway analysis such as GSEA or 

Ingenuity? The authors should at the least provide pathway enrichment results based on these 

databases.  

 

On comment 5:  

The authors have addressed the comment  



Reviewer #2 (Remarks to the Author): 

 

The authors did an excellent job of responding to my concerns in the earlier critique. I 

have only a few minor concerns remaining. The authors use the cNRI measure to 

evaluate how much gene expression can improve classification. I was not familiar with 

this particular statistic, and it was surprisingly difficult to find information about it via 

an Internet search. I imagine other readers may be unfamiliar with this statistic, so some 

additional context and explanation would be helpful. Also, it appears that different 

sources define this measure differently. (In the first article I found, the cNRI can range 

between -2 and 2, whereas the others appear to use a different version that ranges only 

between 0 and 2.) 

I recommend that the authors add a few sentence to the Methods explaining (in general 

terms) how this statistic is calculated and how it should be interpreted. They should also 

either provide a citation to a more detailed description of the statistic or provide such a 

description in the Supplementary Information. 

Our apologies for not having provided a reference to the cNRI score; this has been added to the 

methods (Pencina et al. Stat Med 2011, PMID: 21204120). The Methods have also been updated 

to read: “The continuous NRI is the sum of two scores: the improvement in classification of a 

positive event (here, mortality) by the tested model, plus the improvement in classification of a 

negative event (here, survival) by the tested model. Each improvement has a possible range of [-

1,1], so the full cNRI has a possible range of [-2,2]. A score of -2 would mean that every 

prediction is made worse by the addition of the tested model; a score of 2 means that every 

prediction is made more accurate by the addition of the tested model.” 

 

Second, I am grateful to the authors for quantifying the improvement that results from 

incorporating gene expression into the predictive models. However, I would like to see 

some additional discussion of the significance of these findings. Do the results suggest 

that gene expression can produce a big enough increase in predictive accuracy to justify 

using it in the clinic? Or is the improvement too small? If it is too small to be clinically 

useful, are there other reasons the findings are important? Perhaps they provide some 

insight into the underlying etiology of sepsis? The paper could be strengthened by 

discussing the significance/implications of the results in more detail. 

The discussion has been updated to read, “The impact of the addition of the severity score to 

clinical practice could be substantial. If envisioned as a rule-out test for mortality (e.g. setting the 

threshold at a 95% sensitivity), the Duke and Stanford scores showed large increases in 

specificity (13-21 percentage point absolute increase) compared with standard clinical severity 

scores alone.”  

 

In terms of etiology, as we write in the discussion, “The goal of this study was to generate 

predictive models but not necessarily to define sepsis pathophysiology. However, our 

community approach identified a large number of genes associated with sepsis mortality that 

may point to underlying biology. The association with immature neutrophils and inflammation in 

sepsis has been previously shown
1
. Results of this study confirm this finding as we note 

increases in the neutrophil chemoattractant IL-8 as well as neutrophil-related antimicrobial 

proteins (DEFA4, BPI, CTSG, MPO). These azurophilic granule proteases may indicate the 

presence of very immature neutrophils (metamyelocytes) in the blood
2
. Many of these genes 

https://paperpile.com/c/x2qHqf/EmTH5
https://paperpile.com/c/x2qHqf/nTvMy


have also been noted in the activation of neutrophil extracellular traps (NETs)
3,4

. NET activation 

leads to NETosis, a form of neutrophil cell death that can harm the host
4
. Whether these involved 

genes are themselves harmful or are markers of a broader pathway is unknown.” The addition of 

the extra GSEA based pathway analysis requested by Reviewer 3 has showed enrichment for 

additional infectious diseases and inflammation related pathways along with the enrichment for 

cell cycle and neurogenesis pathways in our pooled genesets. 

 

Reviewer #3 (Remarks to the Author): 

On comment 1:  

The authors have now included further methodological details in the supplement as 

suggested. However, the lack of overlap between models remains a major concern and 

major limitation to the study (certainly not only to some). No attempt was made to 

provide objective arguments and interpretations on their study design as well as analysis 

other than a certain degree of circular logic. Sure, multicollinearity is a notorious 

problem in the analysis of high-dimensional data that undoubtedly influences parameter 

estimation due to inflation of variance in regression parameters. It becomes a severe 

problem in disparate analysis when a model is trained on a first set of selected studies, 

and evaluated in another set of selected studies of unknown collinearity structure. The 

motivation to dismiss as “red herring” the concepts in combining blood genomic datasets 

for proper meta-analysis of gene expression data in sepsis, which would have allowed for 

better handling of the differing collinearity structures across different datasets, is unclear 

and quite subjective. If one considers the authors’ stance on the lack of overlap between 

models, then what is the difference between this study and simply combining previously 

derived and published gene expression markers for possible prognosis, for example genes 

and/or gene sets from Wong HR etal Physiol Genomics. 2007;30:146–155 and Dolinay T 

etal. Am J Respir Crit Care Med. 2012;185:1225–1234 and Tsalik EL etal. Genome Med. 

2014;6:111 and Almansa R etal. J Infect. 2015;70:445–456 and Scicluna BP etal. Am J 

Respir Crit Care Med. 2015 Oct 1;192(7):826-35, into one predictive model? Not much. 

Ultimately, the authors do not provide a potential predictive tool as they sought, but 

rather showed that by analyzing blood genomic data derived from different studies and 

analyzed in disparate fashion, using different statistical models and their unaddressed 

baggage of assumptions on the same discovery/validation sets, revealed substantial 

discrepencies between models that did not outperform other candidate prognostic 

biomarkers such as pro-adrenomedullin. The authors should be more clear about these 

points in their discussion and conclusion. 

The reviewer has raised several points. First, we did not dismiss the idea of meta-analysis; in 

fact, we performed meta-analysis as a variable selection method in both the Sage and Stanford 

data pipelines (see Supplemental Method pages 6-8 and Supplemental Figures 2-3).  Second, 

there are several key differences between this paper and prior papers which have examined gene 

expression in severity/mortality in sepsis, namely: (1) we built prognostic models, instead of just 

listing genes associated with mortality, unlike most (but not all) papers; (2) we extensively 

validated our findings in nine external validation cohorts; and (3) instead of using a single 

analysis methodology, as is traditionally done in biomedical research, we have broadly sampled 

the possible solution space, suggesting a rough upper bound on performance independent of a 

specific analytic framework.  

https://paperpile.com/c/x2qHqf/RrWPu+MN2Mt
https://paperpile.com/c/x2qHqf/MN2Mt


The Reviewer suggests that we combine all genes from prior papers that have examined 

sepsis mortality. Notably, several of the studies the reviewer suggested do not examine sepsis 

mortality, but compare sepsis to non-infectious inflammation; these have been excluded. The list 

of references that examine gene expression in sepsis severity or mortality is below. The 

Supplemental Methods now reads: 

“In order to contrast the present findings with prior published results, we searched for all 

papers that examined transcriptome-wide changes in sepsis associated with increasing severity or 

mortality. In each of these papers, genes were classified as ‘over-expressed’ or ‘under-expressed’ 

in association with increasing severity. We took the union of all these differentially expressed 

genes as inputs, and took the difference of geometric means of these two sets to make a single 

score. We then measured the AUROC for prediction of mortality using this composite score, and 

compared to the present scores. To compare this level of performance to the four current models, 

we used matched t-tests, as well as calculating the mean difference in AUROCs. We did this in 

the validation cohorts only to prevent bias.” 
The Results now read: 

“Using the validation and HAI cohorts, we compared the present models to a single 

prognostic model made with all genes previously associated with mortality (see Supplemental 

Methods). We found that that 3 of the 4 models show substantial improvement (average increase 

of roughly 0.1) compared to the prior models; this reached significance (p<0.05) for the Duke 

and Stanford models (Supplementary Table 3).” 

Supplementary Table 3 has been added: 

“We found a total of 119 over-expressed and 1,164 under-expressed unique genes previously 

associated with mortality, which we assessed for prognostic accuracy in the validation datasets. 

We then compared the results to the output from the four models using paired t-tests.”  

 

Dataset 
AUROC of combined 

1,273 genes 

EMTAB4421 0.581 

GSE21802 0.679 

GSE 33341 0.969 

GSE 54514 0.761 

GSE 63990 0.68 

  

Duke HAI 0.83 

Glue Burns D1-D30 0.417 

Glue Trauma D1-D30 0.958 

UF P50 12H 0.624 

 

 Duke Sage LR Sage RF Stanford 

mean 

difference 
0.108 0.092 -0.052 0.117 

P value 0.046 0.059 0.595 0.014 

 

Perhaps more importantly, the present gene sets could actually be translated into clinical 

practice. The smallest gene set (Stanford, 12 genes) could be run on existing equipment in a 



reasonable turnaround time. There is no comparable platform that could measure 1283 genes in a 

short timeframe. Thus, in addition to superior prognostic power, the present gene sets are capable 

of making an actual clinical impact.  

Finally, the reviewer brings up pro-adrenomedullin. As we note in the discussion, “The 

derived discriminatory power of the gene models (AUCs near 0.85) are at least similar to the 

AUC of proadrenomedullin (0.83) in a recent large prospective trial (TRIAGE study).” Although 

we do not provide a head-to-head comparison of the given gene sets to pro-ADM, an AUROC of 

~0.87-0.89 in validation datasets is well within keeping of this well-studied, but still 

experimental, biomarker. To our knowledge, no sepsis guideline includes pro-ADM, and it has 

not been FDA cleared. On the other hand, the results of both pro-ADM and the gene expression 

biomarkers look quite promising; perhaps eventually they will be additively prognostic. Only 

further study will tell. 

 

References for papers examining gene expression in sepsis severity and mortality: 

1 Pachot, A. et al. Systemic transcriptional analysis in survivor and non-survivor septic 

shock patients: a preliminary study. Immunol Lett 106, 63-71, doi:10.1016/j.imlet.2006.04.010 

(2006). 

2 Wong, H. R. et al. Genome-level expression profiles in pediatric septic shock indicate a 

role for altered zinc homeostasis in poor outcome. Physiol Genomics 30, 146-155, 

doi:10.1152/physiolgenomics.00024.2007 (2007). 

3 Parnell, G. P. et al. Identifying key regulatory genes in the whole blood of septic patients 

to monitor underlying immune dysfunctions. Shock 40, 166-174, 

doi:10.1097/SHK.0b013e31829ee604 (2013). 

4 Almansa, R. et al. Transcriptomic correlates of organ failure extent in sepsis. J Infect 70, 

445-456, doi:10.1016/j.jinf.2014.12.010 (2015). 

5 Tsalik, E. L. et al. An integrated transcriptome and expressed variant analysis of sepsis 

survival and death. Genome Med 6, 111, doi:10.1186/s13073-014-0111-5 (2014). 

6 Bauer, P. R. et al. Diagnostic accuracy and clinical relevance of an inflammatory 

biomarker panel for sepsis in adult critically ill patients. Diagn Microbiol Infect Dis 84, 175-180, 

doi:10.1016/j.diagmicrobio.2015.10.003 (2016). 

 

On comment 2: 

The authors have addressed the comment 

 

On comment 3: 

The authors have addressed the comment 

 

On comment 4: 

The authors have not addressed a question on the their pathway analysis methods. Why 

haven’t the authors considered using highly curated databases for pathway analysis such 

as GSEA or Ingenuity? The authors should at the least provide pathway enrichment 

results based on these databases. 

As per reviewer's suggestion we expanded our analyses to include KEGG along with GO and 

Reactome. Also, to overcome some of the pitfalls of gene-based over-representation analysis, we 

performed an expression-based enrichment analysis (GSEA) using the pooled 58 gene sets from 



all four models. The main text and the supplementary Table 12 were modified to reflect these 

changes. The Results were heavily modified, and the section now reads:  

“We next tested the 58 genes for enrichment in curated gene sets from gene ontologies, 

Reactome and KEGG pathways using two different enrichment methodologies: gene-based over-

representation analysis and expression-based GSEA. After multiple hypothesis testing 

corrections, 4 out of 3330 gene sets tested were significantly over-represented at an FDR of 5% 

(Supplementary Table 12a). These include genes related to the regulation of T cell activation and 

proliferation, cytokine-mediated signaling pathway and RHO GTPases activation of CIT. The 

relatively low number of pathways enriched in over-representation analysis may be due to the 

low number of genes in the predictor set. Enrichment of 58 gene predictors’ expression were also 

tested using GSEA. 546 out of 1576 curated pathways were enriched at an FDR of 5%; top 

pathways are shown in Supplementary Table 12b. A brief examination of enriched pathways 

activated in non-survivors showed mostly inflammation-related pathways, while survivors 

showed largely developmental pathways. Since the models were generated in a way that 

penalized the inclusion of genes that were redundant for classification purposes, and since genes 

redundant for classification purposes are often from the same biological pathway, their exclusion 

from the models limits the utility of enrichment analyses.”  

 

Due to the proprietary nature of IPA, this method was not utilized.  

 

 



REVIEWERS' COMMENTS:  

 

Reviewer #3 (Remarks to the Author):  

 

The authors did a good job in responding to my comments. I have no further suggestions that 

might improve the manuscript.  



Reviewer #3 (Remarks to the Author): 

The authors did a good job in responding to my comments. I have no further suggestions that might 

improve the manuscript.  

No response required. We are pleased with the review process. 
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