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SUMMARY

Chemical probes are essential tools for understand-
ing biological systems and for target validation, yet
selecting probes for biomedical research is rarely
based on objective assessment of all potential com-
pounds. Here, we describe the Probe Miner:
Chemical Probes Objective Assessment resource,
capitalizing on the plethora of public medicinal
chemistry data to empower quantitative, objective,
data-driven evaluation of chemical probes. We
assess >1.8 million compounds for their suitability
as chemical tools against 2,220 human targets and
dissect the biases and limitations encountered.
Probe Miner represents a valuable resource to aid
the identification of potential chemical probes,
particularly when used alongside expert curation.

INTRODUCTION

Small-molecule chemical probes are important tools for

exploring biological mechanisms and play a key role in target

validation (Blagg and Workman, 2017; Bunnage et al., 2013;

Frye, 2010; Workman and Collins, 2010). However, selection of

chemical probes is largely subjective and prone to historical

and commercial biases (Arrowsmith et al., 2015; Workman and

Collins, 2010). Despite many publications discussing the

properties of chemical probes and the proposal of ‘‘fitness

factors’’ to be considered when assessing chemical tools, scien-

tists commonly select probes through web-based searches or

previous literature sources that are heavily biased toward older

and often flawed probes, or use vendor catalogs that do not

discriminate between probes (Arrowsmith et al., 2015; Blagg

and Workman, 2017; Workman and Collins, 2010).

The Chemical Probes Portal (Arrowsmith et al., 2015; http://

www.chemicalprobes.org) has been launched as a public,

non-profit, expert-driven chemical probe recommendation

platform, and this emerging resource is already contributing to

improved chemical probe selection (Blagg and Workman,

2017). However, expert curation, by definition, can be limited

in its coverage and would benefit from a complementary,

frequently updated, systematic, data-driven, objective, and
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comprehensive approach that enables researchers to keep

track of the fast-moving advances in chemical biology-relevant

data at a scale difficult to reach with expert curation, allowing

unbiased comparison of the quality of large numbers of probes.

Recently, a scoring system to prioritize chemical tools for

phenotypic screening based on expert weighting of public

and highly curated private databases was described (Wang

et al., 2016). However, such resources are not available to the

majority of translational researchers. A public resource that

democratizes comprehensive data-driven chemical probe

assessment is still lacking andwould greatly contribute to target

validation and mechanistic studies performed outside industry.

Here, we analyze at scale the scope and quality of published

bioactive molecules and uncover large biases and limitations

of chemical tools and their representation in public databases.

We provide the online Probe Miner: Chemical Probes Objective

Assessment resource where we integrate large-scale public

data to enable objective, quantitative, and systematic assess-

ment of chemical probes.

RESULTS

Probing the Liganded Proteome Using Public Databases
An ambitious early grand challenge of chemical biology was to

identify a chemical tool for each human protein (Schreiber,

2005; Workman and Collins, 2010). To assess the level of prog-

ress toward meeting this challenge, we first defined the set of

20,171 curated, validated human proteins in Uniprot (TheUniprot

Consortium, 2017). We then utilized the canSAR knowledgebase

integration (Tym et al., 2016; http://cansar.icr.ac.uk) of major,

curated, public medicinal chemistry data (including ChEMBL

and BindingDB, see STAR Methods) to determine the fraction

of these proteins that are known to interact with small-molecule

compounds (The Uniprot Consortium, 2017; Tym et al., 2016).

We find that only 11% (2,220 proteins) of the human proteome

has been liganded (Figure 1A). This percentage is still very low

even if we compare it with the 22%–40% of the proteome that

is estimated to be potentially druggable (Figure 1A; Bulusu

et al., 2014; Finan et al., 2017; Tym et al., 2016).

To be effective tools for mechanistic biological experiments

and target validation, chemical probes must satisfy at least

some basic criteria for the key properties (fitness factors) of po-

tency, selectivity, and permeability (Workman and Collins, 2010).

To assess how many of the compounds available in public data-

bases would be useful in this context, we establish key minimal
e Authors. Published by Elsevier Ltd.
commons.org/licenses/by/4.0/).
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Figure 1. Global Analysis of Chemical

Probes as Described in Public Databases

Uncovers Major Limitations and Biases

(A) Infographic showing a human silhouette

representing the human proteome and areas indi-

cating: the proportion of the proteome estimated

to be druggable but currently unliganded (green;

Finan et al., 2017; Tym et al., 2016); the proportion

found to have been already liganded (purple; see

STAR Methods); and the proportion that can be

studied currently with chemical tools fulfilling

minimum requirements of potency, selectivity, and

permeability (red; see STAR Methods).

(B) Venn diagram illustrating the proportion of the

2,220 liganded human protein targets that can be

studied with chemical tools fulfilling minimum re-

quirementsof potency, selectivity, and permeability.

(C) Venn diagram illustrating the number of chemi-

cal compounds fulfilling minimum requirements of

potency, selectivity, and permeability.

(D) Top 50 targets with the largest number of

compounds fulfilling minimum requirements of

potency, selectivity, and permeability.

(E) Compound selectivity per number of targets

tested uncovers a very reduced exploration of

compound selectivity.

See also Figures S1 and S2.
criteria that should be satisfied: (1) potency: 100 nM or better

on-target biochemical activity or binding potency; (2) selectivity:

at least 10-fold selectivity against other tested targets; and

(3) permeability: as no large-scale experimental measures of

permeability are available, we use reported activity in cells (inde-

pendent of the target and wherever available in our sources) as a

proxy and set a minimum concentration requirement of 10 mM

(see STAR Methods). It is important to stress that these three

minimal requirement levels do not guarantee that a chemical

tool would be suitable for biological investigation, but all suitable

tools should in principle meet these basic requirements.

From the >1.8 million total compounds (TC) available in public

databases, we find that only 355,305 human active compounds

(HAC) have some acceptable level of biochemical activity

(<10 mM; see STAR Methods) reported against a human protein.

Of these, 189,736 (10.5% TC, 53% HAC) have measured

biochemical activity or binding potency of 100 nM or better.

However, when considering selectivity, we find that only

93,930 compounds have reported binding or activity measure-

ments against two or more targets. Of these, only 48,086

(2.7% TC, 14% HAC) satisfy both our minimal potency and
Cell Chemical B
selectivity criteria (Figure 1C). Thus,

exploration of compound selectivity in

the medicinal chemistry literature

appears alarmingly limited (Figure 1E).

Moreover, we find that the compounds

that satisfy our minimal potency and

selectivity criteria allow the research com-

munity to probe only 795 human proteins

(4% of the human proteome) and at best

18% of the estimated druggable prote-

ome (Figures 1A–1C). Finally, when addi-
tionally considering cellular potency of 10 mM or better, we find

that the number ofminimal quality probes is reduced even further

to 2,558 (0.7% HAC). Under these combined criteria, based on

the information available in public medicinal chemistry data-

bases, compounds fulfilling minimum requirements would allow

the research community to probe with real confidence only 250

human proteins (Figure 1B). This represents an unacceptably

low percentage (1.2%) of the human proteome.

The amount of information available for a given protein target

will clearly have an impact on any statistical analysis of its

corresponding chemical tools. To assess the role of differing

levels of experimental characterization, we define the ‘‘Informa-

tion Richness’’ as follows: for each target, A, we collect all small

molecules (C) shown to be active against this target. For each

compound, we then count the number of targets (T) against

which it has been tested, regardless of activity level. Thus, the

Information Richness, IRA =
PC= n

C= 1T (see STAR Methods for

details).

As expected, we find large biases in the amount of data in

public medicinal chemistry databases available for different pro-

tein targets. We also observe a wide range in the number of
iology 25, 194–205, February 15, 2018 195



compounds fulfilling our minimum criteria across all the protein

targets (0–204; Figure 1D). For example, some targets have

many well-characterized compounds, several of which fulfill

our minimum criteria; e.g., the metalloprotease ADAM17 has

1,433 active compounds of which 31 satisfy our minimal criteria.

Other protein targets have large numbers of compounds with

differing degrees of characterization, yet few, if any, satisfy our

minimal criteria; e.g., JAK1 has 1,560 active compounds, none

of which satisfy our minimal criteria with the data available

(Figures 1D and S1).

Several factors could influence the observed biases, for

example, the availability of selective probes varies significantly

across the analyzed protein targets (0–896 selective com-

pounds). The identification of selective probes may be simpler

for some targets that have distinctive binding sites (e.g., PPARg)

and difficult for others that share closely similar binding sites with

numerous family members (e.g., ABL1). Increasing the public

availability of large-scale panel screens for many compounds

against many targets will certainly help expand the information

matrix required to identify good quality probes. Indeed, half of

the 50 protein targets with the greatest number of minimum-

quality probes are kinases, which frequently benefit from broad

kinome selectivity screens and researchers’ and peer reviewers’

awareness that selectivity is a critical issue in this target class

(Figure 1D). However, this brute-force selectivity profiling

approach alone is insufficient. Overall, we find poor correlation

(R2 = 0.1) between the number of reported experimental mea-

surements and the number of minimum-quality probes (Fig-

ure S1). This finding indicates that our community needs to be

smarter in designing and testing compounds, for example, opti-

mizing ligand efficiency for probes based on both molecular

weight and lipophilicity may inherently improve selectivity

(Hopkins et al., 2014), in addition to increasing the throughput

of data generation.

Probing Disease Genes
Our systematic approach allows us to investigate, more globally,

how well existing chemical tools equip us to probe mechanisti-

cally the function of disease genes, which is particularly impor-

tant for therapeutic target validation. As an exemplar, we analyze

data for a set of 188 cancer driver genes (CDG) with activating

genetic alterations (Rubio-Perez et al., 2015) and examine the

availability of minimal quality chemical probes for these drivers.

We find that 73 (39% CDG) have already been liganded, and of

these 25 (13% CDG) have chemical tools in public databases

fulfilling minimum requirements of potency, selectivity, and

permeability (Table S1, Figure S2). This is a significantly higher

fraction than we find across the proteome as a whole (1.2% as

described earlier; Figure 1B). The reason for this elevated frac-

tion is that the CDGs contain many long-established disease

genes that have been heavily investigated for chemical ligands.

Nevertheless, 87% of CDG do not have a minimum-quality

chemical tool (Table S1). Moreover, the vast majority of chemical

tools concentrate on relatively few protein targets, further

demonstrating the documented trend to focus research efforts

in areas of science that are already well studied (Table S1,

Figure S2; Edwards et al., 2011; Fedorov et al., 2010). This anal-

ysis further uncovers a severe lack of chemical probe availability

and significant bias where tools are available.
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Objective Assessment of Chemical Probes
Given the biases and limitations discussed above, it is imperative

that researchers can comprehensively access all the data pub-

licly available to facilitate objective and data-driven analysis.

Importantly, this will help enable them to select the best charac-

terized chemical probes available for their protein target of inter-

est, and also allow them to understand probe liabilities and lim-

itations at the outset. To this end, we describe a scoring metric

that utilizes >3.9 million bioactivity data points publicly available

in canSAR (Tym et al., 2016) to enable rational prioritization of

chemical probes.

To create a metric that allows objective, data-driven ranking of

all compounds tested for a particular protein target, we developed

a set of six scores mirroring our previously described fitness fac-

tors (Workman and Collins, 2010). Namely, Potency Score, Selec-

tivity Score, Cell Score, Structure-Activity Relationship (SAR)

Score, Inactive Analog Score, and PAINS Score (see STAR

Methods; Figure S3). For ease of use, we predefine a default

weighting of these scores, which emphasizes the importance of

potencyandselectivity (seeSTARMethods).However, inaddition,

we also provide the facility for researchers to adapt and customize

theweights tosuit their ownquestions,expertise,andpreferences.

Using our default scoring scheme allows us to highlight

compounds that make good candidates for chemical probes

and defines their key limitations. For example, we assessed

1,346 compounds for the class I phosphatidylinositol 3-kinase

(PI3K), PIK3CB. The five highest-ranking probes include the

clinical candidate pictilisib or GDC-0941 (top rank; Folkes

et al., 2008) and the frequently used probe PI-103 (second

ranked; Raynaud et al., 2007; Figure 2), both of which have

been widely profiled in large kinome panels. However, our

assessment shows that both these compounds have certain

selectivity liabilities due to cross-PI3K activity (Figure 2). The

PIK3CB/PIK3CD inhibitor AZD-6482 ranks tenth (Figure 2), due

to its partial PI3K selectivity toward PIK3CA and PIK3G (Andrs

et al., 2015), and most other PIK3CB-selective chemical series

are also represented among the top scoring probes (Andrs

et al., 2015). It is worth highlighting that Probe Miner can also

be useful in disincentivizing the use of low-quality or flawed

chemical probes that continue to pollute the chemical biology

literature (Arrowsmith et al., 2015). An example is LY294002,

which is still widely used as a chemical tool inhibitor for PI3K

despite the fact that its weak potency and lack of selectivity

have been widely communicated in reviews (Arrowsmith et al.,

2015; Blagg and Workman, 2014). LY294002 ranks as 63rd for

PIK3CB in Probe Miner, and we hope that its low ranking by

objective assessment will further discourage the use of this

historical but promiscuous compound as a probe for PI3Ks.

Furthermore, our systematic assessment of potential PIK3CB

probes additionally highlights another set of interesting

compounds with properties exemplified by canSAR1019166

(Sanchez et al., 2012). This ranks third using our default scoring

(Figure 2) and is both potent and, unlike pictilisib and PI-103,

more selective for PIK3CB versus other PI3K proteins. Since

no reports of screening canSAR1019166 against wider kinase

panels are in the public domain as yet, other selectivity liabilities

may emerge in future. In addition, this compound may not be

readily available commercially. There are also potentially impor-

tant compounds whose broader biochemical characterization is



Figure 2. Chemical Probe Cards for Highest-Ranked PIK3CB Compounds in ProbeMiner, Comprising the Chemical Structure and the Radar

Plot with the Corresponding Chemical Probe Scores

Where probes have also been curated by the Chemical Probes Portal, their expert review star rating is also displayed. Moreover, when a compound is not 10-fold

selective against another protein, a danger icon (red triangle) is shown to alert the researcher that there might be selectivity liabilities when using those com-

pounds as PIK3B chemical probes.
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not captured in public medicinal chemistry databases, and it

is thus not possible to appropriately assess them using our

unbiased approach. For example, this is the case for the

PIK3CB-selective clinical candidate GSK-2636771 (Andrs

et al., 2015; Mateo et al., 2017), which is currently not highly

ranked in our resource.

Probe Miner: a Public Resource for Objective
Assessment of Probes
To empower the community to utilize the data-driven approach,

we have created ProbeMiner and havemade it publicly available

(http://probeminer.icr.ac.uk; Figure 3). This is a user-friendly,

interactive web-based resource that allows researchers access

to the probe data and probe rankings for the selected protein

target, as well as full customization of the scoring criteria and

the ability to deep-dive into the data. We will maintain Probe

Miner and provide automatic updates following the release of

new versions of the public databases that are integrated to

ensure topicality.

Probe Miner is a target-centric, systematic probe assessment

resource. Accordingly, Probe Miner is designed to be searched

by target. After selection of the desired protein target, we provide

an interactive graphical overview page (Figure 3 and video tuto-

rial in Movie S1); note that Figure 3 shows the large-screen

version but the website automatically adapts to multiple devices

and screen sizes. The overview page comprises threemajor sec-

tions as follows: (A) Summaries of the data and statistical ana-

lyses using our algorithm, including colored icons (Table 1) that

provide immediate visual indication of the overall quality and

known or potential liabilities of compounds for the selected

target; (B) easy-to-navigate distribution of the 20 highest-ranking

probes, as well as tools to customize the scores, weights, and

ordering of probes; (C) a compound viewer interactively linked

to the distribution, which shows the chemical structure and key

information for the probe, as well as the values of the six score

components as a radar plot. As Probe Miner is intended to

complement expert curation in the Chemical Probes Portal, we

highlight the compounds in our resource that are also assessed

in the Portal and provide direct links to their individual pages at

the Portal site. Movie S1 provides a detailed tutorial on how to

navigate the resource.

It is important to stress that the selection of the ‘‘best’’ probes

must always be tailored to the scientific question under investi-

gation and, therefore, the final decision on which tools to select

must always be undertaken by the individual researcher.We pro-

vide our predefined default weightings for calculating the Global

Score, which usersmay prefer for speed and convenience. How-

ever, for researchers who wish to modify ranking criteria and

score components, we provide a ‘‘Settings’’ panel, which

enables advanced options (Figure 3D and Movie S1; see STAR

Methods). Here, researchers can set the weights of each of the

individual fitness factor scores that contribute to the overall

Global Score so that these can be adapted to individual user

needs. Through the Settings panel (Figure 3D), researchers can

also customize the display and also the ordering of probes

(e.g., according to potency or selectivity) as required.

From the ProbeMiner overview page for a given protein target,

researchers can navigate easily to individual probe pages

(Figure 3E and Movie S1). These synopsis pages provide details
198 Cell Chemical Biology 25, 194–205, February 15, 2018
of the chemical structure; physicochemical properties; and

cross-references to key public resources, including canSAR,

ChEMBL, BindingDB, the PDB, and Chemical Probes Portal;

as well as also indicating synonyms for probes and commercial

availability (Figure 3E and Movie S1). The raw data required to

generate the scores for the given probe are accessible here in

a tabular format, together with the radar plot displaying the

various scores (from 0 to 1 with 1 being the highest rating) in

addition to the compound’s Probe Miner rankings. The full pro-

tein activity profile (the reported activity of the compound against

all tested proteins as contained in canSAR) is also provided as a

bar plot displaying the median biochemical activities or binding

affinities on a logarithmic scale (e.g., pIC50 or pKd) for the com-

pound. This enables a quick and easy overview of the selectivity

of the compound for the target of interest.

To view all chemical probes for a given protein target, a

Chemical Probes Table page in Probe Miner provides tabular

access to all the assessed compounds for that target, together

with the complete corresponding raw data. This facilitates

filtering and allows full download of all the data to enable the

chemical biology community to further develop assessment

and prioritization methodologies (Movie S1).

The power of our Probe Miner resource is the objective,

systematic, regularly updated assessment that relies on

public medicinal chemistry databases. However, as illustrated

throughout our analysis, the inevitable limitations in data avail-

ability or curation can pose a significant challenge in some

cases. We believe that arming researchers with all the available

information and highlighting potential areas of error or bias is key

to empowering them to make the best-informed decisions.

Since selectivity is a particular concern with chemical probes

(Arrowsmith et al., 2015; Blagg and Workman, 2017), in order

to alert researchers to cases where this may be a problem, we

have incorporated a red triangular ‘‘danger’’ icon that warns

researchers when a chemical probe appears to fail the criterion

of 10-fold selectivity against another protein based on the data

available to the resource. The easy access we provide to the

full protein activity profile at the respective chemical probe

page enables a quick visual impression of the assessed selec-

tivity of each chemical tool for the target of interest (Movie S1)

while links to the expert-curated Chemical Probes Portal are pro-

vided to draw attention to probes recommended by experts.

Moreover, our objective assessment performed at scale in Probe

Miner can identify compounds that we rank as good potential

probe candidates, but which are not currently curated in the

Chemical Probes Portal so that they can be considered for eval-

uation at the Portal. We also highlight potential probes that are

not commercially available so that vendors can consider them

for inclusion in their catalogs.

To help address errors and inaccuracies in public databases,

we carry out continuous curation of the data underlying our

Probe Miner resource and have established an email address

(chemprobes@icr.ac.uk) through which we can be contacted

by any researcher who identifies such errors or inaccuracies

affecting the objective assessment of chemical probes. Even

high-quality public databases are not exempt from errors and

inaccuracies that are extremely challenging to identify and fix.

Data-driven approaches rely on the quality of the data they

use, and it is thus paramount that we as a community address

http://probeminer.icr.ac.uk
mailto:chemprobes@icr.ac.uk


Figure 3. Probe Miner Resource

Snapshot of the overview and chemical tool pages of the resource using the human PARP1 protein as an example.

(A) Summaries of the data and statistical analyses using our algorithm. Colored icons provide immediate visual indication of the overall quality and liabilities of

compounds for this target, and a link to the Chemical Probes Portal is provided when this target has expert-curated compounds in the Portal.

(B) Easy-to-navigate distribution of the 20 top-ranking probes.

(C) A compound viewer interactively linked to the distribution, which shows the chemical structure and key information for the probe, as well as the values of the

six score components as a radar plot. Compounds that are also expert-curated by the Chemical Probes Portal are highlighted in blue and links to the Portal are

also provided.

(D) Easy-to-navigate settings panel to enable customization of the Global Score, displays, and rankings.

(E) Individual chemical probe pages where detailed information is provided, including links to other resources, commercial availability, raw data to generate the

scores, and a target profile to provide an overview of compound selectivity. To learn more about how to use and navigate Probe Miner, we prepared a video

tutorial (See Movie S1).
the errors and inaccuracies in public databases in order to

maximize the benefit derived from them.

Comparing Probe Miner and the Chemical Probes
Portal: Complementary and Synergistic Resources
Using our predefined Global Score, we compare the top-ranked

chemical probes in Probe Miner with the expert-curated probes

available in the Chemical Probes Portal (Arrowsmith et al., 2015).
For this analysis, we focus on the selective probes that are

curated by the Chemical Probes Portal and that are assigned

to no more than two targets within the Portal (data collected on

February 6, 2017; see Figure 4 and STAR Methods). Of the 133

probes in theChemical Probes Portal on that date, 71were asso-

ciated with nomore than 2 targets and recommended by experts

(rating R3; see STAR Methods). We find that 46 of these 71

probes, corresponding to 45 targets, could be mapped to public
Cell Chemical Biology 25, 194–205, February 15, 2018 199



Table 1. Chemical Probe Score Icons

Icon Name Description Image

Target Selectivity Denoted by a histogram icon, it shows whether a compound inhibiting this

protein is screened against at least one other target and has at least 10-fold

selectivity against any other target

Target Potency Denoted by a test tube icon, it shows whether a compound inhibits this

target with at least 100 nM potency

Cell Potency Denoted by a cell, it shows whether a compound binding to the target of

interest is active in a cell line with at least 10 mM potency

Minimum Standard Denoted by a star, it is an aggregate of the three previous scores (which

themselves are independent from each other), indicating whether there are

compounds inhibiting this target with minimum standards of target potency

(pActivity R7), selectivity (at least one tested off-target and 10-fold selectivity

against off-targets) and cell potency (activity below 10 mM in at least one cell

line) simultaneously. It is a key icon showing whether a compound fulfilling

these minimum-quality requirements is found in publicly available databases

SAR Denoted by a benzene ring with an ‘R’ group, it indicates that there is at least one

compound binding to this target that has SAR as defined by the SAR Score

(see above)

Inactive Analog Denoted by a barred benzene ring, it indicates that there is at least one

inactive analog of the compound as defined by the Inactive Analog Score

(see above)

PAINS Denoted by a NON-PAINS icon, it shows that there is at least one compound inhibiting this

target that has no PAINS alerts as defined in the PAINS Score

The chemical probe scores have been adapted to a binary representation in order to facilitate a quick and intuitive evaluation of chemical probe quality.

Seven icons illustrate the six chemical probe scores and the minimum standard (see STAR Methods) and can be shown in color or in gray scale

depending on the chemical tool fulfilling the description criteria.
databases. Using ProbeMiner’s preset weightings for the Global

Score, 31 (67%) of the selected 46 Portal probes rank in the top

20 in Probe Miner, and 18 (39%) rank among the top 5 (Figure 4

and Table S2). Our analysis of the 15 expert-recommended

probes that fail to reach high rankings uncovers the incomplete-

ness of data available in public databases (often because the

probe was published in a non-indexed journal) and also the inac-

curacy of public data are the major limitations (Tables S2 and

S3). As the purpose of our resource is to complement the Chem-

ical Probes Portal with strictly objective large-scale, data-driven

information, we explicitly exclude any curated probes that have

no data in the underlying medicinal chemistry databases. How-

ever, as mentioned, we do provide a link to the Chemical Probes

Portal in the features section of the target overview page to alert

researchers when a target has probes in the Portal that might not

be present in public medicinal chemistry databases. Moreover,

to address the broader lack of coverage of chemical biology

data in publicmedicinal chemistry databases, we are actively ex-
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panding the canSAR knowledgebase to curate key missing

literature. In future, this growing knowledgebase will further

enhance our objective assessment and increase the overlap

between our resource and the Chemical Probes Portal, which

is itself also being extended through ongoing inclusion of addi-

tional probes.

Importantly, our analysis highlights 193 compounds with high

rankings (in the top 5) in Probe Miner that are not yet curated

within the Chemical Probes Portal and that may complement

the tools recommended by the Portal to explore the correspond-

ing protein targets of interest. This again highlights the clear

synergy of combining the large-scale objective assessment of

all available compoundswith in-depth but only partially complete

coverage of expert curation. To maximize this synergy, we are

now collaborating with the Chemical Probes Portal to share

information and, for example, to recommend probes identified

by our objective assessment method for expert curation at the

Portal (see example below).



Figure 4. Flow Diagram for the Comparison between Probe Miner and the Chemical Probes Portal
Use Cases: PARP1, CHEK2, OPRK1, and ABCC8
We have selected four use cases to illustrate the value and also

current limitations of the Probe Miner resource.

PARP1

The cancer drug target poly(ADP-ribose) polymerase 1 (PARP1)

DNA repair enzyme has five pan-PARP probes that are recom-

mended by the Chemical Probes Portal. Olaparib, veliparib,

and niraparib are all highly ranked using Probe Miner’s prede-

fined Global Score (Figures 3 and 5). However, key information

is missing in public resources regarding the Portal-listed probes

AZ0108 and E7449, the latter published in a journal not indexed

in public databases (McGonigle et al., 2015). Accordingly, these

two probes are not highly ranked in Probe Miner (Figure 5). On

the other hand, our objective assessment resource identifies

another probe that scores highly but has not yet been curated

by the Chemical Probes Portal. This is NMS-P118, a recently

published PARP1-selective inhibitor that was comprehensively

screened for kinase selectivity (Papeo et al., 2015), which is

very important given reports of off-target activity against kinases

among PARP inhibitors (Antolı́n and Mestres, 2014). Therefore,

NMS-P118 emerges as a potential candidate with which to

probe specifically for PARP1 (Figure 5). Based on our findings,

we proposed NMS-P118 to the Chemical Probes Portal, and

this chemical probe is now under review for expert curation.

CHEK2

The serine/threonine-protein kinase CHEK2, a cell-cycle

checkpoint protein, exemplifies errors and limitations in the

public medicinal chemistry data resources. For CHEK2, use of

our Global Score initially failed to prioritize the selective

chemical probe CCT241533 (Caldwell et al., 2011), which is

expert-curated in the Chemical Probes Portal, while ranking

as the highest-scoring chemical tool the very broadly character-

ized but promiscuous kinase inhibitor, sunitinib. We found that

CCT241533 had fallen foul of a series of errors and missing

data in public medicinal chemistry databases. Most signifi-

cantly, the affinity of CCT241533 for CHEK2 had been wrongly
curated in ChEMBL, making the probe appear non-selective

(Figure S4). We reported this error to ChEMBL and it has now

been corrected in both ChEMBL and our canSAR database.

As a result, CCT241533 now ranks as the third highest-scoring

probe in Probe Miner (Figure 5).

In considering examples like this, it is important to note that

our Selectivity Score balances the contribution of actually

measured selectivity and also the extent of characterization

for potential off-targets. For example, if one probe appears

selective but has only been tested against two off-targets, while

another probe is not completely selective but has been tested

against hundreds of targets, then our Selectivity Score may

reward the more widely characterized probe (see STAR

Methods for details). This is the case in our analysis of sunitinib

as a probe. The very thorough characterization of sunitinib

against the kinome is the key factor that results in it ranking as

the top probe when using our predefined weightings for the

Global Score (see STAR Methods and Figure S5). This further

emphasizes the importance of carefully evaluating all data

available, and, importantly, of expert curation where possible,

before selecting any chemical probe, regardless of its ranking

in Probe Miner.

Furthermore, selectivity information is inconsistently reported

in public databases, making the data difficult to automatically

extract and compare (e.g., selectivity is sometimes reported as

% inhibition or activity at different concentrations, or even oC

from differential scanning fluorimetry measurements, rather

than bioactivity or binding affinity measured in molar concentra-

tions). Our Probe Miner algorithm currently uses only selectivity

data reported in molar concentrations. Although interpretable to

a human expert, there is no globally applicable computational

method to convert % inhibition data to comparable half maximal

inhibitory concentration (IC50) at scale. Consequently, where

selectivity data are captured as % inhibition, as for CCT241533,

which was tested against a panel of 85 kinases, these data are

not incorporated into our current Selectivity Score.
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Figure 5. Analysis of the Ranking of Chemi-

cal Probes for the Targets PARP1, CHEK2,

and OPRK1

On top, Venn diagram comparing the PARP1

chemical probes recommended by the Chemical

Probes Portal (see STAR Methods) and the Probe

Miner resource as ranked by the predefined Global

Score. Chemical structures are displayed, as well

as names, a radar plot showing the six Chemical

Probe scores, the Chemical Probes Portal

reviewers’ rating, and Probe Miner ranking when

available. On the bottom, highest-ranked probes

for CHEK2, OPRK1 and ABCC8. See also Fig-

ure S4.
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OPRK1

The use of more than one chemical probe with different chemo-

types is strongly recommended for mechanistic studies and

target validation (Blagg and Workman, 2017). Accordingly, our

third example, the Kappa opioid receptor OPRK1, illustrates

how Probe Miner can be used to identify second probes and

potentially contribute to increase the completeness of theChem-

ical Probes Portal.

For OPRK1, there is only one chemical probe currently

covered in the Portal, namely the natural product agonist salvi-

norin A. While Probe Miner does identify salvinorin A as the high-

est-ranking probe for OPRK1, it also identifies chemically

distinct probes for this target, such as the drug ICI-199,441

(Weerawarna et al., 1994), which is a potent, selective, and

commercially available agonist and can thus be used in conjunc-

tion with salvinorin A to probe the biology of the OPRK1 receptor

(Figure 5). Thus, we have recommended the OPRK1 chemical

probe ICI-199,441 for consideration by the Chemical Probes

Portal for expert review that would complement our large-scale,

data-driven objective assessment in Probe Miner while

increasing the coverage of OPRK1 inhibitors by the Portal.

ABCC8

ABCC8 (ATP-binding cassette sub-family Cmember 8) functions

as a modulator of ATP-sensitive potassium channels and insulin

release and serves as an example of how Probe Miner’s broader

coverage across the whole liganded proteome can be used to

aid in the prioritization and selection for expert curation of probes

for targets that are currently not yet included in the Chemical

Probes Portal. Our objective assessment of ABCC8, a subunit

of the beta cell ATP-sensitive potassium channel (KATP), iden-

tifies the inhibitory, antidiabetic drugs glyburide and repaglinide

as the highest-ranking probes (Coghlan et al., 2001). These two

agents are commercially available and could thus be readily

used to probe for this ion channel while waiting for more in-depth

expert curation of probes for this target at the Portal.

Taken together, these four use cases discussed above

represent typical scenarios that highlight the synergy and

complementarity of the ProbeMiner and Chemical Probes Portal

resources in chemical probe selection.

DISCUSSION

Chemical probes are an essential part of functional genome

annotation, mechanistic exploration of biology and disease,

and validation of drug targets, but there are serious issues

with their quality, selection, and use (Blagg and Workman,

2017). Here, we report: (1) our data-driven, unbiased, objective

analysis of large-scale public data to catalog currently avail-

able tools and evaluate potential chemical probes; (2) our

exemplification of the utilization and value of the approach as

well as the limitations imposed by the current nature of the un-

derlying data; and (3) our description of the use of Probe Miner,

which we have made freely available to the research commu-

nity as a public resource to facilitate the identification and

prioritization of potential chemical probes that should be eval-

uated further.

Through our systematic analysis of >3.9 million experimental

activities for >1.8 million compounds in curated public medicinal

chemistry databases, we provide objective, data-driven system-
atic scoring of 355,305 compounds against 2,220 human protein

targets. Using our data-driven assessment, we provide quantita-

tive data demonstrating the extent to which the majority of

human proteins lack minimal quality small-molecule chemical

tools that are needed to probe their function. In addition, we

demonstrate gaps in the description and characterization of

chemical tools in public databases, we highlight the severity of

our limited knowledge of chemical tool selectivity and we

uncover large historical biases in the reported exploration of

chemical space and the polypharmacology of active com-

pounds, resulting in disparity in the number of minimal quality

probes identifiable for different targets. It is therefore paramount

that the chemical biology community improves the quality and

especially the degree of broad characterization of currently avail-

able chemical tools across multiple targets, and in addition also

continues the discovery and characterization of novel tools for as

yet non-probed proteins.

Thus, while recognizing that the number, quality, and prote-

ome-wide coverage of chemical probes will increase with time,

especially the important factor of degree of selectivity profiling,

Probe Miner provides an additional and distinct resource that

will be useful both today and in the future to help empower

researchers to select the best tools available for biomedical

research. We believe that our systematic, objective assessment

resource, derived from the underlying, evolving large-scale

medicinal chemistry data, is an important addition to the toolbox

for chemical probe prioritization. ProbeMiner can be used by the

community to fill the gap while expert-curation approaches such

as the Chemical Probes Portal expand into protein families that

have not yet been covered. It can also be employed to help pri-

oritize probes for subsequent expert curation and assessment at

the Portal or by individual researchers. Moreover, we show that

our unbiased large-scale approach, which benefits from regular,

automatic updates, will be especially powerful when combined

with the complementary expert-curated assessments provided

by the Chemical Probes Portal (Arrowsmith et al., 2015; www.

chemicalprobes.org). When used together with the experience,

knowledge, and opinion of the individual investigator, Probe

Miner and the Portal provide both the breadth and depth

required to make informed choices on the selection of chemical

probes. In practice, individual researchers may in some cases

have to make the choice between a well-characterized but not

optimally selective probe versus a less well-characterized but

seemingly selective one. As illustrated by the examples shown,

the combined resources help ensure that investigators are fully

aware of available knowledge and gaps therein. Note also that,

in any case, expert guidelines recommend the combined use

of at least two chemical probes from distinct chemotypes,

together with at least one inactive control compound (Blagg

and Workman, 2014; Workman and Collins, 2010). Overall,

Probe Miner and the Chemical Probes Portal have complemen-

tary strengths which will make their continued combined use

synergistic and mutually beneficial to the user community.

Probe Miner represents, to our knowledge, the first publicly

available resource enabling objective, data-driven, systematic

assessment of chemical tools. We demonstrate that our data-

led prioritization of chemical tools aligns well with expert recom-

mendation from the Chemical Probes Portal when both

approaches have access to the same information. However,
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we also uncover incompleteness, inaccuracies, and inconsis-

tencies of data deposited in public databases that limit the full

benefit of our large-scale objective approach. An important point

to note is that the public databases used in this analysis were

developed mainly for medicinal chemistry applications and,

accordingly, many chemical biology publications are not

covered.Moreover, we have identified errors in public databases

that have now been corrected (Figure S4). We also found several

inaccuracies, particularly regarding the annotation of cell-based

half maximal effective concentration (EC50) values and biochem-

ical IC50 values, as well as inconsistencies regarding the deposi-

tion of selectivity data in public databases (Table S3). Therefore,

there is a great need to better capture and curate medicinal

chemistry and chemical biology information from the literature

in public knowledge bases if we are to make the most of these

expensively generated data. Such improvements will also allow

further evolution of Probe Miner algorithm over time.

We stress that our Probe Miner resource can be used either

with a predefined weighting of fitness factors, or with user-cus-

tomised weights. By default, measures of biochemical activity/

binding potency and selectivity, as well as surrogate measures

of cell permeability, are given greater weighting in the overall

Global Score. The preset default weightings for assessing and

ranking chemical probesmay be especially useful for biomedical

scientists who are not chemical biology or medicinal chemistry

experts, which represents a large and important community

that was highlighted recently as requiring advice and user-

friendly resources when selecting chemical tools for exploring

biology and conducting target validation (Blagg and Workman,

2017). Alternatively, the weighting of different criteria can be

customized according to individual researchers’ views and

needs. For example, expert usersmaywish to alter theweighting

of fitness factors to suit their own experience and opinion. Or

they may wish to vary the weightings of different factors to see

how this affects the ranking of probes.

In conclusion, we demonstrate here that objective, quantita-

tive, data-driven large-scale assessment based on public data

can contribute to improving overall evaluation and prioritization

of chemical probes. We propose that our new Probe Miner

resource represents a valuable contribution for the identification

of potential chemical probes, particularly when used alongside

expert curation.

SIGNIFICANCE

The selection of appropriate chemical probes is essential for

mechanistic biological investigation and target validation

but continues to be largely biased and subjective and does

not benefit from the large-scale data available in public

databases. Here, we statistically analyze >1.8 million

compounds and >2,200 human targets. Our objective study

provides insights that can be used to assess and select

chemical probes. It also uncovers significant biases in the

exploration of chemical probes in public databases. To

enable an objective and quantitative assessment of chemi-

cal probes, we have developed data-driven probe scoring

metrics aligned to key properties or fitness factors. To

empower the community to utilize this knowledge, we

have also developed the Probe Miner resource (http://
204 Cell Chemical Biology 25, 194–205, February 15, 2018
probeminer.icr.ac.uk) to enable public access to this infor-

mation and algorithm in a user-friendly framework. We

demonstrate how our objective assessment generally aligns

with expert recommendation from theChemical Probes Por-

tal when the information in public databases is available and

accurate, and also provides synergistic benefits, for

example, through its scale, objectivity, and lack of bias,

and also its quantitative nature. Importantly, we provide ex-

amples showing how our data-driven assessment can

inform selection of probes for expert curation. Thus, Probe

Miner represents a valuable resource to empower the chem-

ical biology and general research community toward the se-

lection of high-quality chemical probes for mechanistic

studies and target validation.
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METHOD DETAILS

Definitions
During this work we have used the following definitions:

Target

Human protein that is known to interact with a chemical compound.

Reference Target

Since a chemical compound can bind to multiple protein targets and we score each compound-target pair, the reference target is

defined as the target of the compound that is being evaluated.

Potency Score

Score that measures the potency of the biochemical interaction between each compound-target pair.

Selectivity Score

Score that measures the selectivity of each compound-target pair. Selectivity is one of the most important properties that a chemical

tool should fulfil in order to be useful to study the biological function and therapeutic potential of a specific protein (Frye, 2010;

Workman and Collins, 2010). However, it is challenging to measure due to large biases in the number of targets screened for

each compound (Figure S5A) and thus the selectivity score balances our actual knowledge of selectivity with the amount of selectivity

information that is actually available.

Cell Score

Since no large-scale experimental measure of permeability is available, we use cellular activity as a proxy. Accordingly, the Cell Score

is a binary score that measures whether a given chemical molecule is known to be active in cells, and thus accounts not only for the

permeability but also for the solubility and cell activity fitness factors because when a compound is active in a cell line assay we as-

sume it fulfils minimum requirements of permeability and solubility to modulate the target of interest in cells (Workman and

Collins, 2010).

SAR Score

Structure-Activity Relationships (SAR) increase confidence that the biological effect of a given chemical tool is achieved via the mod-

ulation of the reference target. Accordingly, the SAR score is a binary score measuring whether there are (SAR Score = 1) known SAR

for the compound-reference target pair (Workman and Collins, 2010).

Inactive Analog Score

Inactive analogs can be useful controls to rule out off-target effects. Therefore, the Inactive Analog Score is a binary score measuring

whether there are known inactive analogs for the compound-reference target pair (Workman and Collins, 2010).

PAINS Score

Pan-assay interference compounds (PAINS) are those that interfere with the detection methods of screening assays and are thus

problematic artefacts that have been identified to be widely used in many scientific publications as chemical tools, thus leading

to the wrong conclusions (Baell and Walters, 2014). There are several computational methods that can be used to predict PAINS
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and other potentially problematic functional groups in biomedical and cell-based chemical tools (Huggins et al., 2011). However,

none of the available computational methods is exempt of limitations, among them a considerable number of false-positives (Capuzzi

et al., 2017; Huggins et al., 2011). Accordingly, the PAINS Score measures whether a compound is predicted to be PAINS-free using

the substructure filters proposed by Baell et al. (see STARMethods) as a pragmatic means to alert users to the potential risk of func-

tionality in the molecule that may cause misleading effects in biochemical or cell-based assays. However, to reduce the impact of

false-positives we give this PAINS Score a low weighting in the default Global Score to avoid deprioritising otherwise promising mol-

ecules. Still, it is worth highlighting that the PAINS Score is a prediction calculated using only one computational method. Thus, we

enable researchers to set the weight of the PAINS Score in the Global Score according to their expert judgement and the specific

assay that they are using.Moreover, researchers can also remove the PAINSScore from the calculation of theGlobal Score by setting

the weight to 0.

Chemical Probe Scores and Commercial Availability
Potency Score

We consider bioactivity data on compound-target pairs integrated in the knowledgebase canSAR (that integrates high quality bioac-

tivity data from CHEMBL and BindingDB) (Gaulton et al., 2016; Gilson et al., 2016) where the target type is a protein, the protein is

human as defined by its associated Uniprot ID and the units can be transformed to ‘nM’ (The Uniprot Consortium, 2017; Tym et al.,

2016). We calculate the median of all the reported values for each compound-target pair distinguishing between ‘=’ and ‘>’ values

and transform them into pActivity values (-log(Activity[Molar])). We consider active all compounds with a median pActivity below

10,000 nM. Compounds with conflicting ‘=’ and ‘>’ data for the same target are considered inactive. Given that only 0.7% of bioac-

tivities are below 100 picomolar but they strongly bias the normalisation of the potency score, these activity values (pActivity > 10) are

given a value of 10. For all the compound-target pairs considered as active, the potency score is calculated as the normalization of the

pActivity values in a scale from 0 (pActivity = 5) to 1 (pActivityR 10). There have been arguments against any numerical aggregation of

potency values due to their wide variation across biological systems and technologies, but the proposed alternative uses subjective

expert weighting of several databases including highly curated proprietary databases that are not widely accessible (Wang et al.,

2016). We have thoroughly investigated cases where a wide distribution of potency values has been reported, such as nilotinib

(CHEMBL255863; Wang et al., 2016). We identify that these wide distributions are often due to inaccuracies in the annotation of

cellular EC50 values as biochemical IC50 values and the annotation of data from mutants as wild type proteins (Gaulton et al.,

2016). We have calculated the Median Absolute Deviation (MAD) of the potency median calculated for each compound-target

pair and we identify that these large variations affect only a very small number of compounds (3.6%; Figure S6). We provide the

MAD to facilitate the identification of cases where this wide distribution may affect the reported performance of the chemical tool.

These results support the use of high quality public databases for the assessment of chemical tools and highlight the need to better

curate these high quality databases to make the most of this expensively generated data.

Selectivity Score

For each compound, we calculate a different selectivity score for each of the proteins it interacts with (median pActivity > 5) consid-

ering all of their compound-target interactions. In order to balance the actual knowledge of selectivity with the amount of information

available (Figure S5A), the Selectivity Score is composed by three different factors in an attempt to reflect our limited cataloguing of

selectivity following the formula below:

Selectivity Score=
First Factor +Second Factornormaized per target +Third Factor

3

The First Factor accounts for the actual knowledge of selectivity. In order to calculate the First Factor, the number of off-targets that

the compound has been screened against is calculated first, without including the target being evaluated. Second, the median

pActivity values are used to discern whether there is at least 10-fold selectivity (1 log unit) between the potency of the compound

for the reference target and the potency for each off-target (pActivityReferenceTarget – pActivityOff-Target R 1). The 10-fold selectivity

cut-off has been previously used as the minimum selectivity requirement to consider that a chemical probe is selective (Oprea

et al., 2009). If there is 10-fold selectivity between the potency of the compound for the reference target and the potency of the

off-target, this off-target is considered a selective off-target (Figure S5B). Next, we calculate the number of selective off-targets.

The First Factor of the Selectivity Score is obtained by dividing the number of selective off-targets by the total number of off-targets,

using the following equation:

First Factor =
Number of 10 fold selective off targets

Total number of off targets

Therefore, if a compound-reference target interaction is at least 10-fold selective against any other target, the value of the first fac-

tor will be 1. In contrast, if the compound-target interaction of interest is not 10-fold selective against any other compound-target

interactions, the first factor will be lower than 1 (Figure S5B). If there is no information regarding any off-target, the Selectivity Score

is set to 0.

The second factor of the score is a measure of the amount information available regarding selectivity. This second factor distin-

guishes between compounds that have an equal first factor but have been screened against a (very) different number of targets.

Moreover, it also balances the actual knowledge of selectivity – measured by the first factor – with the amount of information available
Cell Chemical Biology 25, 194–205.e1–e5, February 15, 2018 e2



regarding selectivity that can be very different between different compounds, challenging their comparison (Figures S5B and S5C). In

order to calculate it, we have developed a measure of selectivity information that we have termed Selectivity Information Richness

(SIC). The SIC is calculated as the summary of the differences between the median pActivity of the reference target and the pActivity

of each off-target minus one:

SIC=
Xnumber of off�targets

i = 1

�
pActivityTarget of Interest � pActivityoff Target i � 1

�

The above approach enables the evaluation of the selectivity information from the 10-fold selectivity cut-off in order to distinguish

selective from non-selective information that will be positive and negative, respectively (Figure S5C). Therefore, in the final summary

unselective data compensate for selective data. Interestingly, the SIC could also be regarded as the number of selectivity units from

the given compound-protein interaction. To calculate the Second Factor of the Selectivity Score, the SIC is divided by the number

of targets that would be modulated at the same time since there is not 10-fold selectivity between them, therefore the number of

not 10-fold selective off-targets plus the target of interest, following this formula:

Second Factor =
SIC

Number of not 10� fold selective off targets+ 1

This division enables reduction the SIC of compound-target interactions that are very high, as the compound has been screened

against a very large number of off-targets, but represent suboptimal compounds to probe for the target of interest as they inhibit

several other targets with similar or higher affinity (Figure S5D).

The second factor is finally normalized within each target as we observe that different targets can have very different SIC ranges.

The main reason for this is that there are target families such as kinases where family-wide profiling is very common while this is not

common for other target families and a global normalization would profoundly bias the results.

Finally, the last factor measures the percentage of the proteome that the compound has been screened against, which is generally

very low, with the following formula:

Third Factor =
Number of off targets+ 1

Number of liganded targets

Therefore, this Third Factor serves as a reminder that the selectivity of chemical tools is generally a major unknown. Ultimately, the

three factors are added and the final score is normalized (Equation 1). Overall, the Selectivity Score is able to balance different as-

pects of selectivity; however, how compounds screened against a very different number of targets should be prioritized remains a

difficult question. Our aim in developing the selectivity score was to prioritize compounds and facilitate the evaluation of the infor-

mation available but the final decision should always be taken by the researcher after careful evaluation of available information

and tailored to the requirements of the specific question.

Cell Score

To calculate the Cell Score we compute the median of all compound- cell line bioactivities reported in canSAR that can be trans-

formed to ‘nM’ (Tym et al., 2016). We consider a compound has positive Cell Score (Score =1) if it is active in at least one cell line

considering a cut-off of 10,000 nM (median pActivity > 5). This cut-off is set to minimise the risk of considering non-specific drug

toxicity that may lead to cell death at high concentrations. Compounds that have activity values less potent that the cut-off or

that have not been tested in cell line assays are given a Cell Score value of 0.

SAR Score

To calculate the SAR Score we first calculate the level 1 of the scaffold tree for all compounds in canSAR as it has been described to

have advantages over other scaffold definitions (Langdon et al., 2011). Next, we consider a compound-reference target pair has

SAR (SAR Score = 1) if there is at least another compound reported in the same publication (identical PubMedID) with the same level

1 scaffold active against the reference target (pActivity > 5).

Inactive Analog Score

The Inactive Analog Score measures whether there are compounds sharing the level 1 scaffold with the compound being evaluated

that are reported to be inactive (pActivity < 5) for the reference target.

PAINS Score

We apply PAINS rules to filter compounds that are given a PAINS alert by giving them a PAINS score of 0 (Baell and Walters, 2014).

Global Chemical Probe Score

The Global Chemical Probe Score is a combination of the previous 6 Chemical Probe Scores with customizable weights to allow

chemical biologists to prioritize the best chemical tools for the specific requirements of their experiments. We have predefined

weights for a case where selectivity is twice as important as potency, which in turn is twice as important as cell activity, which in

turn is twice as important as SAR, inactive analogs and PAINS scores. However, we stress that different proposed experimental

cases will require different weights of these scores in order to access the best probes. We do not think that there is a unique Global

Score applicable to all chemical biology experiments and accordingly the weights for each of the scores can be personalised for in-

dividual user needs in thewebsite resource. Note that it is unfortunately not possible to fairly compare our Global Score to the recently

developed TS score for prioritisation of chemical tools for phenotypic screening as TS uses expert weighting of several databases,
e3 Cell Chemical Biology 25, 194–205.e1–e5, February 15, 2018



including highly-curated proprietary databases for which we do not have access (Wang et al., 2016). The Global Score has the

following formula (for pre-defined weights a = 8, b = 4, c = 2, d = e = f = 1):

Global Score=
a$SelectivityScore +b$PotencyScore + c $CellScore +d$SARScore + e$Inactive AnalogsScore + f$PAINSScore

a+b+ c+d + e+ f

Commercial Availability

Commercial availability is not reported as a score becausewe believe that this would discourage the supply of the best chemical tools

and does not represent an inherent property of compounds. However, we recognise that knowing whether a chemical tool is

commercially available is important for chemical tool selection and thus we provide this information in each chemical tool synopsis

page. We consider a compound is commercially available if it is present in the catalogue of eMolecules (https://www.emolecules.

com/) that comprises over 8 million compounds from a network of suppliers. To identify if a compound is present in the eMolecules

database we use UniChem cross-references (Chambers et al., 2013).

Development of the Probe Miner: Chemical Probes Objective Assessment Resource
We have developed an open website (http://probeminer.icr.ac.uk) using PHP, HTML and jQuery JavaScript library to enable public

access to the Probe Miner resource as a framework for chemical probe prioritization using data integrated from publicly available

knowledgebases.

Target Icons

To facilitate a rapid and intuitive evaluation of chemical probe quality we have adapted the chemical probe scores to a binary

representation and developed a set of icons that can be shown in colour or in grey scale depending on the chemical tool fulfilling

certain criteria (Table 1). These icons are displayed in each chemical tool synopsis page (Figure 3A). Moreover, in order to facilitate

a target’s-eye view of chemical tool quality using these icons, the number of probes fulfilling these criteria is also displayed below the

icons in each Target Overview page (Figure S3E). A description of each icon can be found in Table 1.

Target Information Richness Score

In order to inform on the amount of information available, we develop a measure of the Information Richness for each target, not only

in terms of the number of chemical compounds screened against it but also their characterization in terms of selectivity. Accordingly,

for each target, every compound screened against it is counted as one unit of information. Moreover, for each compound tested

against that target, each other target the compound was screened against is also counted as another unit of information. Therefore,

each target has a final information value that accounts for the number of screened compounds plus the number of other targets each

compound was screened against.

Information RichnessTarget A =
XNumber of compoundsTarget A

i = 1

Number of Targets testedCompound i

Next, each target is ranked according to their information value. The Information Richness score reports the percentile of each

target in terms of ranking, being 100% for the targets with the highest information values and 0% for the targets with the lowest

information values.

Analysis of the ‘Liganded’ Proteome and Chemical Tools for Cancer Genes
The Potency Score (vide supra) is used to calculate how many human proteins interact with a chemical molecule with a median

activity below 10,000 nM (pActivity < 5) and thus represent the currently liganded proteome. The Potency Score, Cell Score, the

number of off-targets and the number of selective off-targets calculated for the Selectivity Score are subsequently used to calculate

how many compound-target interactions fulfilled minimum chemical probe requirements. Only compound-target interactions with

median pActivity% 7, reported to have an affinity below 10,000 nM in at least one cell line, screened against at least one other target

and at least 10-fold selective against all other targets screened are selected. Finally, the absolute number of human protein targets

and chemical molecules selected is calculated. In order to compare Information Richness with chemical tool quality, information

values calculated for the Target Information Richness Score (vide supra) are compared to the number of compounds fulfilling min-

imum chemical probe requirements for each target (Figure S1). For the analysis of minimum-quality chemical tools for cancer driver

genes we extracted the chemical tools fulfilling minimum requirements from the previous analysis and annotated to the 188 cancer

targets identified as potentially driving cancer in a recent pan-cancer analysis (Rubio-Perez et al., 2015).

Analysis of Chemical Probes from The Chemical Probes Portal
All the chemical probes from The Chemical Probes Portal are downloaded from The Chemical Probes Portal website (http://www.

chemicalprobes.org/browse_probes; downloaded 06/02/2017) including key information such as name, target(s) names, PubChem

CID and Average Recommendation (Table S2) (Arrowsmith et al., 2015). Probes are mapped to canSAR compound IDs when

possible using the provided PubChem CIDs, ChEMBLIDs or SMILES. The most potent target from the reported values is considered

for the analysis andmapped to UniprotIDs via the provided gene names (Table S2). The oldest Primary Reference of the probe is also

recorded and mapped to PubMed ID, journal name and publication year (Table S2). Since our assessment is performed at the single

target level, we focus on the selective probes for the comparative analysis. From the 133 probes available in the resource at the
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accession date, 109 were associated with nomore than two targets (Table S2). Next, we selected probes that have a SABRatingR 3

and are thus recommended by experts following The Chemical Probes Portal guidelines (http://www.chemicalprobes.org/

sab-rating-system). From the 109 selective probes, 71 are recommended by experts. From the 71 recommended probes, 46 could

be mapped to publicly available medicinal chemistry databases and have affinity data for the primary target that enables the calcu-

lation of the scores. It is worth noting that many of the probes that could not bemapped were published in 2016 or 2017 and they had

not yet been included in public databases such asChEMBL. From these 46 probes, their ranking for their intended target is calculated

according to our predefined Global Score (Table S2). In 30 cases (65%), the recommended probes are ranked among the top 20

by the predefined Global Score and in 17 cases (37%) the recommended probes rank among the top 5 (Figure 4). Analysis of

the 15 probes that are recommended by The Chemical Probes Portal but do not rank among the top 20 by the Global Score

uncovers that the main reasons for not ranking correctly are data incompleteness (mainly because key information was published

in a non-indexed publication) or data inaccuracy (mainly EC50s curated as IC50s; Tables S2 and S3).

DATA AND SOFTWARE AVAILABILITY

All the data calculated form the medicinal chemistry data available in canSAR (Tym et al., 2016; http://cansar.icr.ac.uk) can be

downloaded from the ‘Download’ section of the Probe Miner website (http://probeminer.icr.ac.uk/#/download), including a list of

all 355,305 human active compounds against all their human targets and their individual as well as global scores.

ADDITIONAL RESOURCES

As part of this work, the Probe Miner website resource (http://probeminer.icr.ac.uk) has been created and made publicly available to

the scientific community as a user-friendly framework to access the objective assessment method and data that we have developed.

Probe Miner is a valuable resource to aid the identification of potential chemical probes, particularly when used alongside expert

curation. A video tutorial is also accessible from the website (http://probeminer.icr.ac.uk/#/tutorial) to help researchers navigate

the resource.
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Figure	   S1.	   No	   correlation	   existing	   between	   Information	   Richness	   and	  
number	   of	   minimum	   quality	   chemical	   tools	   per	   each	   target,	   related	   to	  
Figure	   1	   and	   STAR	   Methods.	   The	   red	   line	   represents	   the	   failed	   linear	  
regression	  of	  the	  data	  that	  has	  an	  R2	  of	  0.1093.	  	  
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Figure	   S2.	   Probing	   activating	   cancer	   driver	   targets.	   On	   the	   left,	   pie	   chart	  
representing	   the	   number	   of	   cancer	   driver	   genes	   with	   minimum-‐quality	  
chemical	   tools,	   related	   to	   Figure	   1.	  On	   the	   right,	   protein-‐protein	   interaction	  
network	   of	   the	   25	   cancer	   driver	   genes	   that	   have	   minimum-‐quality	   chemical	  
probes	  obtained	  from	  canSAR	  (Tym	  et	  al.,	  2016).	  Node	  size	  is	  proportional	  to	  the	  
number	  of	  compounds	  tested	  for	  the	  target	  and	  shading	  represents	  the	  number	  
of	   minimum-‐quality	   chemical	   probes,	   being	   dark	   blue	   the	   largest	   number	   of	  
probes.	  Edges	  are	  coloured	  depending	  on	  the	  type	  of	  protein-‐protein	  interaction.	  
Black	   represents	   direct	   binding,	   cyan	   represents	   phosphorylation	   with	   arrow	  
showing	   direction,	   and	   magenta	   represent	   crystallographycally	   resolved	  
interactions.	  
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Figure	  S3.	  Flow	  diagram	  illustrating	  the	  logic	  for	  the	  calculation	  of	  the	  
scores,	  related	  to	  STAR	  Methods.	  
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Figure	   S4.	   Identification	   and	   correction	   of	   a	   curation	   error	   in	   ChEMBL22	  
affecting	   chemical	   probe	   CCT241533,	   related	   to	   Figure	   4.	  While	   analysing	  
the	  reasons	  for	  not	  ranking	  among	  the	  top	  20	  chemical	  tools	  15	  of	  the	  chemical	  
probes	   recommended	  by	  The	  Chemical	  Probes	  Portal	   (Supplementary	  Table	  1-‐
2),	  we	  identified	  that	  the	  CHEK2	  IC50	  for	  CCT241533	  had	  been	  wrongly	  curated	  
in	  ChEMBL22	  (CHEMBL1236782)	  and	  a	  value	  of	  30	  nM	  had	  been	  given	  instead	  of	  
3	  nM	  as	  in	  the	  original	  publication.	  This	  lower	  affinity	  made	  the	  probe	  appear	  as	  
not	   10-‐fold	   selective	   and	   therefore	   the	   Selectivity	   Score	  was	   very	   low	   and	   the	  
Potency	  Score	  was	  also	  lower	  than	  deserved.	  We	  have	  thus	  corrected	  this	  value	  
in	   canSAR	   and	   informed	   ChEMBL	   of	   the	   error	   so	   it	   can	   be	   corrected	   in	   future	  
versions	   of	   the	   ChEMBL	   database.	   The	   probe	   now	   scores	   3rd	   in	   our	   resource	  
when	   ranking	   CHEK2	   chemical	   tools	   by	   the	   predefined	   Global	   Score.	   This	  
example	   illustrates	   that	  public	  databases	  are	  not	  exempt	  of	  errors	   that	  need	  to	  
be	  corrected	  to	  make	  best	  use	  of	  this	  resource.	  
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Figure	   S5.	   Theoretical	   examples,	   related	   to	   STAR	   Methods.	   (A)	   Example	  
showing	  how	  the	  differences	  in	  selectivity	  knowledge	  challenge	  the	  comparison	  
of	  molecules	  screened	  against	  a	  very	  different	  number	  of	  targets.	  (B)	  Theoretical	  
example	   illustrating	   the	   calculation	   of	   the	   number	   of	   off-‐targets,	   the	  
differentiation	  between	  selective	  and	  unselective	  off-‐targets	  and	  the	  calculation	  
of	   first	   factor	  of	   the	  Selectivity	  Score.	   (C)	  Calculation	  of	   the	  SIC	  and	  the	  Second	  
Factor.	   (D)	   Comparing	   the	   SIC	   and	   Second	   Factor	   measures	   for	   compounds	  
screened	  against	  a	  very	  different	  number	  of	  targets.	  
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Figure	   S6.	   Most	   compound-‐target	   pairs	   are	   not	   affected	   by	   a	   very	   broad	  
distribution	   of	   affinity	   values,	   related	   to	   STAR	   Methods.	   To	   identify	  
compound-‐target	   pairs	   with	   broad	   distribution	   we	   calculated	   the	   difference	  
between	   the	   highest	   and	   the	   lowest	   values	   when	   adding	   or	   subtracting	   the	  
Median	  Absolute	  Deviation	  (MAD)	  to	  the	  Median	  in	  a	  logarithmic	  scale.	  As	  it	  can	  
be	   observed	   in	   the	   histogram,	   for	   the	   vast	   majority	   of	   compound-‐target	   pairs	  
(96.4%)	  there	  is	  less	  than	  10-‐fold	  difference	  (1	  log	  unit)	  between	  these	  extreme	  
values,	  thus	  supporting	  the	  use	  of	  the	  median	  in	  most	  cases.	  
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