Supplementary Information (9 Figures and 3 Tables)

Prolyl isomerization of the CENP-A N-terminus regulates centromeric integrity in fission yeast

Hwei Ling Tan^{1,2}, Kim Kiat Lim^{1,2}, Qiaoyun Yang³, Jing-Song Fan³, Ahmed

Mahmoud Mohammed Sayed³, Liy Sim Low^{1,2}, Bingbing Ren^{1,2}, Teck Kwang Lim³,

Qingsong Lin³, Yu-Keung Mok³, Yih-Cherng Liou^{3,4}, and Ee Sin Chen^{1,2,4,*}

¹Department of Biochemistry, National University of Singapore, 117597, Singapore.
²National University Health System (NUHS), Singapore, 119228, Singapore.
³Department of Biological Sciences, National University of Singapore, 117543,
Singapore. ⁴NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 119228, Singapore.

* To whom correspondence should be addressed. Ee Sin Chen, Tel: +65-6516-5616; Email: bchces@nus.edu.sg

Supplementary Tables

Supplementary Table S1 List of strains ectopically expressing alanine point-

mutation constructs, single copy integration strains and epitope-tagged strains.

Overexpression strains - Site directed amino acids substitution							
Name	Host Strain	Transform plasmid	his	lys	leu	ura	ade
КЗА	HF123	pREP41-K3A	his+	lys+	leu+	ura+	ade+
K4A	HF123	pREP41-K4A	his+	lys+	leu+	ura+	ade+
S5A	HF123	pREP41-S5A	his+	lys+	leu+	ura+	ade+
L6A	HF123	pREP41-L6A	his+	lys+	leu+	ura+	ade+
M7A	HF123	pREP41-M7A	his+	lys+	leu+	ura+	ade+
E9A	HF123	pREP41-E9A	his+	lys+	leu+	ura+	ade+
P10A	HF123	pREP41-P10A	his+	lys+	leu+	ura+	ade+
G11A	HF123	pREP41-G11A	his+	lys+	leu+	ura+	ade+
D12A	HF123	pREP41-D12A	his+	lys+	leu+	ura+	ade+
P13A	HF123	pREP41-P13A	his+	lys+	leu+	ura+	ade+
I14A	HF123	pREP41-I14A	his+	lys+	leu+	ura+	ade+
P15A	HF123	pREP41-P15A	his+	lys+	leu+	ura+	ade+
R16A	HF123	pREP41-R16A	his+	lys+	leu+	ura+	ade+
P17A	HF123	pREP41-P17A	his+	lys+	leu+	ura+	ade+
R18A	HF123	pREP41-R18A	his+	lys+	leu+	ura+	ade+
K19A	HF123	pREP41-K19A	his+	lys+	leu+	ura+	ade+
K20A	HF123	pREP41-K20A	his+	lys+	leu+	ura+	ade+
R21A	HF123	pREP41-R21A	his+	lys+	leu+	ura+	ade+
Y22A	HF123	pREP41-Y22A	his+	lys+	leu+	ura+	ade+
R23A	HF123	pREP41-R23A	his+	lys+	leu+	ura+	ade+
P24A	HF123	pREP41-P24A	his+	lys+	leu+	ura+	ade+
G25A	HF123	pREP41-G25A	his+	lys+	leu+	ura+	ade+
T26A	HF123	pREP41-T26A	his+	lys+	leu+	ura+	ade+

	UE100	DED/1 TO7A	hial	4.01	loui	ure l	adal
127A	HF123	pREP41-127A	nis+	lys+	leu+	ura+	ade+
4PA-GFP	HF123	pREP41-4PA-GFP	his+	lys+	leu+	ura+	ade+
FL-GFP	HF123	pREP41-FL-GFP	his+	lys+	leu+	ura+	ade+
	l		1	1		1	1
Overexpression	strains - Suppr	ession					
Name	Host Strain	Transform plasmid	his	lys	leu	ura	ade
∆ani1-vector	∆ani1	pREP41	his+	-	leu+	-	ade-
∆ani1-FL	∆ani1	pREP41-ani1-FL	his+	-	leu+	-	ade-
∆ani1-∆PPlase	∆ani1	pREP41-ani1- ∆PPIase	his+	-	leu+	-	ade-
∆ani2-vector	∆ani2	pREP41	his+	-	leu+	ura+	ade+
∆ani2-FL	∆ani2	pREP41-ani2FL	his+	-	leu+	ura+	ade+
∆ani2- ∆PPlase	∆ani2	pREP41-ani2- ∆PPIase	his+	-	leu+	ura+	ade+
WT-vector	HF123	pREP41	his+	-	leu+	ura+	ade+
WT-sim3+	HF123	pREP41-sim3HIS	his+	-	leu+	ura+	ade+
P13A-vector	P13A	pREP41	his+	-	leu+	ura+	ade+
P13A-sim3 ⁺	P13A	pREP41-sim3HIS	his+	-	leu+	ura+	ade+
P15A-vector	P15A	pREP41	his+	-	leu+	ura+	ade-
P15A-sim3⁺	P15A	pREP41-sim3HIS	his+	-	leu+	ura+	ade-
P13AP15A- vector	P13AP15A	pREP41	his+	-	leu+	ura+	ade+
P13AP15A- sim3⁺	P13AP15A	pREP41-sim3HIS	his+	-	leu+	ura+	ade+
∆ani1∆ani2- vector	∆ani1∆ani2	pREP41	his+	-	leu+	ura+	ade+
∆ani1∆ani2- sim3⁺	∆ani1∆ani2	pREP41-sim3HIS	his+	-	leu+	ura+	ade+

Single Copy Integrant Strain / Deletion strains					
Name	Locus of integration	Mutation	lys	leu	ura

cnp1-4PA	cnp1+	P10A,P13A,P15A,P17A	lys+	leu-	ura+
cnp1-P13A	cnp1+	P13A	-	leu-	ura+
cnp1-P15A	cnp1+	P15A	lys+	leu-	ura+
cnp1- P13AP15A	cnp1+	P13A,P15A	-	leu-	ura-
cnp1-WT	cnp1+	-	-	leu-	ura+
cnp1-E9A	cnp1+	E9A	lys-	leu-	ura-
cnp1-P10A	cnp1+	P10A	lys-	leu-	ura-
cnp1-G11A	cnp1+	G11A	lys-	leu-	ura-
cnp1-D12A	cnp1+	D12A	lys-	leu-	ura-
cnp1-l14A	cnp1+	I14A	lys-	leu-	ura-
cnp1-R16A	cnp1+	R16A	lys-	leu-	ura-
cnp1-P17A	cnp1+	P17A	lys-	leu-	ura-
cnp1-R18A	cnp1+	R18A	lys-	leu-	ura-
cnp1-K19A	cnp1+	K19A	lys-	leu-	ura-
cnp1-K20A	cnp1+	K20A	lys-	leu-	ura-
cnp1-R21A	cnp1+	R21A	lys-	leu-	ura-
cnp1-Y22A	cnp1+	Y22A	lys-	leu-	ura-
Δani1	ani1⁺	ani1*::kanR*	-	leu-	-
∆ani2	ani2⁺	ani2*::kanR+	-	leu-	ura+
∆ani1	ani1+	ani1 ⁺ ::kanR ⁺	lys+	leu+	ura+
∆ani2	ani2⁺	ani2 ⁺ ::kanR ⁺	lys+	leu+	ura+
∆ani1∆ani2	ani1 ⁺ ani2 ⁺	ani1⁺::kanR⁺,	lys+	leu+	ura+
		ani2 ⁺ ::kanR ⁺			
∆ani1∆ani2	ani1+ani2+	ani1*::kanR+,	lys+	leu-	ura+
		ani2*::kanR+			

Epitope-tagged Strains		

Name	Tagged Gene/locus	Тад	Gene	Mutations
WT CEN1-GFP	centromere I	GFP	cnp1⁺	
4PA CEN1-GFP	centromere I	GFP	cnp1⁺	P10A,P13A,P15A,P17A
WTGFP-cnp1HA	<i>cnp1</i> 3' end, lys ⁻	GFP,HA	cnp1 ^{+,} cnp1 ⁺	
4PAGFP-cnp1HA	<i>cnp1</i> 3' end, lys ⁻	GFP,HA	cnp1 ^{+,} cnp1 ⁺	P10A,P13A,P15A,P17A
Ani1GFP	ani1 3' end	GFP	ani1+	
Ani2GFP	ani2 3' end	GFP	ani2⁺	
Ani1GFP+Cbh1HA	<i>ani1</i> 3' end <i>,cbh1</i> 3' end	GFP,HA	ani1⁺, cbh1⁺	
Ani2GFP+Cbh1HA	<i>ani2</i> 3' end <i>,cbh1</i> 3' end	GFP,HA	ani2⁺, cbh1⁺	
Ani1FLAG+SpCENP-A- GFP	<i>ani1</i> 3'end, <i>cnp1</i> 3' end	FLAG, GFP	ani1⁺, cnp1⁺	
Ani2FLAG+SpCENP-A- GFP	<i>ani2</i> 3'end, <i>cnp1</i> 3' end	FLAG, GFP	ani2+, cnp1+	
ani1GFP+Sim3FLAG	ani1 3' end, sim3 3'end	GFP, FLAG	ani1+, sim3+	
ani2GFP+Sim3FLAG	ani2 3' end, sim3 3'end	GFP, FLAG	ani2⁺, sim3⁺	
∆ani1∆ani2+Sim3FLAG +Cbh1-HA	ani1 ⁺ ::kanR ⁺ , ani2 ⁺ ::kanR ⁺ , sim3 3'end, cbh1 3'end	FLAG,HA	sim3⁺, cbh1⁺	∆ani1∆ani2
∆ani1+Sim3FLAG+Cbh 1-HA	ani1 ⁺ ::kanR ⁺ , sim3 3'end, cbh1 3'end	FLAG, HA	sim3 ⁺ , cbh1 ⁺	∆ani1
∆ani2+Sim3FLAG+Cbh 1-HA	ani2 ⁺ ::kanR ⁺ , sim3 3'end, cbh1 3'end	FLAG,HA	sim3 ⁺ , cbh1 ⁺	Δani2
∆ani1∆ani2+SpCenp-A- HA	ani1*::kanR+, ani2+::kanR+,	HA	cnp1+	∆ani1∆ani2

	cnp1 ⁺ 3'end lys loci			
∆ani1+ SpCenp-A-HA	ani1 ⁺ ::kanR ⁺ , cnp1 ⁺ 3'end lys loci	HA	cnp1 ⁺	∆ani1
∆ani2+ SpCenp-A-HA	ani2*::kanR ⁺ , cnp1 ⁺ 3'end lys loci	HA	cnp1 ⁺	Δani2

Supplementary Table S2 List of primers employed for making alanine site-directed mutations, 6× His epitope-tagging of Ani1 and Ani2 and for PCR detection of ChIP signals at the centromere.

Site-Mutated Primers				
Site mutated (Overlapping				
primers)	Forward 5'- 3'			
Cnp-1 K3A	GAACAACTTAATATGGCAGCGAAATCTTTAATGGCTGAG			
Cnp-1 K4A	CAACTTAATATGGCAAAGGCATCTTTAATGGCTGAGCCT			
Cnp-1 S5A	CTTAATATGGCAAAGAAAGCTTTAATGGCTGAGCCTGGA			
Cnp-1 L6A	AATATGGCAAAGAAATCTGCAATGGCTGAGCCTGGAGAT			
Cnp-1 M7A	ATGGCAAAGAAATCTTTAGCGGCTGAGCCTGGAGATCCT			
Cnp-1 E9A	AAGAAATCTTTAATGGCTGCGCCTGGAGATCCTATTCCA			
Cnp-1 P10A	AAATCTTTAATGGCTGAGGCTGGAGATCCTATTCCACGG			
Cnp-1 G11A	TCTTTAATGGCTGAGCCTGCAGATCCTATTCCACGGCCA			
Cnp-1 D12A	TTAATGGCTGAGCCTGGAGCTCCTATTCCACGGCCACGT			
Cnp-1 P13A	ATGGCTGAGCCTGGAGATGCTATTCCACGGCCACGTAAA			
Cnp-1 I14A	GCTGAGCCTGGAGATCCTGCTCCACGGCCACGTAAAAAG			
Cnp-1 P15A	GAGCCTGGAGATCCTATTGCACGGCCACGTAAAAAGAGA			
Cnp-1 R16A	CCTGGAGATCCTATTCCAGCGCCACGTAAAAAGAGATAT			
Cnp-1 P17A	GGAGATCCTATTCCACGGGCACGTAAAAAGAGATATCGT			

Cnp-1 R18A	GATCCTATTCCACGGCCAGCTAAAAAGAGATATCGTCCA
Cnp-1 K19A	CCTATTCCACGGCCACGTGCAAAGAGATATCGTCCAGGT
Cnp-1 K20A	ATTCCACGGCCACGTAAAGCGAGATATCGTCCAGGTACT
Cnp-1 R21A	CCACGGCCACGTAAAAAGGCATATCGTCCAGGTACTACG
Cnp-1 Y22A	CGGCCACGTAAAAAGAGAGCTCGTCCAGGTACTACGGCG
Cnp-1 R23A	CCACGTAAAAAGAGATATGCTCCAGGTACTACGGCGTTA
Cnp-1 P24A	CGTAAAAAGAGATATCGTGCAGGTACTACGGCGTTAAGA
Cnp-1 G25A	AAAAAGAGATATCGTCCAGCTACTACGGCGTTAAGAGAG
Cnp-1 T26A	AAGAGATATCGTCCAGGTGCTACGGCGTTAAGAGAGATT
Cnp-1 T27A	AGATATCGTCCAGGTACTGCGGCGTTAAGAGAGATTCGA
Cnp-1 P10 13 15 17A	
(4PA)	GCTGGAGATGCTATTGCACGGGCACGTAAAAAGAGATATCGT
Cnp1 P13A	ATGGCTGAGCCTGGAGATGCTATTCCACGGCCACGTAAA
Cnp-1 P15A	GAGCCTGGAGATCCTATTGCACGGCCACGTAAAAAGAGA
Cnp-1 P13.15A	GAGCCTGGAGATGCTATTGCACGGCCACGTAAAAAGAGA
Site mutated (Overlapping primers)	Reverse 5'- 3'
Site mutated (Overlapping primers) Cnp-1 K3A	Reverse 5'- 3' CTCAGCCATTAAAGATTTCGCTGCCATATTAAGTTGTTC
Site mutated (Overlapping primers) Cnp-1 K3A Cnp-1 K4A	Reverse 5'- 3' CTCAGCCATTAAAGATTTCGCTGCCATATTAAGTTGTTC AGGCTCAGCCATTAAAGATGCCTTTGCCATATTAAGTTG
Site mutated (Overlapping primers) Cnp-1 K3A Cnp-1 K4A Cnp-1 S5A	Reverse 5'- 3' CTCAGCCATTAAAGATTTCGCTGCCATATTAAGTTGTTC AGGCTCAGCCATTAAAGATGCCTTTGCCATATTAAGTTG TCCAGGCTCAGCCATTAAAGCTTTCTTTGCCATATTAAG
Site mutated (Overlapping primers) Cnp-1 K3A Cnp-1 K4A Cnp-1 S5A Cnp-1 L6A	Reverse 5'- 3' CTCAGCCATTAAAGATTTCGCTGCCATATTAAGTTGTTC AGGCTCAGCCATTAAAGATGCCTTTGCCATATTAAGTTG TCCAGGCTCAGCCATTAAAGCTTTCTTTGCCATATTAAG ATCTCCAGGCTCAGCCATTGCAGATTTCTTTGCCATATT
Site mutated (Overlapping primers) Cnp-1 K3A Cnp-1 K4A Cnp-1 S5A Cnp-1 L6A Cnp-1 M7A	Reverse 5'- 3' CTCAGCCATTAAAGATTTCGCTGCCATATTAAGTTGTTC AGGCTCAGCCATTAAAGATGCCTTTGCCATATTAAGTTG TCCAGGCTCAGCCATTAAAGCTTTCTTTGCCATATTAAG ATCTCCAGGCTCAGCCATTGCAGATTTCTTTGCCATATT AGGATCTCCAGGCTCAGCCGCTAAAGATTTCTTTGCCAT
Site mutated (Overlapping primers) Cnp-1 K3A Cnp-1 K4A Cnp-1 S5A Cnp-1 L6A Cnp-1 L6A Cnp-1 M7A Cnp-1 E9A	Reverse 5'- 3' CTCAGCCATTAAAGATTTCGCTGCCATATTAAGTTGTTC AGGCTCAGCCATTAAAGATGCCTTTGCCATATTAAGTTG TCCAGGCTCAGCCATTAAAGCTTTCTTTGCCATATTAAG ATCTCCAGGCTCAGCCATTGCAGATTTCTTTGCCATATT AGGATCTCCAGGCTCAGCCGCTAAAGATTTCTTTGCCAT TGGAATAGGATCTCCAGGCGCAGCCATTAAAGATTTCTT
Site mutated (Overlapping primers) Cnp-1 K3A Cnp-1 K4A Cnp-1 S5A Cnp-1 L6A Cnp-1 L6A Cnp-1 M7A Cnp-1 E9A Cnp-1 P10A	Reverse 5'- 3' CTCAGCCATTAAAGATTTCGCTGCCATATTAAGTTGTTC AGGCTCAGCCATTAAAGATGCCTTTGCCATATTAAGTTG TCCAGGCTCAGCCATTAAAGCTTTCTTTGCCATATTAAG ATCTCCAGGCTCAGCCATTGCAGATTTCTTTGCCATATT AGGATCTCCAGGCTCAGCCGCTAAAGATTTCTTTGCCAT TGGAATAGGATCTCCAGGCGCAGCCATTAAAGATTTCTT CCGTGGAATAGGATCTCCCAGCCTCAGCCTCAGCCATTAAAGATTT
Site mutated (Overlapping primers) Cnp-1 K3A Cnp-1 K4A Cnp-1 S5A Cnp-1 S5A Cnp-1 L6A Cnp-1 M7A Cnp-1 E9A Cnp-1 P10A Cnp-1 G11A	Reverse 5'- 3' CTCAGCCATTAAAGATTTCGCTGCCATATTAAGTTGTTC AGGCTCAGCCATTAAAGATGCCTTTGCCATATTAAGTTG TCCAGGCTCAGCCATTAAAGCTTTCTTTGCCATATTAAG ATCTCCAGGCTCAGCCATTGCAGATTTCTTTGCCATATT AGGATCTCCAGGCTCAGCCGCTAAAGATTTCTTTGCCAT TGGAATAGGATCTCCAGGCGCAGCCATTAAAGATTTCTT CCGTGGAATAGGATCTCCAGCCTCAGCCATTAAAGATTT TGGCCGTGGAATAGGATCTGCAGGCTCAGCCATTAAAGA
Site mutated (Overlapping primers) Cnp-1 K3A Cnp-1 K4A Cnp-1 S5A Cnp-1 S5A Cnp-1 L6A Cnp-1 M7A Cnp-1 P10A Cnp-1 P10A Cnp-1 G11A Cnp-1 D12A	Reverse 5'- 3' CTCAGCCATTAAAGATTTCGCTGCCATATTAAGTTGTTC AGGCTCAGCCATTAAAGATGCCTTTGCCATATTAAGTTG TCCAGGCTCAGCCATTAAAGCTTTCTTTGCCATATTAAG ATCTCCAGGCTCAGCCATTGCAGATTTCTTTGCCATATT AGGATCTCCAGGCTCAGCCGCTAAAGATTTCTTTGCCATATT AGGATCTCCAGGCTCAGCCGCTAAAGATTTCTTTGCCAT TGGAATAGGATCTCCAGGCGCAGCCATTAAAGATTTCTT CCGTGGAATAGGATCTCCAGGCTCAGCCATTAAAGA ACGTGGCCGTGGAATAGGAGCTCCAGGCTCAGCCATTAA

Cnp-1 I14A	CTTTTTACGTGGCCGTGGAGCAGGATCTCCAGGCTCAGC
Cnp-1 P15A	TCTCTTTTTACGTGGCCGTGCAATAGGATCTCCAGGCTC
Cnp-1 R16A	ATATCTCTTTTTACGTGGCGCTGGAATAGGATCTCCAGG
Cnp-1 P17A	ACGATATCTCTTTTTACGTGCCCGTGGAATAGGATCTCC
Cnp-1 R18A	TGGACGATATCTCTTTTAGCTGGCCGTGGAATAGGATC
Cnp-1 K19A	ACCTGGACGATATCTCTTTGCACGTGGCCGTGGAATAGG
Cnp-1 K20A	AGTACCTGGACGATATCTCGCTTTACGTGGCCGTGGAAT
Cnp-1 R21A	CGTAGTACCTGGACGATATGCCTTTTTACGTGGCCGTGG
Cnp-1 Y22A	CGCCGTAGTACCTGGACGAGCTCTCTTTTACGTGGCCG
Cnp-1 R23A	TAACGCCGTAGTACCTGGAGCATATCTCTTTTACGTGG
Cnp-1 P24A	TCTTAACGCCGTAGTACCTGCACGATATCTCTTTTACG
Cnp-1 G25A	CTCTCTTAACGCCGTAGTAGCTGGACGATATCTCTTTT
Cnp-1 T26A	AATCTCTCTTAACGCCGTAGCACCTGGACGATATCTCTT
Cnp-1 T27A	TCGAATCTCTTTAACGCCGCAGTACCTGGACGATATCT
Cnp-1 P10.13.15.17A	
(4PA)	ACGATATCTCTTTTTACGTGCCCGTGCAATAGCATCTCCAGC
Cnp1 P13A	TTTACGTGGCCGTGGAATAGCATCTCCAGGCTCAGCCAT
Cnp-1 P15A	TCTCTTTTTACGTGGCCGTGCAATAGATCTCCAGGCTC
Cnp-1 P13.15A	TCTCTTTTTACGTGGCCGTGCAATAGCATCTCCAGGCTC

Site mutated (Primers with cloning sites)	5'- 3'
Cnp-1 Ndel	
K3A For	GAACAACTTCATATGGCAGCGAAATCTTTAATGGCTGAG
Cnp-1 Ndel	
K4A For	GAACAACTTCATATGGCAAAGGCATCTTTAATGGCTGAG
Cnp-1 Ndel	
S5A For	GAACAACTTCATATGGCAAAGAAAGCTTTAATGGCTGAG
Cnp-1 Ndel	
L6A For	GAACAACTTCATATGGCAAAGAAATCTGCAATGGCTGAG

Cnp-1 Ndel M7A For	GAACAACTTCATATGGCAAAGAAATCTTTAGCGGCTGAG
cnp-1 flank For 2	GCTTGGGTTCATATGATTAATTTCTCTTACC
cnp-1 flank Rev	CGGTTAACGGATCCAGTAGATGAATTC
WT(Ndel) For	TGAATTCCATATGGCAAAGAAATCTTTAATGG
CNB(BamHI) Rev	ACGGGATCCTCAAGCACCACGAATCCTC
CNN(Notl) Rev	TGAATTCTCGAGCGGCCGCGAGCACCACGAATCCTC
ani1(Ndel) For	GGGAATTCCATATGTCTCTCCAATTGCT
ani2(Ndel) For	GGGAATTCCATATGAGTAAGGAAGAGACC
ani1-PPIase (BamHI) Rev	GGAATTCCGGATCCTTAGGGACTAGAAGGTGCATT
ani2-PPIase (Sacl) Rev	GGAATTCCGAGCTCTTAATAAGTTTTTGTAGACTT
ani1(BamHI) Rev	CGCGGATCCTTAGTGAACGCGAACAAGC
ani2(Sacl) Rev	GGAATTCCGAGCTCTTAATTAACCGCTAAAAG
sim3(Ndel) For	GTTACGCGAcatATGTCTTCTGATACGAAAACACTG
sim3 x6HIS (BamHI) Rev	ACTAATTGTGGATCCTTAGTGGTGATGGTGATGATGATCCTTCTTTTCTTATCT TTAGG

Centromere-Specific Primers				
	Forward 5'- 3'			
cnt G	CGTAAATGATAATTTCAACCCG			
cnt T	AACAATAAACACGAATGCCTC			
act1	GAGTCCAAGACGATACCAGTG			
NDR	TGATCTATCGATCGAGAGC			
	Reverse 5'- 3'			
cnt G	CAGACGACTTAAATGGATTGG			

cnt T	ATAGTACCATGCGATTGTCTG
act1	GGCATCACACTTTCTACAACG
NDR	TGAGATGCTGAGAAGGTAG

Sullis Taggod primors			
UXI IIS- I aggeu p	JIIIICI S		
	Forward 5' 2'		
	Forward 5 -5		
ani1 (EcoRI)	GGATGTCGATATCATGTCTCTTCCAATTGCTGTTTATAG		
ani2 (EcoRV)	GGATGTCGATATCATGAGTAAGGAAGAGACCCTTTACAG		
Sim3	GGATGTCGATATCATGTCTTCTGATACGAAAACACTG		
F(EcoRV)			
. ,			
	Reverse 5'-3'		
ani1 <i>(</i> BamHI)	CGCGGATCCTTAGTGAACGCGAACAAGC		
ani2 <i>(</i> EcoRI)	CCGGAATTCTTAATTAACCGCTAAAAGCTTTAC		
Sim3 R(BamHI)	CGCGGATCCATCCTTCTTTTCTTATCTTTAGGACC		

Supplementary Table S3 Sequences of peptides.

Peptide Sequences for Peptide Pull-Down Experiments				
WT/FL	MAKKSLMAEPGDPIPRPRKKRYRPGTTALRK[BIOTIN]			
4PA	MAKKSLMAEAGDAIARARKKRYRPGTTALRK[BIOTIN]			
H3 NTD	MARTKQTARKSTGGKAPRKQLASKAARKAAPATGGVKKPHRK[BIOTIN]			
H3 PA	MARTKQTARKSTGGKAARKQLASKAARKAAAATGGVKKAHRKIBIOTINI			
Peptide Seque	nce for NMR Experiments			
P15FR16K	SLMAEPGDPIFKPR			
P17FR18K	SLMAEPGDPIPRFK			
WT	SLMAEPGDPIPRPR			

Supplementary Figure 1 Chromosome missegregation induced by the ectopic expression of amino-terminal domain (NTD) alanine-substitution mutant *cnp1* genes. (A) 24 site-directed, single-alanine substitution *cnp1* constructs. "A" in black

indicates the position of the alanine mutation, whereas the non-mutated residues are in grey. Constructs were expressed with the *nmt41* promoter. Wild-type (WT) cells transformed with full length, vector (vec) and *cnp1*-N-terminal single amino acid mutant constructs (*pRep41*-E3A to T27A). The "GRANT" (Genomic stability-Regulating site within CENP-<u>A</u> N-<u>T</u>erminus) residues (P10 to P17) are underlined. (B) Phenotype of WT cells expressing the constructs shown in part (A). Numerous cells show unequal chromosome segregation. Arrowhead: Unequal chromosome segregation. (C) Quantification of phenotype in part (B). + and -, + thiamine and - thiamine. Two tailed *t-test.* **p*<0.05; N=200. Bar: S.D. Bar plot indicates mean of three biological replicates.

Schizosaccharomyces Pombe cnpl	1	MAKKSLMAEPG	DPI	PRPRKKRYRPGTTAL	29
Schizosaccharomyces cryophilus cnp1	1	MAKKSLMAEPG	DPI	PHPRKKRYRPGTMAL	29
Schizosaccharomyces octosporus cnp1	1	MAKKSLMAEPG	DPI	PHPRRKRYRPGTMAL	29
Schizosaccharomyces japonicas cnpl	1	MAKRSFVAEPG	DPI	PYPRKKRYRPGTIAL	29
Rosellinia necatrix cse-4	24	GSGGAPEVLPG	DPI	PYPRRRRYRPGTVAI	52
Lepidopterella palustris OCK80818	39	LGRRRGDVQPG	DPI	PYPKKRRYKPGTVAL	67
Rhinocladiella mackenziei CSE4	23	GGGKRLRAQ <mark>P</mark> G	DPI	PVKKPRRYKPGTQAL	51
Fonsecaea pedrosoi CSE4	31	TSGKRLRAQPG	DPI	PVRRPRRYRPGTLAL	59
Fonsecaea erecta CSE4	31	VSGKRLRAQPG	DPV	PVRRPRRYRPGTLAL	59
Fonsecaea multimorphosa cnpl	31	VGGKRLRAQ <mark>P</mark> G	DPV	PVRRPRRYKPGTLAL	59
Exophiala xenobiotica cnpl	34	RPRGRPRAQ <mark>P</mark> G	DPI	PTRKPHRYRPGTIAL	55
Exophiala sideris cnpl	30	SAGGRPRAQPG	DPI	PVRRPHRYKPGTMLR	59
Cladophialophora bantiana CSE4	40	IAGKRPRAQPG	DPV	PVRRPRRYRPGTLAL	59
Capronia coronate CENP-A	30	TSGRRGRAQPG	DPV	PMRKPHRFKPGTIAL	58
Hordeum bulbosum CENP-A	48	PAPAADQGAPG	EP-	KKRK <mark>P</mark> HRYRPGTVAL	75
Verruconis gallopava cnpl	39	APRRRSDIKPG	DPI	QHGKKRRYKPGTVAL	67
Festuca lenensis CENH3	44	ARRPAATAAPG	APA	QQRVKKPHRYRPGTV	72
Coccidioides immitis cse-4	82	TSSRQSDVQ	DL	PPTRRHRYHPGTVAL	110
Blumeria graminis	7	HMSAVTAIQPG	DPL	PRERKRRYRPGTAAL	35
Pseudogymnoascus verrucosus hH3v	34	KRLSYSAVE <mark>P</mark> G	DPV	PQRKKRRYHPGTVAL	62
Pneumocystis carinii cnpl	23	LAGASGNIEPG	DPI	PRGKARRYRPGTVAL	55
Colletrotrichum salicis cse-4	13	RKSRQSDVQPG	DPI	PNRGKRRYRPGTVAL	41
Diaporthe ampelina cse-4	3	PKRRRSDVQPG	DPV	PQGRRYRYRPGTKAL	31
Magbaporthe oryzae cse-4	17	GASRDSGVMPG	DPI	PQKKSRRYRPGTLAL	45
Pestalotiopsis fici cse-4	16	GRGRGSGVRPG	DPV	PAGRRRRYRPGTLAL	44
<i>Vulsa mali</i> hH3v	24	GRPRTSNVQPG	DPV	PQGKKYRYRPGTKAL	52
Sporothrix schenckii CENP-A	34	KPARTSNVQPG	DPV	PQRKQRRYRPGTLAL	54
Aspergillus oryzae ces-4	52	GASRKSDVQPG	DPT	PQGRHRRYRPGTVAL	80
Gaeumannomyces graminis cse-4	17	AAARNSNVMPG	DPV	PQRKARRYRPGTLAL	45
Paracoccidioides brasiliensis CSE4	56	VGDRTTDIQPG	DPL	PRRHRYRPGTVALKE	84
Emmonsia crescens CENP-A	59	AQARTTDIQPG	DPL	PRRRYKPGTLALKE	87
Komagataella phaffii CENP-A	54	SSTGISRNQPG	DPL	PIAKKYRYKPGTLAL	82
Penicillium roqueforti CENP-A	51	VSKSPANVQPG	DPT	PTGRRRRYKPGTVAL	69
Talaromyces islandicus cse-4	69	KKPRTSNIQPG	DPT	PTGRRRRYKPGTVAL	97
Podospora anserina CSE4	14	PLPYTKPPKAG	DPV	PQGRKRRYRPGTLAL	42
Fusarium oxysporum cse-4	1	MILAG	DPV	P VRAKRRYRPGTVAL	23
Madurella mycetomatis hH3v	34	LLLTTVSDTAG	DPI	PQGKKRRYRPGTLAL	62
Pneumocystis jirovecii CSE4	30	IERMYTAYTSG	DPV	PRAKGRRYRPGTVAL	58
Candida albicans CSE4	33	PRHDSDYFIAG	DPI	PNRGRRRYKPGTVAL	61
Pyronema omphalodes cnpl	97	PARKSPATRAG	DPT	PTRRKNRARPGTKAL	125

Supplementary Figure 2 GRANT motif is conserved. Alignment of the CENP-A

NTD highlighting the prolines corresponding to the "GRANT" (<u>G</u>enomic stability-<u>R</u>egulating site within CENP-<u>A N-T</u>erminus) motif in *Schizosaccharomyces pombe* (S. pombe) that contains prolines at positions 10, 13, 15 and 17.

Supplementary Figure 3 *cnp1-4PA* (**P10AP13AP15AP17A**) **mutation-induced chromosome missegregation.** (A) Protein level of GFP-tagged SpCENP-A (wild type, WT) and SpCENP-A-4PA constructs expressed in WT cells 18 h after the removal of thiamine from the culture media. Level of Cdc2 (detected with anti-

PSTAIRE/Cdc2) was included as a loading control. Rel. fold enrichment, relative fold of protein level to WT.(B) Protein turnover of GFP-tagged full length (FL) versus 4PA SpCENP-A at 30-min intervals after treatment with 100 µg/ml cycloheximide (CHX), 18 h after protein induction at 30°C in EMM-leucine, thiamine-free media. The level of α -tubulin was employed as a loading control. Values represent the relative protein levels with respect to that at 0 min. Results shown represent one of two repeated experiments. (C) Growth of cells expressing vector, *cnp1-FL-GFP*, and *cnp1-4PA-GFP* constructs in WT cells at 30°C, day 2. +T and –T: with or without thiamine; *nmt41* promotor. (D) Frequency of bi-nucleated cells exhibiting a chromosome missegregation phenotype in WT cells expressing *cnp1*⁺ (WT) and *cnp1-4PA* (4PA) constructs. +T and –T: with or without thiamine, 18 h, 30°C; *nmt41* promoter. N=200, Error: S.D. Bar plot indicates the mean of at least two biological replicates.

Supplementary Figure 4 Α В ChIP WT WCE anti-HA anti-GFP cnp1+ GFP cnp1 Mut locus M 5 Ī \geq lys* cnp1 HA locus cnt Mut. cnp1⁺ Rel. fold *cnp14PA GFP locus enrichment 3.8 2.5 2.4 2.5 lys⁺ cnp1 HA locus

Supplementary Figure 4 Mutation of GRANT-prolines disrupts the localization of SpCENP-A to the centromere. (A) Genotype of the two strains for which chromatin immunoprecipitation (ChIP) was performed. These two strains contained two copies of $cnp1^+$ genes at the original as well as $lys1^+$ loci. Wild type (WT) strain (top) hosted a non-mutated $cnp1^+$ gene at the original gene locus, whereas the mutant (Mut.) strain contained cnp1-4PA. $*cnp1^{4PA}$ indicates a mutated $cnp1^+$ gene. HA- and GFP-tags were linked to the $cnp1^+$ copy at the $lys1^+$ and the original loci, respectively. (B) ChIP assay for WT and 4PA-mutated (Mut.) SpCENP-A at the central core region of centromere 1 (*cnt*). Anti-HA antibodies detected ChIP signals of WT SpCENP-A-HA expressed from the $lys1^+$ locus, whereas anti-GFP antibodies detected ChIP signals of WT or mutant SpCENP-A-GFP signals expressed from the authentic $cnp1^+$ chromosomal locus. WCE, Whole cell extract; NDR, nucleosome-depleted region as normalization control. Representative image of three biological replicates.

Supplementary Figure 5 Mutation of GRANT-prolines disrupts the localization of SpCENP-A to the centromere. (A) Localization of wild-type SpCENP-A-GFP (WT; top) and 4PA-mutated SpCENP-A-GFP (4PA; bottom), produced from GFPfused *cnp1*⁺ genes at the original locus. The strain used is depicted in Supplementary Figure 4A. DAPI, GFP and merged signals are shown. Bar: 5 μm. (B) Scatter plot

showing the mean intensity distribution of the WT (blue) and 4PA (red) SpCENP-A-GFP spots, obtained by dividing the sum pixel intensity in each GFP spot by the total area of the spot. N=1000. (C) Box plot for mean GFP intensity signal in part (B). Maximum and minimum values within the interquartile range and multiplied by 1.5 are represented by the ends of the whiskers. Outliers are denoted by points beyond whisker ends. The boxes indicate the 25th, 50th (mean) and 75th percentiles. A statistical comparison of the differences in the variances between WT and 4PA was performed with a F-test, followed by a comparison with the Welch *t*-test; the variance is estimated separately for each dataset using Welch modification of the degrees of freedom. A statistical significant difference between WT and 4PA GFP intensity ($p<2.2\times10^{-16}$) was detected.

Α	Accession FKBP4_SCHP	emPAI 0.1	emPAI-N 0.00026534	Description FK506-binding protein 39 kDa OS=Schizosaccararomyces pombe		
	Matched sequence in <u>Blue underlined</u>					
	>FKBP39 (SpAnil)					
	MSLPIAVYSLSVKGKDVPAVEESTDASIHLTMASIDAGEKSNKPTTLLVKVRPRIPVEDE DDEELDEQMQELLEESQREFVLCTLKPGSLYQQPLNLTITPGDEVFFSASGDATIHLSGN					
	FLVDEEDEEE	EESDEI	DYDLSPTEE	DLVETVSGDEESEEESESEDNSASEEDELDSAPAKK		
	AQVKKKRTKD	ESEQEE	EAASPKKNN	TKKQKVEGTPVKEKKVAFAEKLEQGPTGPAAKKEKQ		
	QASSNAPSSP	KTRTL	GGVVVTDV	KTGSGASATNGKKVEMRYIGKLENGKVFDKNTKGKP		
	FAFILGRGEV	IRGWD	/GVAGMQEG	GERKITIPAPMAYGNQSIPGIPKNSTLVFEVKLVRVH		
D						
D	ScFpr3 MSDLL	PLATYS	INVEPYTPVP	AIDVTMPITVRITMAALNPEAIDEENKPSTLRI		
	ScFpr4 MSDML	PLATYS	INVEPYSPTP	ALNFKIPVTIRI		
	SpAnil MSD	PIAVYS	LSVKGKD-VP	AVEESTDASIHL		
	SpAni2 MSK	EETLYS	VKVDQER-VP	LFDEDFYKGFRSELSVRF <u>TMAR</u> L <mark>DP</mark> RAKSNDAVTVNVIT		
	ScFpr3 IKRNP	DFEDDD	FLGGDFDEDE	IDEESSEEEEEKTOKKKKSKGKKAESESEDDEEDDD		
	ScFpr4 IKRNP	ELTRGE	YYNQDNNDGL	EEDESESEQEADVPKRSVKSKKGKAVEQSESEDSEDENE		
	SpAnil RPRIP	VEDEDD	EELDEQMQEL	LEESQ		
	SpAni2 RLEHP	EED-GE	ESDEELFQEE	:K		
	ScFpr3 EDDEF	QESVLL	TLSPEAQYQQ	SUDLANTEREVOFIVTS-SYAISUSGNYVKHPFDTPMG		
	ScFpr4 IDDEF	EECVLL	TLSPKGQYQQ	ALDITIAPEEDVQFVVTG-SYTISLTGNYVKHPFDNSSD		
	SpAnil	REFVLC	TLKPGSLYQQ	PLNLTITPGDEVFFSASG-DATIHLSGNFLVDEEDEEEE		
	SpAni2	FTIC	TLKKGSVYQQ	PIDIIFSPG <mark>BEV</mark> FFERVGGDIPVYL <mark>SG</mark> TCIITNIPEEED		
	ScFpr3 VEGED		-EDEDADIYD	SEDYDLTPDEDEIIGDDMDDLDD		
	ScFpr4 SDEDE		-EDYYSDEES	SSGEE		
	SpAnil ESDED		YDLSPTEED	SURTUSGDE SEREDNSASEE		
	SpAni2 SSDLE	NDFLYG	ADEFSSDERE	MDDISVTSS		
	ScFpr3 EDNDG	EEEOEE	EEEEOKEEV	7KPEPKKSKKEKKRKHEBKEEBKKAKKVKKVEFKKDLEEG		
	ScFpr4 DLDDL	VDASDI	ESRLDELVK	(DEKKKNNKKDSKRKHEEDEEESAKPAEKKQTTKKDKKAE		
	SpAnil DELDS.	APAKKA	QVK-KKRTK	DESEQEEAASPKKNNTKKQKVBGTPVKEKKVAFAEKLEQG		
	SpAni2 DEEDA	EQAEEE	ILE-KPVPK	DEVAENHSKDKLKKEEKEKKTAVDVSDSVNGKKRKTE		
	ScFpr3 PTKPK	SKK 0-	DKHK	XSKVILEGGIVIEDRTIGDGPOAKRGARVGMRYIGKLKNG		
	ScFpr4 KVK	-DSEE-	SKPK	YKTKLLEGGIIIEDRVTGKGPHAKKGTRVGMRYVGKLKNG		
	SpAnil PTGPA	AKKEKQ	QASSNAPSSE	PKTRTIKGGVVVTDVKTGSGASATNGKKVEMRYIGKLENG		
	SpAni2 PAGEG	EQTEKK	SKSTKTY	ŸPKQV <mark>LEG</mark> NVTVQDKVK <mark>G</mark> D <mark>GP</mark> AAK <mark>RKKRVSMRYIG</mark> RLT <u>NG</u>		
	ScFpr3 KVEDK	NTSGKP	FAFKLGRGEV	71KGWDI GVAGMSVGGERRIIIPAPYAYGKOALPGIPANS		
	ScFpr4 KVFDK	NTKGKP	FVFKLGOGEV	TIKGWDIGVAGMAVGGERRIVIPAPYAYGKOALPGIPANS		
	SpAnil KVFDK	NTKGKP	FAFILGRGEV	7IRGWDVGVAGMOEGGERKITIPAPMAYGNOSIPGIPKNS		
	SpAni2 KVFDK	NITGKP	FTFNLGLEEV	7IKGWDVGIVGMQVGGERTIHIPAAMAYGSKRLPGIPANS		
	ScFpr3 ELTFD	VKLVSM	KN			
	ScFpr4 ELTFD	VKLVSM	K-			
	SpAnil TLVFE	VKLVRV	Н-			
	SpAni2 DLVFD	VKLLAV	N-			

Supplementary Figure 6 An FKBP-type *cis-trans* peptidyl prolyl isomerase affinity purified with wild type (WT) SpCENP-A N-terminal domain (NTD). (A) Mass spectrometry identified a novel coding sequence, which was predicted to be a 39-kDa FK506-binding protein from fission yeast. The peptide isolated using mass spectrometry is highlighted in blue. This putative isomerase has been named

SpCENP-<u>A</u> <u>N</u>TD <u>I</u>somerase 1 (Ani1). (B) Alignment revealed that the fission yeast genome contains another unknown gene, SPAC27F1.06c, which encodes an Ani1-like protein (named Ani2). Ani1 and Ani2 share high sequence similarity with the Fpr3 and Fpr4 proline *cis-trans* isomerases from budding yeast across the isomerase catalytic domain. Sp: *Schizosaccharomyces pombe* and Sc: *Saccharomyces cerevisiae*. indicates the point of C-terminal truncation.

Supplementary Figure 7 SpCENP-A N-terminal domain (NTD) interacts with Cbh1-HA independent of proline residues. Peptide pull-down of wild type (WT) and mutant 4PA SpCENP-A and Cbh1-HA. WCE, Whole cell extract. Cdc2, input.

Supplementary Figure 8 Proline-15 within the SpCENP-A N-terminal domain (**NTD**) is the target of prolyl isomerization by Ani1 and Ani2. (A–D) Rotating frame Overhauser effect spectroscopy (ROESY) nuclear magnetic resonance (NMR) profiles obtained by incubating recombinant Ani1 and Ani2 with peptides SLMAEPGDPIPRFK (which hosts a P17FR18K mutation) and SLMAEPGDPIFKPR (which hosts a P15FR16K mutation). A cross peak at isoleucine (I)-14 was observed both in the case of (A) Ani1 and (C) Ani2 for peptide SLMAEPGDPIPRFK but not SLMAEPGDPIFKPR (B, D, respectively). Proline (P) and arginine (R) were mutated to phenylalanine (F) and lysine (K), respectively, to preserve the aromatic and basic nature of the original amino acid residues. Ani, SpCENP-<u>A N</u>TD-<u>i</u>somerase.

Supplementary Figure 9 Physical interaction for wild type (WT) and mutant histone H3 N-terminus with Ani1-GFP, Ani2-GFP or Sim3, as examined by biotinylated peptide pull-down assays. (A) Peptide immunoprecipitation (IP) of Sim3-FLAG with SpCENP-A WT and 4PA mutant peptides, WT histone H3 Nterminal domain (NTD) and H3 "PA" (proline → alanine) peptides. WCE, Whole cell extract.(B) Peptide IP of Ani1-GFP and Ani2-GFP with H3 NTD and H3 PA peptides. WCE, Whole cell extract; H3 NTD, WT histone H3 N-terminus (NTD) peptide; H3PA, Mutant H3 NTD peptide, in which all proline residues were mutated to alanine residues. Ponceau staining was used to confirm equal loading. Representative blot of three experimental replicates.