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S1 The GenPOMP model: linking infectious disease dynamics
with genetic data

We define a class of models that describes an environment within which our general software
implementation can be described. We aim at sufficient generality to represent the breadth of
applicability of our methodology and the key methodological innovations, yet including enough
details to describe the specific data analysis in the main text.

Data consist of n∗ genetic sequences of a pathogen. We use a convention that j:k denotes the
arithmetic sequence (j, j + 1, . . . , k), so that the entire collection of genetic sequence data can be
written as

(g∗1, g
∗
2, . . . , g

∗
n∗) = g∗1:n∗ .

We use asterisks to denote data, to distinguish these from quantities arising in the model. The times
at which the sequenced samples are collected are also data, and the total number of sequences, n∗,
will be modeled as the outcome of a random process rather than some fixed quantity. We write the
genetic sequence times as

(t∗1, t
∗
2, . . . , t

∗
n∗) = t∗1:n∗ .

We suppose that the data are collected in a time interval

T = [to, tend],

with t0 ≤ t∗1 < t∗2 < · · · < t∗n∗ ≤ tend. Note that we allow multiple observations at the same
time: such ties can be resolved arbitrarily in the ordering of the t∗n. For simplicity, we exclude the
possibility of such simultaneous observations in the following. If no sequence is available for the
diagnosis at some time t∗n, we set g∗n = NA. Otherwise, we suppose the collection of sequences g∗1:n∗

consist of aligned sequences of length L, i.e., g∗n ∈ {A,C, T,G}L.

Here, we do not include the possibility of additional clinical or epidemiological measurements avail-
able at diagnosis, though an extension to allow this is fairly straightforward. Further, we consider
that only a consensus pathogen sequence is available from each host, so we ignore the possibil-
ity of extracting information from data on pathogen genetic diversity within hosts. Nevertheless,
our framework can account for sequencing error and differences between observed and transmitted
pathogen populations.

The partially observed Markov process (POMP) model consists of a latent, unobservable, Markov
process {X(t), t ∈ T} and an observable process {Y (t), t ∈ T}. X(t) takes values in a set X and Y (t)
takes values in a set Y. A POMP model for genetic data, which we call a GenPOMP, is required
to have the following structure. {Y (t)} consists of a collection of random number N of diagnosis
times, denoted T1:N , and corresponding sequences G1:N . The observed outcomes are N = n∗ and
(Tn, Gn) = (t∗n, g

∗
n) for n ∈ 1:n∗. We adhere to a convention that random variables are denoted by

upper case letters; the corresponding lower case letters are used for possible values of the random
variable, and asterisks denote the actual data for observable variables; blackboard bold typeface is
used for sets.
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Recall that, in the main text, we wrote X(t) =
(
T (t),P(t),U(t)

)
where T (t) is a transmission forest

and P(t) is a phylogeny. Here, it is convenient to take a different, but functionally equivalent,
approach. We do not require that X(t) itself contains T (t) and P(t), but we do require that
{X(u), t0 ≤ u ≤ t} is sufficient to construct T (t) and P(t). This additional layer of abstraction lets
us define the GenPOMP model without having to explicitly construct the processes {T (t), t ∈ T}
and {P(t), t ∈ T}.

The set X should describe the state of each individual in a study population. The study population is
supposed to contain a finite number of individuals drawn from a countable collection of individuals
who could potentially enter the study population. We suppose these potential individuals are
labeled with values in the natural numbers, N = {1, 2, 3, . . . }, and so collections of individuals in
the study population take values in the set H consisting of all finite subsets of N. We suppose there
is a random process {H(t), t ∈ T}, with H(t) taking a value in H corresponding to the identities
of all individuals in the study population at time t. Formally, we suppose that H(t) is constructed
from X(t) via a suitable function mapping X to H. We suppose that each individual in the study
population has a state in a set S. For a simple compartment model, S could be finite or countable,
however, we also allow for the possibility of continuous real-valued state variables. In particular,
we will later define a random clock process governing the rate of pathogen evolution within each
individual infected host. To keep track of the state of each member of the study population, we
suppose that the state of any individual i in the study population at time t is given by a random
variable Xi(t), constructed from X(t) via a suitable function mapping X to S. A canonical way to
do this is to take

X =
⋃
h∈H

Sh, (S1)

for which an element
(
si1 , si2 , . . . , sik

)
∈ X is interpreted to mean that the study population is

{i1, i2, . . . , ik} ∈ H and individual ij is in state sj ∈ S. Our definition of the study population is the
collection of individuals being modeled, and so the state of individuals outside the study population
is necessarily undefined. In order to define {Xi(t), t ∈ T} as a stochastic process, one can formally
define an additional state � and set Xi(t) = � when i 6∈ H(t). Note that, in general, {Xi(t), t ∈ T}
does not inherit the Markov property from {X(t), t ∈ T}. If individual state transitions occur as an
independent Markovian process once that individual is infected (as is the case in our HIV example)
then {Xi(t), t ∈ [ti, tend]} has a conditional Markov property given i ∈ H(ti).

The state process may, in general, need to include other components in addition to {Xi(t), i ∈
H(t)}. For example, X(t) may include dynamic variables affecting the entire population, such as
environmental or sociological processes. For the remainder of this article, the specific construction
in equation (S1) suffices, but that is not essential to our approach. If S is countable then X, given
by (S1), is also countable and {X(t)} is a Markov chain. Otherwise, {X(t)} is a more general
Markov process.

Some basic properties of individuals characterize the model as a disease transmission system, and
these are required to construct the evolutionary process model for the pathogen. This leads us
to define functions that return properties about the state of an individual, and we call these
query functions. This notation differs from usual compartment models, where each individual is
modeled as residing in a single compartment. We write properties as functions of X(t), rather
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than components of X(t), to keep applicability to a broad class of population models. As long as
the required query functions can be defined for a population model, the statistical methodology
developed will apply, giving the scientist considerable flexibility in the specification of the model.

We require that an individual’s state, i.e., its value in S, can describe whether that individual is
infected and infectious. We represent this requirement by supposing that there is a query function

QI : S→ {0, 1}

defined as,

QI(s) =

{
1 if s is an infected state,
0 if s is an uninfected state.

To link the model to diagnosis data, we require that a state in S determines whether an individual
is diagnosed while part of the study population. Specifically, we suppose there is a query function

QD : S→ {0, 1}

such that

QD(s) =

{
1 if s is a state for individuals diagnosed as infected while in the study population,
0 otherwise.

We then define
D(t) =

∑
i∈H(t)

QD
(
Xi(t)

)
,

which counts the number of individuals diagnosed while in the study population, by time t. This
counting process (i.e., a non-decreasing integer-valued process) is relevant for relating the model to
the data on the study population. Note that D(t) does not count the number of clinically diagnosed
individuals in the study population at time t, which would require a different accounting for the
possibility of immigration and emigration of diagnosed individuals.

Now, we define the set of infected states to be

I =
{
s ∈ S : QI(s) = 1

}
.

We suppose that the state contains information about the identify of the infector, and we do this
by requiring the existence of a query function

QL : I→ N ∪ {0}

defined such that

QL(s) =

{
j if s is infected by individual j within the study population,
0 if s is infected by an infector outside the study population.

The capability to construct the query function QL(s) requires that the identity of the infector is
stored in the state variable at the point of infection, so it is available later as part of the state of
the infectee. Information on the identity of the infector is not usually required for a compartment
model, but is useful when working with genetic data in order to track lineages of the pathogen.
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The evolutionary process of the pathogen genome within an individual in the host populations is
modeled using a relaxed molecular clock, meaning that standard molecular models for evolution are
applied on a stochastically perturbed timescale. It has become established that the usual models for
molecular evolution fit sequence data better if one allows such fluctuations in the rate of evolution
(Drummond et al., 2006). To implement a relaxed clock, we construct a random process on each
edge of the transmission tree. This process scales calendar time to evolutionary time, the latter
meaning a modified timescale on which the evolutionary rate is constant. We therefore require the
existence of a query function

QΓ : I→ R

returning the relaxed evolutionary clock time corresponding to evolution of a transmissible pathogen
population within an infected individual. Specifically, QΓ(s) represents the random, individual-
specific, clock time for the evolutionary process that separates the host’s transmissible pathogen
population from the rest of the pathogen community when the host is in state s ∈ I. For an indi-
vidual based model in which an individual is infected within the study population, this corresponds
to the evolutionary process within the host subsequent to infection. Immigrant pathogens require
additional assumptions on how they relate genetically to pathogens already circulating in the study
population. Conditional on the randomly perturbed molecular clock, pathogen evolution is usually
specified by a general time-reversible Markov model.

We also suppose the existence of a query function

Q∆ : I→ R

which returns the relaxed evolutionary clock time separating the measurable pathogen population
from the transmissible host population within an infected individual. If and when an individual
gives rise to a pathogen genetic sequence within the dataset, this clock time adds to the clock time
QΓ(s) in determining the probability distribution of the measured sequence.

The separation of the pathogen evolutionary process into transmitted and untransmitted mutations
has multiple interpretations. The choice of primary interpretation has consequences for the appro-
priate model specification of the branch separating the measurement node v from the transmission
tree. The plausibility of these different interpretations will depend on the biological system under
investigation.

(B1) Measurement error. Sequencing error could be modeled by an arbitrary evolution-like process
on the branch separating the measured sequence from the transmissible sequence.

(B2) Transmissible versus measurable strains. The measured sequence may reflect the dominant
strain reproducing most competitively within the host. It is conceivable that much of the
diversity resulting from within-host evolution may lead to pathogens which are non-viable or
non-competitive for between-host transmission. The evolutionary branch corresponding to
the measurement event could represent this dead-end evolution, leaving the main body of the
transmission tree to represent evolution of a transmissible strain.

(B3) Within-host diversity. A strain transmitted subsequent to sequencing could be more similar
to an ancestral strain than to the sequenced strain by chance, due to within-host genetic
variation, even without appealing to a phenomenon such as (B2). The measurement branch
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permits such behavior, so may help to adjust for unmodeled within-host pathogen genetic
diversity.

Other model-specific quantities can be defined by additional query functions, but are not essential
components of a GenPOMP model. For example, epidemiological models commonly consider the
number of susceptible or removed individuals. Also, having defined an appropriate query function
for a category of individuals, one can define a process counting such individuals. For example, to
complement the query function QI for infected individuals, we can define a process

I(t) =
∑
i∈H(t)

QI
(
Xi(t)

)
counting the number of infected individuals in the study population. We can also write the size of
the study population at time t as,

P (t) = |H(t)| =
∑
i∈H(t)

1.

Our framework therefore incorporates the structure of arbitrary compartment models (Bretó et al.,
2009) represented at the level of compartment membership for each individual.

The history of the query functions for infected individuals,{
QI
(
Xi(u)

)
, QD

(
Xi(u)

)
, QL

(
Xi(u)

)
, QΓ

(
Xi(u)

)
, Q∆

(
Xi(u)

)
: t0≤u≤t

}
, (S2)

is sufficient to construct the transmission forest, T (t), and phylogeny, P(t), described in the New
Approaches section of the main text. Formally, for (S2) and elsewhere, we extend the query
functions to take an undefined value, denoted by �, when the argument is outside the defined
domain. To specify the measurement process model, recall that the measurement process {Y (t)}
consists of an increasing sequence of diagnosis times {Tn} associated with the diagnosis counting
process {D(t)}, together with a collection of genetic sequences {Gn}. We suppose that the sequences
{Gn} are modeled as a continuous-time Markov chain on P(t). The probability distribution of the
genetic sequence Gn at time Tn, conditional on {X(t), t ≤ tn} and G1:n−1, therefore depends on
P(t) and G1:n−1. If a genetic sequence for the diagnosis at time Tn is not available, we assign Gn
the value NA. We suppose this occurs with probability 1− pG, independently of {X(t)}.

We have defined the GenPOMP model so that the pathogen genetic sequence arises only in the
measurement model. No genetic sequences are included in the state process, or its particle repre-
sentation. Our approach is consistent with viewing the genetic evolutionary model as a principled
way to define and evaluate a statistical metric between genetic sequences that respects the tree
structure of the evolutionary process and has the property that similar sequences are more likely to
come from closely related pathogens. A measurement model satisfying these criteria and providing
a statistical fit to the data need not be judged on the details of its biological strengths and weak-
nesses if the microevolutionary processes are not the focus of the investigation. The individual,
stochastic molecular clocks determining the rate of evolution within each host are included in the
latent process component of the GenPOMP model to facilitate Monte Carlo integration over the
distribution of these clocks, as described in Section S2.
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Figure S-1: A directed acyclical graph representation of dependencies among GenPOMP model
components.

The definition of a GenPOMP model given here is general and abstract. The population model
{X(t)} corresponds to an arbitrary individual-based Markovian model constrained to include con-
cepts of transmission of a pathogen and measurement of pathogen genetic sequences. The measure-
ment model is constrained to be based on a Markovian evolutionary process, but this is standard
in current models used for phylodynamic inference. Our methodological approach applies to this
general GenPOMP model class, subject to being able to simulate from the individual-based model
and compute the rate at which individual hosts provide a pathogen sequence. The Markovian
assumption is convenient algorithmically. In one sense, it is not fundamentally a limitation since
non-Markovian models may be approximated by Markovian models with additional state variables.
In another sense, it is a practical limitation since increasing the size of the state space increased
the computational effort required.

S2 A GenSMC algorithm for filtering the GenPOMP model

We develop a sequential Monte Carlo (SMC) approach for the framework of Section S1. We will
use the name GenSMC to describe an SMC algorithm for GenPOMP models. As an instance of
SMC, the basic principles and theoretical foundation for GenSMC follows from the general theory
of SMC (Liu, 2001). However, GenPOMP models have a particular structure that places particular
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demands on a GenSMC algorithm. Many variations are possible on our GenSMC algorithm, but
demonstration of one successful GenSMC algorithm provides a foundation and motivation for future
improvements. Our GenSMC approach is presented as pseudocode in Algorithm S-1, which is an
expanded version of Algorithm 1 in the main text. We proceed to define the notation that will be
required.

To construct our algorithm, we specify a concrete class of GenPOMP models. Let {X(t), t ∈ T}
be a latent GenPOMP process with the form

X(t) =
(

Φ(t),Ψ(t),Γ(t),∆(t), D(t)
)
, (S3)

having components Φ(t), Ψ(t), Γ(t), ∆(t) and D(t) defined as follows:

{D(t)} records diagnosis events within the study population, as defined in Section S1. We
suppose that no diagnoses occur simultaneously, so {D(t)} is a simple counting process.
Therefore, we can model {D(t)} via a conditional intensity process ρ

(
Φ(t),Ψ(t)

)
such that

P
[
D(t+ δ)−D(t) = 0 |Φ(t),Ψ(t)

]
= 1− δρ

(
Φ(t),Ψ(t)

)
+ o(δ),

P
[
D(t+ δ)−D(t) = 1 |Φ(t),Ψ(t)

]
= δρ

(
Φ(t),Ψ(t)

)
+ o(δ),

P
[
D(t+ δ)−D(t) > 1 |Φ(t),Ψ(t)

]
= o(δ),

where o(δ) denotes a function f : [0,∞) → R satisfying limδ→0 f(δ)
/
δ = 0. Here, ρ(X(t)) is

called the diagnosis rate.

{Ψ(t)} is a piecewise constant process which records a list of the identity labels of individuals
diagnosed by time t.

{Φ(t)} contains everything else in the GenPOMP model, so is essentially arbitrary within
the general requirements of a GenPOMP model. We suppose that observation events are
also recorded in the state process; specifically, the observation counting process {D(t)} is a
function of {Φ(t)} which gives rise to observation times {T1, T2, . . . } at which the genetic
measurements {G1, G2, . . . } are made.

{Γ(t)} is a list of the relaxed clock process for all the interior edges of the transmission tree,
i.e., Γ(t) = {QΓ(Xi(t)), i ∈ N} where QΓ is defined in Section S1.

{∆(t)} is a list of the relaxed clock process for the terminal branches of the transmission tree,
i.e., ∆(t) = {Q∆(Xi(t)), i ∈ N} where Q∆ is defined in Section S1.

The relaxed clock processes affect the micro-evolution of the pathogen, but in our model the genetic
process has no consequence for the transmission dynamics: the genetic sequence is simply a marker,
and the genetic models we use are models for neutral evolution. A consequence of this is that the
relaxed clock processes only have to be evaluated when needed to compute the conditional proba-
bility mass function for attaching a new genetic sequence to the genetic tree. If these components
of the latent process can be computed when needed, there is no need to continually update them.
Our computational strategy to take advantage of this is called a just-in-time representation and
is formally described in Section S3.4. Informally, the just-in-time representation is the tool that
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lets us define the latent GenPOMP model as a continuous-time Markov process while updating
the relaxed clock processes at diagnosis times, when needed. To simulate the GenPOMP model
forward in time using a just-in-time representation, we need to be able to evaluate the relaxed
clock process over arbitrary time intervals, and also split the evolutionary time over a branch of
the transmission tree if a new measurement divides this branch. An example of a Markovian clock
with these properties is the Gamma process.

We will show that the relaxed clock processes {Γ(t)} and {∆(t)} can be represented by two pro-
cesses {U(t)} and {V (t)} which generate the evolutionary clocks that are necessary to evaluate
the likelihood of the sequences. The processes {U(t)} and {V (t)} are constant except at diagnosis
times, and so are fully specified by the discrete processes U0:N and V0:N , with Un = U(Tn) and
Vn = V (Tn). The construction of {U(t), V (t)} is an instance of just-in-time variables, as discussed
further in Section S3.4. Therefore, for the purposes of Algorithm S-1, it is convenient to replace
the representation in equation (S3) with an equivalent representation,

X(t) =
(
Φ(t),Ψ(t), U(t), V (t), D(t)

)
, (S4)

The construction of {U(t)} and {V (t)} is described in Figure S-2

Algorithm S-1 is written using discrete time steps corresponding to the sequence of observation
times, together with the start and end times of the interval T. It convenient to define

t∗0=t0, t∗n∗+1 = tend,

so that T = [t∗0, t
∗
n∗+1]. {Ψ(t)} is fully specified by its values at the discrete set of observation times,

and so we define a process {Ψn} with
Ψn = Ψ(t∗n).

To provide a discrete time representation of {Φ(t)}, we write

Φn = {Φ(t), t∗n−1 ≤ t ≤ t∗n},

for n = 1, . . . , n∗ + 1, with Φ0 = Φ(t∗0). Similarly, we write

Dn = {D(t), t∗n−1 ≤ t ≤ t∗n}.

Diagnosis events are modeled as perfectly observed, almost tautologically. We write d∗(t) for the
observed value of D(t), defined as

d∗(t) = sup{n : t∗n ≤ t}.

Also, we write d∗n for the observed value of Dn. Perfectly observed components of the latent
process of a POMP model require special attention in sequential Monte Carlo algorithms, and so
Algorithm S-1 uses the targeted proposal developed in Section S3.2 to handle the diagnosis process.

Hierarchical sampling (described in Section S3.3) is carried out in Algorithm S-1 over the com-
ponents Φ(t) and Ψ(t) in (S3), as well as over the components Un and Vn in the just-in-time
representation of {Γ(t)} and {∆(t)}.
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1

3

2

t

Figure S-2: The diagram represents the transmission tree for a particle where individual 1 infected
individual 2 at time A < t and individual 3 at time D < t. Sequences are collected at times B,
C and E. Measured but untransmitted sequence mutations occur along BB′, CC ′ and EE′. For
this particle, we know that the sequence at time B corresponds to individual 2, and the sequence
at time E belongs to individual 1. Suppose we then wish to evaluate the probability of the new
sequence at time t conditional on it belonging to individual 3, as shown on the diagram. From
the previous observed sequences, assigned to B′ and E′, this particle has already been assigned
evolutionary clock times for the segments AB′ and AE′. To place the new sequence at C ′, we first
generate a new clock process for the segment DC ′, which is represented by the variable UPn,jkl in
step 8 of Algorithm S-1. Then, we split the evolutionary clock time for AE′ into AD and DE′, in a
way that is consistent with the corresponding calendar times and the stochastic evolutionary clock
process. This computation is represented by the variable V P

n,jklm in step 10 of Algorithm S-1.
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The pseudocode for Algorithm S-1 adopts a space-saving convention that index j always ranges
over 1 : J , index k ranges over 1 :K, index l ranges over 1 :L, and index m ranges over 1 :M . Thus,
for example, line 6 of Algorithm S-1 has an implicit loop over j ∈ 1 :J and k ∈ 1 :K.

If g∗n = NA then w2(n, j, k, l,m) is defined to be the probability of not recording a genetic sequence
at diagnosis. In this case, steps 7 to 16 are not necessary: it suffices to take K = 1, with Un and
Vn being undefined. This special case is omitted from Algorithm S-1 for simplicity.

To implement Algorithm S-1, we require code to generate initial values, and to simulate the dynamic
model for all the hierarchical layers conditional on the diagnosis events. Specifically, we require
simulators for

fΦ0,Ψ0(φ0, ψ0), (S5)

fΦn|Φn−1,Ψn−1,Dn

(
φn|φn−1, ψn−1, d

∗
n

)
, (S6)

fΨn|Φn,Ψn−1

(
ψn|φn, ψn−1

)
, (S7)

fUn|Un−1,Vn−1,Φ0:n,Ψ0:n

(
un|un−1, vn−1, φ0:n, ψ0:n

)
, (S8)

fVn|Vn−1,Un,Φ0:n,Ψ0:n

(
vn|vn−1, un, φ0:n, ψ0:n

)
. (S9)

We then require code to evaluate the diagnosis rate,

ρ
(
φ(t), ψ(t)

)
(S10)

as well as the genetic measurement model,

fGn|G1:n−1,Φ0:n,Ψ0:n,U0:n,V0:n

(
g∗n | g∗1:n−1, φ0:n, ψ0:n, u0:n, v0:n). (S11)
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All the densities in (S5–S11) may additionally depend on a parameter vector θ.

Algorithm S-1: GenSMC

input: dynamic model simulators listed in (S5–S9) and observation model evaluators (S10, S11);
sequences, g∗1:n∗ ; observation times t∗1:n∗ ; initial time, t∗0; terminal time, t∗n∗+1 = tend;
number of particles, J ; number of hierarchical samples, K, L, M .

1 simulate
(
ΦF

0,j ,Ψ
F
0,j

)
∼ fΦ0,Ψ0(φ0, ψ0) and set UF0,j = V F

0,j = 0

2 for n in 1 :n∗ do
3 propose transmission process: ΦP

n,j(t) ∼ fΦn|Φn−1,Ψn−1,Dn

(
φn|ΦF

n−1,j ,Ψ
F
n−1,j , d

∗
n

)
4 set w1(n, j) = exp

{
−
∫ t∗n
t∗n−1

ρ
(
ΦP
n,j(t),Ψ

P
n−1,j(t)

)
dt
}
ρ
(
ΦP
n,j(t

∗
n),ΨP

n−1,j(t
∗
n)
)

5 set ΦP
0:n,j = (ΦF

0:n−1,j ,Φ
P
n,j)

6 propose attachment site: ΨP
n,jk ∼ fΨn|Φn,Ψn−1

(
ψn|ΦP

n,j ,Ψ
F
n−1,j

)
7 set ΨP

0:n,jk = (ΨF
0:n−1,j ,Ψ

P
n,jk)

8 evolution on the new branch: UPn,jkl ∼ fUn|Un−1,Vn−1,Φ0:n,Ψ0:n

(
un|UFn−1,j , V

F
n−1,j ,Φ

P
0:n,j ,Ψ

P
0:n,jk

)
9 set UP0:n,jkl = (UF0:n−1,j , U

P
n,jkl)

10 evolution on the split branch: V P
n,jklm ∼ fVn|Vn−1,Un,Φ0:n,Ψ0:n

(
vn|V F

n−1,j , U
P
n,j ,Φ

P
0:n,j ,Ψ

P
0:n,jk

)
11 set V P

0:n,jklm = (V F
0:n−1,j , V

P
n,jklm)

12 set w2(n, j, k, l,m) = fGn|G1:n−1,Φ0:n,Ψ0:n,U0:n,V0:n

(
g∗n | g∗1:n−1,Φ

P
0:n,j ,Ψ

P
0:n,jk, U

P
0:n,jkl, V

P
0:n,jklm)

13 weights: w(n, j, k, l,m) = w1(n, j)w2(n, j, k, l,m)

14 set w(n, j, k) = (1/LM)
∑L

l=1

∑M
m=1w(n, j, k, l,m)

15 resample: select index (l′,m′)(j, k) with probability w(n,j,k,l,m)
w(n,j,k)

16 set w(n, j) = (1/K)
∑K

k=1w(n, j, k)

17 resample: select index k′(j) with probability w(n,j,k)
w(n,j)

18 set w(n) = (1/J)
∑J

j=1w(n, j)

19 resample: select indices j′(j) with probability w(n,j)
w(n)

20 set ΦF
0:n,j = ΦP

0:n,j′(j) and ΨF
0:n,j = ΨP

0:n,j′(j) k′(j′)

21 set UF0:n,j = UP0:n,j′(j) k′(j′) l′(j′,k′)m′(j′,k′) and V F
0:n,j = V P

0:n,j′(j) k′(j′) l′(j′,k′)m′(j′,k′)

22 conditional log likelihood estimate: ˆ̀
n|1:n−1 = logw(n)

23 end
24 simulate ΦP

n∗+1,j(t) ∼ fΦn∗+1|Φn∗ ,Ψn∗ ,Dn∗+1

(
φ(t)|ΦF

n∗,j ,Ψ
F
n∗,j , d

∗
n∗+1

)
25 set w(n∗+1, j) = exp

{
−
∫ tend
t∗
n∗

ρ
(
ΦP
n∗+1,j(t)

)
dt
}

26 conditional log likelihood: ˆ̀
n∗+1|1:n∗ = log

{
(1/J)

∑J
j=1w(n∗+1, j)

}
output: log likelihood estimate: ˆ̀=

∑n∗+1
n=1

ˆ̀
n|1:n−1, and filtered state estimates

complexity: O(J K LM n log n), assuming the transmission forest is balanced
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S2.1 The implementation of GenSMC in the genPomp program

Many computational issues arise in effective implementation of a GenSMC method such as Algo-
rithm S-1. Data structures are needed to keep track of the individuals in the study population, and
the genetic relationships between pathogens in different hosts. Efficient implementation of all these
computations, including use of a multi-processor computing environment, is necessary to work on
problems of a practical scientific scale. The record of our implementation is the open-souce code
for the genPomp program that we developed to carry out inference for GenPOMP models, avail-
able at https://github.com/kingaa/genpomp. The accuracy of genPomp has been successfully
tested against exact analytic calculations for some very small scale situations, and against the pomp

package (King et al., 2016) for situations where no diagnoses lead to genetic sequences.

There is a substantial difference in the level of abstraction between the formal mathematical rep-
resentation of a GenPOMP model in Algorithm S-1 and the practical implementation in genPomp.
One could write more pseudocode to bridge this gap, but that is beyond the scope of this article.
We have focused instead on the foundational task of understanding how Algorithm S-1 fits in with
the theory and practice of SMC.

S2.2 Extending GenSMC to infer unknown parameters: The GenIF algorithm

Sequential Monte Carlo (SMC) algorithms such as Algorithm S-1 produce a Monte Carlo approxi-
mation to the likelihood of the model, but do not directly provide estimates of unknown parameters.
A substantial literature has emerged on using SMC as a basis for statistical inference (Kantas et al.,
2015). Iterated filtering (Ionides et al., 2006, 2015) uses SMC, together with parameter pertur-
bations, to maximize the likelihood function. Iterated filtering has demonstrated effectiveness on
various nonlinear models arising in infectious disease transmission studies (Ionides et al., 2015, and
references therein). We developed an adaptation of Algorithm IF2 of Ionides et al. (2015), which
we call GenIF as an abbreviation of iterated filtering for GenPOMP models. Our implementation
of this GenIF algorithm is included within the genPomp program, as described fully in the source
code. Conceptually, and computationally, GenIF is a simple extension to GenSMC. GenIF carries
out multiple iterations of Algorithm S-1 (GenSMC) adding perturbations to the candidate values
of unknown parameters. GenSMC selects particles consistent with the data, and so allowing par-
ticles to have diversity in their parameters values naturally selects for parameter values consistent
with the data. The theory and practice of iterated filtering focuses on using this phenomenon,
with multiple SMC iterations having perturbations of decreasing magnitude, to maximize the like-
lihood. Previous iterated filtering theory does not encompass the just-in-time variables employed
by GenSMC. In the context of GenIF, this means that the current theoretical justification of IF2
(Ionides et al., 2015) does not perfectly apply when we carry out inference for the molecular evolu-
tion parameters. Heuristically, however, the principle of iterated filtering still applies, and we rely
on empirical results to confirm that maximization performance is satisfactory.

Algorithms that permit numerically satisfactory likelihood maximization and likelihood evaluation
provide a foundation for carrying out likelihood-based statistical inference. Profile likelihood meth-
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ods can be used for obtaining confidence intervals, and likelihood ratio tests or Akaike’s information
criterion can be used for model selection.

S2.3 Scalability of GenSMC
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Figure S-3: Results from an experiment exploring how the standard deviation of the log likelihood
estimate scales with both the number of sequences fit and the number of particles used. We ran
the particle filter at the truth 80 times for each number of particles (1000, 5000, 10,000 and 20,000)
on a simulated dataset of 200 sequences.

To explore the scalability of our GenSMC implementation, we performed the following experiments
using simulated data. We first simulated an epidemic conditional on observing 200 sequences. We
then ran the particle filter at the truth using 1000, 5000, 10,000, and 20,000 particles. For each
number of particles we used we ran 80 particle filters. Finally, for each sequence, we computed
the standard deviation of the cumulative log likelihood estimate across the 80 filtering evaluations.
This computation yields a measure of the variability in the log likelihood estimate if one were to
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stop filtering at each sequence. The results from this experiment provide a controlled assessment
of how Monte Carlo variance scales as the number of sequences grows. The standard deviation of
the log likelihood estimate remains relatively small up to around 25 sequences (Figure S-3). An
interpretation of this is that placing early sequences on the growing phylogenetic tree is relatively
easy. It can become harder to find trees with appropriate places to attach later sequences, leading
to increasing Monte Carlo variance. Monte Carlo variance is expected to grow as the size of a
computational problem increases, but we did not find a rapid exponential growth. The peeling
algorithm for computing the likelihood of the genetic sequences conditional on the phylogeny was
typically the largest computational component, though not for all regions of parameter space.

S3 A theoretical derivation of the GenSMC algorithm

To derive and justify GenSMC (Algorithm S-1) for the GenPOMP model, we work up in stages from
a simple and standard SMC algorithm. Initially working in discrete time, we start in Section S3.1
by writing an SMC algorithm that allows for general dependence between the latent process and
the observation process. Then, we consider a useful class of targeted proposal distributions in
Section S3.2. We add hierarchical layers of resampling in Section S3.3. In Section S3.4, we consider
a just-in-time approach to construction of state variables which can have their creation postponed
until necessary. In Section S3.5, we move these developments into the context of continuous time
models. Putting these components together, we obtain Algorithm S-1.

S3.1 A basic SMC algorithm

Consider a model consisting of a latent stochastic process X0:N = (X0, X1, . . . , XN ) and an observ-
able process Y1:N = (Y1, Y2, . . . , YN ). In this setting, N corresponds to the number of discrete time
points, differing from the notation of Section S1. Data consist of a sequence y∗1:N ∈ YN , modeled
as a realization of Y1:N . We suppose Xn and Yn take values in measurable spaces X and Y, and we
require the existence of a joint density fX0:N ,Y1:N on XN+1×YN . Conditional densities are denoted
using subscripts, for example, the density of Yn given Y1:n−1 and X0:n is written as

fYn|X0:n,Y1:n−1
(yn |x0:n, y1:n−1). (S12)

In a standard POMP model, {Xn} is a latent Markov process and the conditional distribution of
Yn depends only on Xn (Bretó et al., 2009). In the context of GenPOMP, we require the marginal
Markov property for the latent process,

fXn|X0:n−1
(xn |x0:n−1) = fXn|Xn−1

(xn |xn−1). (S13)

but we allow a general form for the measurement model in equation (S12), where the conditional
distribution of the nth observation can depend on the entire histories of the latent process and
the observation process. SMC techniques for POMP models can be extended to this more general
dependence structure (Liu, 2001). A basic SMC algorithm is outlined in Algorithm S-2. This is
essentially the basic bootstrap filter algorithm of Gordon et al. (1993), generalized to allow for
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the dependence on the history of the process in (S12). Notationally, for Algorithm S-2 we set
Xn = X0:n and use superscripts F and P to denote particles representing the filtering and predic-
tion distributions respectively. We use systematic resampling in place of multinomial resampling
(Arulampalam et al., 2002; Douc et al., 2005).

Algorithm S-2: A basic Sequential Monte Carlo (SMC) algorithm:

input: simulator for fXn|Xn−1
(xn |xn−1); simulator for fX0(x0); evaluator for

fYn|X1:n,Y1:n−1
(y∗n |x1:n, y

∗
1:n−1); data, y∗1:N ; number of particles, J .

1 initialize filter particles: simulate XF
0,j ∼ fX0 (x0) for j in 1 : J

2 initialize particle filter history: X F
0,j = XF

0,j

3 for n in 1 :N do
4 prediction simulation: XP

n,j ∼ fXn|Xn−1

(
xn|XF

n−1,j

)
for j in 1 : J .

5 history of the prediction: X P
n,j =

(
X F
n−1,j , X

P
n,j

)
6 evaluate weights: w(n, j) = fYn|X0:n,Y1:n−1

(y∗n|X P
n,j , y

∗
1:n−1) for j in 1 : J

7 normalize weights: w̃(n, j) = w(n, j)/
∑J

m=1w(n,m)
8 apply systematic sampling to select indices k1:J with P {kj = m} = w̃(n,m).
9 resample: set XF

n,j = XP
n,kj

and X F
n,j = X P

n,kj
for j in 1 : J

10 estimate conditional log likelihood: ˆ̀
n|1:n−1 = log

(
J−1

∑J
m=1w(n,m)

)
11 end

output: log likelihood estimate, ˆ̀=
∑N

n=1
ˆ̀
n|1:n−1; filter sample, X F

n,1:J , for n in 0 :N .

Computational resources are an issue for GenPOMP models, since the spaces X and Y are both
large. Furthermore, the dependence on the history in (S12) leads to additional computational
requirements for both memory and numerical operations. Careful implementation of SMC is there-
fore necessary to make the approach practical. We therefore proceed to develop extensions of
Algorithm S-2 that are necessary to improve numerical tractability for GenPOMP models.

To understand Algorithm S-2, and subsequently extend it, we write out an algebraic justification
of the prediction and filtering steps. For a general latent process X0:N and observable process Y1:N

modeling data y∗1:N collected at times t1:N , assuming (S12) and (S13), the prediction identity is

fX0:n|Y1:n−1
(x0:n | y∗1:n−1) = fXn|Xn−1

(xn |xn−1)fX0:n−1|Y1:n−1
(x0:n−1 | y∗1:n−1) (S14)

The SMC interpretation of (S14) is that fX0:n−1|Y1:n−1
(x0:n−1 | y∗1:n−1) is represented by a collection

of J filter particles X F,j
n−1, j = 1, . . . , J . Algorithm S-2 corresponds to a basic version of SMC in

which particle j has a time tn value generated from fXn|Xn−1
(xn |XF

n−1,j) to give rise to a time tn
prediction particle XP

n,j . X
P
n,j inherits its history from XF

n−1,j and so X P
n,j =

(
X F
n−1,j , X

P
n,j

)
.

A general filtering identity is

fX0:n|Y1:n(x0:n | y∗1:n) =

[
fYn|X0:n,Y1:n−1

(y∗n |x0:n, y
∗
1:n−1)

fYn|Y1:n−1
(y∗n | y∗1:n−1)

]
fX0:n|Y1:n−1

(x0:n | y∗1:n−1). (S15)

The SMC interpretation of (S15) is that observation y∗n requires the prediction particle X P
n,j repre-

senting fX0:n|Y1:n−1
(x0:n | y∗1:n−1) to be given a weight proportional to fYn|X0:n,Y1:n−1

(y∗n |X P
n,j , y

∗
1:n−1).
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The denominator on the right hand side of (S15) is an irrelevant constant for computing the nor-
malized weights. However, this denominator is approximated in Algorithm S-2 as the normalizing
constant, giving a Monte Carlo estimate of the nth term in a factorization of the likelihood of the
data,

fY1:N (y∗1:N ) = fY0(y∗0)
N∏
n=1

fYn|Y1:n−1
(y∗n | y∗1:n−1). (S16)

For a discrete time representation of a simple GenPOMP model, Algorithm S-2 might be directly
applicable. For example one can take Xn to correspond to all the information about individuals
in the population at time n, so that X0:n includes the transmission tree. We could also suppose
that X0:n includes information on who would get sequenced if there are observed sequences—but
not how many sequences were observed, which is part of the measurement. For example, at each
time point tn, the state could contain a permutation listing the order in which eligible individuals
are sequenced. This construction may appear somewhat contrived, and we proceed to relax it by
allowing part of the latent process to be fully observed and therefore also be part of the measurement
process. Regardless of that issue, evaluation of fYn|X0:n,Y1:n−1

(y∗n|x0:n, y
∗
1:n−1) involves evaluating

the likelihood of a phylogeny, which can be computed efficiently by a peeling algorithm, together
with term for the probability of the sequence being collected.

S3.2 A targeted SMC approach with a partial plug-and-play property

Some models of interest may have the feature that the event of obtaining a measurement has an
appreciable consequence for the latent dynamics. HIV, for example, has the features that sequencing
of the pathogen typically occurs at diagnosis. The fraction of infections which are sequenced is high,
and diagnosis plays an important role in transmission dynamics both through changes in sexual
contact behavior and reduced infectivity due to antiviral drugs. For HIV, it is therefore natural to
consider models where sequencing events correspond to transitions of an individual between states
and therefore correspond to a perfectly observed component of the latent process. This kind of
situation needs some extra care, since fYn|X0:n,Y1:n−1

(y∗n|X P
n,j , y

∗
1:n−1) in Algorithm S-2 becomes zero

for every draw of X P
n,j which is not consistent with y∗n. The standard SMC approach to this is to

allow for the possibility of targeted SMC proposal distributions, not necessarily the “vanilla” choice
fXn|Xn−1

. Suppose the proposal distribution for the SMC algorithm is qn(xn|xn−1, y
∗
n), which is

permissible since the proposal distribution is in general allowed to depend on any past, current or
future observations. This corresponds to rewriting (S14) as

fX0:n|Y1:n−1
(x0:n | y∗1:n−1) =

[
fXn|Xn−1

(xn |xn−1)

qn(xn|xn−1, y∗n)

]
qn(xn|xn−1, y

∗
n)fX0:n−1|Y1:n−1

(x0:n−1 | y∗1:n−1), (S17)

which is interpreted to mean that the targeted SMC proposal particle X P
n,j , with XP

n,j drawn

from qn(xn|XF
n−1,j , y

∗
n), must be given a weight fXn|Xn−1

(XP
n,j |XF

n−1,j)
{
qn(XP

n,j |XF
n−1,j , y

∗
n)
}−1

corresponding to the ratio in square brackets in (S17).

A special case of a targeted proposal arises in the situation where part of the state variable is
perfectly observed. To describe this situation, suppose we can partition the latent and observable
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processes as,

Xn = (An, Bn), (S18)

Yn = (Bn, Cn), (S19)

with the data being (b∗1:N , c
∗
1:N ). The prediction identity in (S17) can then be written as

fAn,Bn,X0:n−1|Y1:n−1
(an, b

∗
n, x0:n−1 | y∗1:n−1)

=

[
fAn,Bn|Xn−1

(an, b
∗
n |xn−1)

qn(an|xn−1, y∗n)

]
qn(an|xn−1, y

∗
n)fX0:n−1|Y1:n−1

(x0:n−1 | y∗1:n−1). (S20)

Then, to obtain the filtering distribution fAn,X1:n−1|Bn,Y1:n−1
(an, x0:n−1 | b∗n, y∗1:n−1) one normalizes

the weighted particle representation of fAn,Bn,X0:n−1|Y1:n−1
(an, b

∗
n, x1:n−1|y∗1:n−1) in (S20), with the

normalizing constant being the conditional likelihood, fBn|Y1:n−1
(b∗n|y∗1:n−1). A particular target

choice of interest in (S20) is

qn(an|xn−1, y
∗
n) = fAn|Xn−1

(an |xn−1). (S21)

(S20) becomes

fAn,Bn,X0:n−1|Y1:n−1
(an, b

∗
n, x0:n−1 | y∗1:n−1)

=
[
fBn|An,Xn−1

(b∗n|an, xn−1)
]
fAn|Xn−1

(an |xn−1)fX0:n−1|Y1:n−1
(x0:n−1 | y∗1:n−1). (S22)

On the component of the state space that is not perfectly observed, the proposal in (S21) is plug-
and-play (Bretó et al., 2009; He et al., 2010) meaning that the algorithm needs only a simulation
from fAn|Xn−1

(an |xn−1). However, we require numerically tractable evaluation of the importance
sampling weight

fBn|An,Xn−1
(b∗n|an, xn−1),

arising from the identity (S22), and so we describe the algorithm as partially plug and play.

Using a targeted proposal typically leads to algorithms without the plug-and-play property. Here,
we work with situations where fBn|An,Xn−1

(b∗n|an, xn−1) is tractable, even if the complete transition
density of (An, Bn) is intractable. Thus, fAn|Xn−1

(an |xn−1) can be specified in a fairly arbitrary
way.

Example 1. Bn might be the number of diagnoses at time n, which might have a Poisson or
negative binomial distribution conditional on An.

Example 2. Writing the number of sequenced diagnoses at time n by DS
n , unsequenced diagnoses

by DU
n , and infected individuals by In, we might have Bn = (DS

n , D
U ) and An = In. The joint

distribution of DS
n , DU

n and In −DS
n −DU

n might be multinomial given In.

Example 3. Bn might describe the race or age group of diagnosed individuals as well as whether
they were sequenced.
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S3.3 SMC with hierarchical sampling

For computational considerations, it may be preferable to maintain J filtering particles and generate
K prediction particles from each, rather than maintaining JK filtering particles. Computation of
the K prediction particles can be localized on a single core of multi-processor hardware, and the
memory usage may scale with J rather than JK.

In the context of Algorithm S-2, extended to include the general proposal distribution of Sec-
tion S3.2, we write {XP

n,jk, k ∈ 1 :K} for K draws from qn(xn|XF
n−1,j , y

∗
n) for each value of j. We

compute the weights in the second layer of the hierarchy by

wn,jk = fXn|Xn−1

(
XP
n,jk |XF

n−1,j

)[
qn
(
XP
n,j |XF

n−1,j , y
∗
n

)]−1
.

We then define XF
n,j to be a draw from {XP

n,jk, k ∈ 1 :K} with probability proportional to wn,jk,

with the history X F
n,j being constructed accordingly. We then assign X F

n,j a weight

wn,j =
1

K

K∑
k=1

wn,jk. (S23)

The filter particles {X F
n,j , j = 1, . . . , J} can be again resampled with weight proportional to wn,j

if so desired. Resampling each layer of the hierarchy one at a time gives an approach that we
call staggered resampling. It might sometimes be preferable to resample J particles from all JK
particles {XP

n,jk, j = 1 : J, k = 1 : K} with weights wn,jk. This process, resampling two or more
layers of the hierarchy at the same time, we call simultaneous resampling. The staggered resampling
in (S23) can have computational advantages in terms of memory: one never needs to keep all JK
particles in memory simultaneously. Also, staggered resampling is convenient in a multi-processor
computational environment, where the computations for the first layer of the hierarchy can be
split across processors and the second layer can be computed without any need for communication
between processors.

Another motivation for hierarchical sampling arises when one can separate the generation of the
prediction particle into a computationally expensive step followed by a cheap step. Heuristically,
if the particles are large and computationally expensive, one wants to ensure that a particle does
not get culled due to a single unfortunate draw from a proposal distribution. A component of
the proposal distribution that is computationally expensive but not critical for the particle weight
should be carried out relatively few times. By contrast, a component of the proposal distribution
that is computationally cheap but critical for the particle weight, and hence for the survival of
the particle, should be carried out relatively many times. For this motivation, there may be
no compelling reason to carry out staggered resampling, in which case simultaneous resampling
should be preferred. Both hierarchical sampling possibilities can arise in different parts of a single
algorithm, potentially giving rise to several layers of sampling and resampling.

SMC with hierarchical sampling fits within the general theory of SMC (Naesseth et al., 2015),
and theory exists to guide a good sampling structure (Skinner et al., 1989). In practice, however,
preliminary experimentation is a good guide. Hierarchical resampling receives diminishing returns
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for increasing values of K, since since J is the basic Monte Carlo sample size which asymptotically
justifies the Monte Carlo approach. Moderate values of K > 1 can have compelling practical
advantages, which can be quantified by evaluating the variance of the Monte Carlo likelihood
estimate.

S3.4 Just-in-time evaluation of some state variable components

In equation S3, our GenPOMP model included state processes {Γ(t)} and {∆(t)} which have no role
in the dynamics, meaning that they do not affect the infinitesimal transition probabilities for {Φ(t)}
and {Ψ(t)} but do affect the measurements. If the measurements depend only on some subset or
combination of these state variables, it is computationally desirable to generate the required subsets
or combinations only when needed. Carrying out this computational shortcut, which we call just-
in-time generation, does not change the model under consideration so long as the required variables
are properly constructed at the time they become necessary. Two advantages to just-in-time state
variable generation are

1. There may be state variables which, on some event of positive probability, have no effect on
the measured components of the system. These state variables can be omitted when carrying
out inferences on the rest of the system.

2. The sampling of these variables, and consequent resampling of particles, occurs only when
information on the just-in-time variables arrives. In combination with hierarchical sampling
(Section S3.3), trying multiple copies of the just-in-time variables for each particle can help
to prevent particles being lost due to a single unfortunate draw of a random variable.

To formalize the definition of just-in-time variables, we suppose that Xn can be split into two parts,
written as

Xn = (Φn,Υn).

We say that Ξn = hn(X0:n) gives a just-in-time representation of Υn if

fYn|Y1:n−1,X0:n
(yn | y1:n−1, x0:n) = fYn|Y1:n−1,Φ0:n,Ξ0:n

(
yn | y1:n−1, φ0:n, ξ0:n), (S24)

where ξn = hn(x0:n). If we can evaluate (S24) and simulate draws from fΦn,Ξn|Φ0:n−1,Ξn−1
, then

we can effectively replace Υn by Ξn in an SMC method such as Algorithm S-2. A particular case,
arising in the just-in-time replacement of

(
Γ(t),∆(t)

)
by
(
U(t), V (t)

)
in Algorithm S-1, occurs

when the dynamics of {Φn} do not depend on {Υn}, i.e.,

fΦn|X0:n−1
(φn |x0:n−1) = fΦn|Φ0:n−1

(φn |φ0:n−1). (S25)

In this case, implementing a just-in-time scheme requires that we can draw from fΞn|Φ1:n,Ξn−1
and

we can evaluate the density in equation (S24). In practice, Ξ0 may be a trivial random variable,
since there is no observation at t0, but this is not necessary for the just-in-time construction.

The utility of just-in-time evaluation depends in part on the reduction of dimension in replacing
Ξn by Υn. For example, nothing is gained by the just-in-time representation Ξn = Υn.
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S3.5 Moving from discrete time to continuous time

Continuous time Markov population models can be approximated in discrete time by a Markov
chain (Bretó et al., 2009) using a stochastic Euler method. A continuous time measurement model
can similarly be discretized to match the time steps of the Euler approximation. For a continuous
time latent process model, suppose that {X(t), t ∈ T} is a right continuous stochastic process
taking values in X. We suppose that the continuous-time measurement process {Y (t)} consists of a
counting process, {D(t)}, together with a sequence of measurements {G1, G2, . . . } where Gn occurs
at time Tn = inf{t : D(t) ≥ n}. This notational setup is based on Section S1, but we no not require
any of the additional structure of a GenPOMP model at this point. We write t∗1 < t∗2 < · · · < t∗n∗ for
the observation times of the data, g∗1:n∗ . Here, we suppose that D(t) is part of X(t) and, specifically,
is represented by the observed component B(t) in the decomposition

X(t) =
(
A(t), B(t)

)
corresponding to a continuous-time version of equation (S18). This situation arises in GenPOMP
models when {D(t)} counts diagnosis events for a disease transmission model {X(t)}, as in Sec-
tion S1. Suppose that the rate of observation events at time t does not depend on the measurement
process {Yn : tn ≤ t} given the current state process X(t), i.e.,

P[D(t+ δ)−D(t) = 0 |X(t), {Ys, s ≤ t}] = 1− ρ(A(t)) δ + o(δ), (S26)

P[D(t+ δ)−D(t) = 1 |X(t), {Ys, s ≤ t}] = ρ(A(t)) δ + o(δ). (S27)

Then, dividing the interval (t∗n−1, t
∗
n] into subintervals of width δ and taking δ → 0, the limit of

discrete approximations using (S26) and (S27) corresponds to a combined weight from evaluating
(S23) in each of the 1/δ subintervals with no measurement followed by one subinterval with a
measurement, i.e.,

lim
δ→0


(t∗n−t∗n−1)/δ∏

m=1

(
1− ρ

(
A(t∗n−1 +mδ)

))× ρ(A(t∗k)
)
fGk|G1:n−1,T1:n,X0:n

(g∗n | g∗1:n−1, t
∗
1:n, x0:n)

= exp

{
−
∫ t∗n

t∗n−1

ρ
(
A(s)

)
ds

}
× ρ
(
A(t∗n)

)
× fGk|G1:n−1,T1:n,X0:n

(g∗n | g∗1:n−1, t
∗
1:n, x0:n). (S28)

Note that one can view the first two terms of the product in equation (S28) as a density with
respect to Poisson counting measure.

S4 Details of the HIV model used in the main text

In this section we provide additional details that describe the HIV model used in the main text. As
the system is Markovian, we can fully specify the model by defining probabilities of each possible
change to the state of the system given the current state over an interval of time δ. There are three
types of events that change the state of system, each in a fundamentally different way:
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1. An individual changes class. This event modifies an existing lineage on a transmission tree.

2. An individual in the study population infects a new individual. This event adds a new lineage
to an existing transmission tree.

3. An individual outside the study population infects a new individual. This event seeds a new
transmission tree consisting of a single individual. The genetic tree associated with with this
new transmission tree joins all other genetic trees at the polytomy.

We define probabilities for the first two types of events from an individual-based perspective. Recall
that the state of any individual i at time t is given by a random process {Xi(t)}. The probabilities
of class changes for each individual over an interval of time δ are given by

P
[
Xi(t+ δ) = I1 | Xi(t) = I0

]
= δγI0 + o(δ),

P
[
Xi(t+ δ) = J0 | Xi(t) = I0

]
= δρ0 + o(δ),

P
[
Xi(t+ δ) = I2 | Xi(t) = I1

]
= δγI1 + o(δ),

P
[
Xi(t+ δ) = J1 | Xi(t) = I1

]
= δρ1 + o(δ),

P
[
Xi(t+ δ) = J2 | Xi(t) = I2

]
= δρ2 + o(δ),

P
[
Xi(t+ δ) = J1 | Xi(t) = J0

]
= δγJ0 + o(δ),

P
[
Xi(t+ δ) = J2 | Xi(t) = J1

]
= δγJ1 + o(δ),

P
[
Xi(t+ δ) = � | Xi(t) = s

]
= δ(µs + φ) + o(δ).

(S29)

Above, µs is a state-dependent death rate for an individual in state s ∈ S = {I0, I1, I2, J0, J1, J2},
Xi(t) = � if individual i is not in the study population at time t, and φ is a constant rate of
emigration from the study population. The probability that an infected individual from inside the
population gives rise to a new infection is,

P
[
the ith individual infects a new individual in [t, t+ δ]| Xi(t) = s

]
= δεs + o(δ),

where εs is the infectiousness of an individual in state s. The probability that an infected individual
from outside the population gives rise to a new infection is,

P
[
an infection occurs from outside the study population in [t, t+ δ]

]
= δψ + o(δ).

Note that this last probability, in contrast to those before, is not defined on a per capita basis.
Also note that all new infections start in class I0; this model does not allow immigration of later
stage infected (or diagnosed) individuals into the population.

This model closely resembles a model from a recent phylodynamic analysis of the Detroit HIV
epidemic Volz et al. (2013), but differs in key ways. First, whereas Volz et al. (2013) modeled
incidence as a smooth, deterministic function, we model incidence mechanistically as a function
of the states of individuals in the system. Second, instead of using a system of deterministic
ordinary differential equations to model counts of individuals in each state, our model incorporates
stochasticity into the process of state transitions.
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S4.1 Initial values for the HIV model

The initial value for a GenPOMP model is X(t0). In general, the initial value can be treated as
an unknown parameter vector which can be estimated using our GenIF methodology. There may
be only limited information about these parameters in the data, but that is not a major problem
for constructing profile likelihood estimates on other parameters of interest. However, a more
parsimonious modeling approach is to setX(t0) to be a suitable function of the values of the dynamic
parameters. For example, under a stationarity assumption for the dynamic system, one might set
X(t0) to be a random draw from the stationary distribution or some mean value approximation to
this. Our HIV model is not stationary, since we follow an age-cohort, but nevertheless we decided
to initialize at plausible values given the dynamic parameters rather than estimate additional
parameters. Further investigation could relax this assumption.

Part of the specification of X(t0) involves determining the genetic relationship assumed between
infections that do not occur in the study population during the modeled period. The time t0
at which we start modeling the population does not have to match the time at which we start
to observe it. We could, for example, have zero sequencing probability before some time point.
However, for our HIV model, these two times coincide. In the context of this HIV model, this
component of the initial value involves determining the depth of the assumed polytomy, quantified
by the time troot < t0 at which all trees in the transmission forest are modeled as meeting in the
phylogenetic tree.

We carried out the following construction of the initial values of the membership of each compart-
ment. We first note that the total number of diagnosed individuals is a perfectly observed quantity.
By selecting a cohort, we have the advantage of working with a well-defined subpopulation. Over
the time period from 2000 to 2012 we know exactly how many individuals were diagnosed. The
MDCH dataset only has gene sequences between 2004 and 2012, so we decided to set t0 = 2004. By
2004, the cohort grew to have 42 diagnosed individuals. Our aim in specifying initial counts is to
apportion these 42 individuals to the three different classes of diagnosed individuals and populate
the three unobserved states (the undiagnosed individuals) with counts. We assume no deaths over
this period of four years. We constructed initial counts for each class by calculating under some
additional assumptions under which these values become numerically tractable. First, we made the
approximation that all rates of flow, with the exception of h(t), are fixed at a current parameter
estimate. Further, we suppose that h(t) is constant at some fixed value,

h(t) = h0,

ignoring the dependence of h(t) on the state of the system. We then approximate the initial state
by setting up and solving differential equations representing a deterministic solution to the model
equation, formally equivalent to requiring the system of equations (S29) to hold in expectation.
We fixed all rates of flow except h(t0) as described in the main text. Then, if the study cohort
begins with all counts at zero in 2000, there is only one possible h0 for which the total number of
diagnoses in this approximating model matches the observed total number of diagnoses. We then
solve for this value of h0 and in doing so we obtain the counts in each compartment. Trajectories
for the six states and their final values after four years are shown in Figure S4.1. This approach
to setting initial counts is not self-consistent with the model, as the model assumes that the rate of
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new infections is dependent on the state of the system, or with the timing of diagnoses observed in
the four years leading up to the start of filtering. This simple way of setting the initial conditions
is a starting point. Exploring the effect of initial conditions on model fits could be an area of future
work.

We treated the time of the polytomy as an initial value parameter, with each particle starting with
its own polytomy time. In this way, the polytomy time fits naturally into the iterated filtering
maximization routines.
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Figure S-4: Trajectories of counts of each class of infected individuals over four years prior to t0 =
2004 when assuming a constant rate of new infections, all flows between and out of compartments
as specified in the main text, and zero individuals initially in the cohort. We used the resulting
counts in 2004 as the initial values for the data analysis.
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S4.2 Algorithmic parameters used for the numerical results

The choice of algorithmic parameters can affect the numerical efficiency of the GenSMC and GenIF
algorithms. For large computations, when Monte Carlo variability is an appreciable component of
parameter uncertainty, this can have an effect on the quality of the resulting statistical inferences.
In Table S-1 we supply the algorithmic parameters that we used in the simulation study (for
GenSMC) and in the data analysis (for both GenIF and GenSMC). We selected J , K, L and M
such that Monte Carlo uncertainty on parameter estimates and confidence intervals was tolerable
(Ionides et al., 2016) and such that runtimes were not prohibitively long.

Three of the algorithmic parameters are only used in GenIF: the random walk standard deviation,
σrw, the cooling factor, αc, and the number of GenIF iterations, I. Together, these parameters
determine the extent to which GenIF shrinks the diameter of the parameter swarm. In the GenIF
algorithm, perturbation of parameters over which we are maximizing occurs for each particle just
before the proposal step. We perturb the parameters by multiplying each by a random deviate from
a log normal distribution with mean one and standard deviation σrwα

i
c, where i ∈ {0, 1, ..., I − 1}

is the iteration of GenIF. This choice of perturbation is appropriate for nonnegative parameters.
Although our framework allows for a different random walk standard deviation for each parameter,
in this case we found that the same random walk standard deviation for all parameters was effective,
and we report this value in Table S-1.

The algorithmic parameters in Table S-1 together with the source code at https://github.com/

kingaa/genpomp are sufficient to reproduce the methodology we apply in our analysis. The HIV
sequence data we analyzed are not publicly available, in accordance with our data use agreement
with Michigan Department of Community Health.
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Table S-1: Algorithmic parameters used in the simulation study and the data analysis.

Algorithmic
parameter

Description

Simulation
Study

Data Analysis

GenSMC GenIF GenSMC

Diagnosis
data only

Diagnosis
data and
genetic

sequences

Diagnosis
data only

Diagnosis
data and
genetic

sequences

Diagnosis
data only

Diagnosis
data and
genetic

sequences

J
Number of
particles

10000 60000 10000 10000 10000 10000

K

Number of
attachment

sites per
sequence

- 5 - 10 - 10

L

Number of
relaxed clock

gamma
samples per
attachment

site

- 10 - 10 - 10

M

Number of
relaxed clock
beta samples
per gamma

- 1 - 1 - 1

αc Cooling factor - - 0.95 0.95 - -

σrw

Random walk
standard
deviation

- - 0.01 0.01 - -

I
Number of

GenIF
iterations

- - 50 30 - -
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