Supporting Information

Effect of Incorporating Clustered Silica Nanoparticles on the Performance and Biocompatibility of Catechol-Containing PEG-Based Bioadhesive

Rattapol Pinnaratip, Hao Meng, Rupak M. Rajachar, Bruce P. Lee*

Corresponding Author: Dr. Bruce P. Lee Email: bplee@mtu.edu Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States

Figur S1. Chemical structure of PEG-DA with a hexaglycerol core. The molecular weight of PEG is 20kDa.

Figure S2. Photograph of the adhesive before (A) and after (B) curing.

Figure. S3 Storage (G') (A and B) and loss (G") (C) moduli of the PEG-DA composite adhesives during the initial curing process at a frequency and amplitude of 0.1 Hz and 10% strain, respectively. G' is higher than G" for both PEG10%M and PEG10%N starting at 10 second indicate faster gelation compared to PEG-DA (starting at 50 second) (B)

Figure S4. Storage (G') and loss (G") moduli of the PEG-DA composite adhesives after 24-hour incubation in PBS test at a strain of 0.01-100 % and a frequency of 1 Hz.

Figure S5. Representative load vs. displacement curves for PEG10%M, PEG10%N, and PEG-DA during lap shear adhesion testing.

Figure S6. CD163 M2 macrophage staining (red color) of the surrounding tissues implanted with PEG-DA (A), PEG10%N (B), and PEG10%M (C). Dash lines indicate the tissue-adhesive interface. The dotted line in (C) indicates the depth of cellular infiltration. The letter "h" indicates the location of the adhesive. Scale bar is 200 μ m.