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RNA Extraction, Library Prep, Data Processing, and Analysis. Total
RNA was isolated from 50 to 60 seedlings (∼50 mg fresh
weight) using the Omega Bio-Tek E.Z.N.A. Plant RNA Mini
Kit, including on-column DNase I digestion from four independent
experiments per genotype, and subjected to ribosomal RNA de-
pletion. RNA was submitted to the University of Utah Genomics
core for further processing. Because we expect mRNA decapping
mutants to accumulate capped deadenylated mRNAs, rRNA was
removed using the Epicentre RiboZero Plant Leaf kit before library
construction using the Illumina TruSeq Stranded Library Prepara-
tion kit. The samples were multiplexed so that one time course
replicate of one genotype—a total of eight samples—were
loaded onto a single lane. Raw and processed data for each
gene are available at the Gene Expression Omnibus (https://
www.ncbi.nlm.nih.gov/geo/), accession GSE86361.
The resulting sequences were aligned and processed using

samtools version 0.1.19-44428cd, Bowtie2 version 2.2.3,
TopHat2 v2.0.12, HTSEq. 0.6.1, and R version 3.1.0. FastQC
was run on all 128 sequenced libraries to verify read quality.
Sequence reads were aligned to the genome [The Arabidopsis
Information Resource, release 10 (TAIR10)] using the following
command in TopHat2: tophat2–b2-very-sensitive–no-novel-
juncs–max-multihits 1–library-type fr-firststrand. Generated binary
sequence alignment/map format (BAM) files were indexed
and sorted using samtools before counting reads using HTSeq:
htseq-count -t gene -I ID–stranded = reverse. Read counts were
normalized to library size, and library size was scaled to
1 million [reads per million (RPM)]. For gene to gene com-
parisons, read counts were further normalized to transcript
(representative splice variant for each gene) length and scaled to
1,000 nt [reads per thousand per million (RPKM)]. Further
analyses were performed with in-house scripts using R and
Bioconductor packages. Venn diagrams were generated using
eulerAPE (1).

Decay Profile Normalization. To calculate transcript specific decay
rates genome-wide, transcript read abundances (RPMs) were
further normalized to (i) their respective mean T0 values by
genotype and (ii) a sample decay factor (genotype mean for each
time point). Normalization to T0 values converts values to frac-
tional decreases and facilitates comparisons of RNA decay
profiles. Decay factor normalization is necessary for the following
reasons: As a majority of transcripts decay, the total pool of RNA
decreases, and stable transcripts become a larger proportion of the
library. This causes their RPM values to increase relative to T0 even
though their cellular levels may change very little or not at all. To
adjust for this, the library values were scaled based on the assumption
that the mean apparent fold increase of 30 stable reference genes
reflects the total cellular decrease in the RNA pool. Reference genes
were manually selected from the 500 most highly expressed genes
based on their T0 normalized decay profile, and include nuclear and
organellar transcripts known to be stable: ATCG00490, ATCG00680,
ATMG00280, ATCG00580, ATCG00140, AT4G38970,
AT2G07671, ATCG00570, ATMG00730, AT2G07727,
AT2G07687, ATMG00160, AT3G11630, ATMG00060,
ATCG00600, ATMG00220, ATMG01170, ATMG00410,
AT1G78900, AT3G55440, ATMG01320, AT2G21170,
AT5G08670, AT5G53300, ATMG00070, AT1G26630,
AT5G48300, AT2G33040, AT5G08690, and AT1G57720. T0
and decay factor normalized decay profiles were used for mod-
eling decay rates.

Modeling of mRNA Decay and Genotype Effects. We model the
change in RNA concentration with the differential equation

dc
dt

=−AðtÞc, [S1]

where c(t) is the abundance of RNA at time t and A(t) is the
decay rate of the RNA. We assume that the RNA abundance is
strictly decreasing because RNA synthesis is blocked by treat-
ment with cordycepin, and set c(0) = 1 because the data were
normalized to the initial time point for each transcript.
The solution of Eq. S1 is

cðtÞ= e
−

Z
AðtÞdt

.

If the decay rate is constant, A(t) = α, then c(t) follows the
exponential decay model

cðtÞ= e−αt. [S2]

Because many transcripts asymptote to a nonzero value, we also
considered a decreasing decay rate of the form A(t) = αe−βt. This
defines the decaying decay model

cðtÞ= e−
α
β ð1−e−βtÞ. [S3]

We assume that the parameters α and β for a given transcript
could be different for each genotype but are the same for each
replicate. The α and β parameters for each genotype are defined
as follows: α1 = αWT is the decay rate of WT genotype, α2 = αsov
is the decay rate of sov genotype, α3 = αvcs is the decay rate of vcs
genotype, and α4 = αvcs.sov is the decay rate of vcs sov genotype.
Similar labeling is applied to the β parameters. These values can
vary independently, or different combinations can be constrained
to be equal (Fig. S2A), creating a total of 240 models. For
example, model 165 has α group 11 and β group 5, for which
αWT = αsov = a1, αvcs = a2, αvcs.sov = a3, βWT = βsov = βvcs = b1, and
βvcs.sov = b2.
We index time with i, replicates with j, genotype with k, and

models with l. The RNA abundance mjk(ti) was measured at
eight time points, ti ∈ (0, 7.5, 15, 30, 60, 120, 240, 480), where
time is measured in minutes. With four genotypes, four repli-
cates, and eight time points, there are n = 128 observations for
each transcript.
We assume that errors around each model are normally dis-

tributed with mean 0 and variance σl2, «l ≈ N(0, σl2), estimated
separately for each model. The data were fit to the exponential
decay model ½cðti; αkÞ= e−αkti + «l� and the decaying decay model�
cðti; αk, βKÞ= e−

αk
βk
ð1−e−βkti Þ + «l

�
by finding the values of the pa-

rameters that minimize the sum of the squared errors SSEl. At
these values, σ2l = SSEl=n,

SSElðα; t,mÞ=
X4

k=1

X4

j=1

X8

i=1
«2l

=
X4

k=1

X4

j=1

X8

i=1

�
mjkðtiÞ− cðti; αkÞ

�2

=
X4

k=1
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�
mjkðtiÞ− e−αkti

�2 [S4]
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[S5]

Because the residuals, «l, are assumed to be normally distributed,
this is equivalent to finding parameters such that the log likeli-
hood (L) of the residuals is maximized with

Lðparameters;  dataÞ=−
n
2
In
�
2πσ2l

�
−
SSEl

2σ2l
.

For each transcript, we fit decay of the four genotypes to the
225 decaying decay models (Eq. S5) and 15 exponential decay
models (Eq. S4). We found optimal parameter estimates by min-
imizing the SSE using the slsqp() function from the nloptr pack-
age in R (2–5), using linear equality constraints to distinguish the
240 models. The TMB package (6) was used to ensure accuracy
and efficiency of the optimization calculations, given that some
models have high dimensional parameter space.
We constrained the parameter estimates for the decaying decay

model to the intervals α ∈ [0.0001,0.75] and β ∈ [0.001,0.075] for
the following reasons. When α = 0 in Eq. S3, the parameter β is
undetermined, and the exponential decay model captures this
constant case. Thus, we constrain α away from zero when fitting
this model. When β is large, 1 − e−βt ≈ 1, meaning that β appears
only in the combination α/β and cannot be identified separately
from α. When β is small, 1 − e−βt ≈ −βt and c(t) ≈ e−αt. In each of
these cases, the behavior can be captured by the simpler expo-
nential decay model.
We chose the precise intervals based on the first and last times of

the measurements, 7.5 min and 480 min. To find the upper bound
of α = 0.75, we note that c(7.5) = e−0.75(7.5) ≈ 0.004, meaning that
effectively all transcript has decayed before the first time point
and that we cannot observe a higher decay rate from our data. For
the exponential decay model, we constrain α to the interval [0,
0.75]. To find the lower bound of α in the decaying decay model,
with α = 0.0001, c(480) = e−0.0001(480) ≈ 0.95, a degree of decay
sufficiently small to make it impossible to detect any slowing of the
decay rate. In the decaying decay model, we thus constrain α to
the interval [0.0001, 0.75]. To find the lower bound of the β, we
observe that 1 − e−βt ≈ −βt if β < 1/480 ≈ 0.002, making smaller
values of β unobservable. To find the upper bound on β, we re-
quire the first four time points, up through t = 60, to give in-
formation on changes in the decay rate. To find the value of
β where less than 99% of transcript has decayed by this time, we
solve e−60β = 0.01 to find that β = −(1/60)ln(0.01) ≈ 0.077. We
thus constrain β to the interval [0.001, 0.075].
We used 50 different starting conditions in the optimization

of each gene–model pair (18,674 × 240 = 4,481,760). These
starting conditions were selected by explicitly finding the min-
imum of a discrete approximation of the sum of the squared
errors function for the two simplest models: model 239, where
α and β are the same for all genotypes, and model 240, where α
is the same for all genotypes and β = 0. We selected the first
25 starting α values from a normal distribution with SD of
0.01 centered at the α corresponding to the minimum of model
239 for that gene. The additional 25 starting α values were
selected from a normal distribution with SD of 0.01 centered at
the α corresponding to the minimum of model 240 for that
gene. The first 25 starting β values were selected from a normal

distribution with SD 0.01 centered at the β corresponding to
the minimum of model 239 for that gene. To ensure complete
search of the likelihood surface, the additional 25 starting
β values were selected from a uniform distribution over all
possible β values [0.001, 0.075].
For each gene-model pair, we selected, from these 50 optimi-

zation results, those with a log likelihood within our tolerance,
∈ = 10−4, of the maximum, and defined J to be the number that
lie within this set. We checked the consistency of these J pa-
rameter estimates by computing Ctot, the sum of a modified
coefficient of variation over all eight parameters, where the
modified coefficient of variation is defined as the ratio of the SD
to the mean plus the tolerance ∈. We add ∈ to the denominator
to avoid large values created by low estimates of the parameter
α. The parameters we report are the average of each parameter
within this set, and we checked that these reported parameters
gave an Akaike information criterion (AICc) within our toler-
ance (∈) of the AICc calculated with the maximum log likelihood
for that gene-model pair. This difference was never larger than
2 × 10−5 for the model with lowest AICc.
After fitting each of the transcripts to all 240 models and

finding the maximum log likelihood Lmax, we compared models
using the corrected AICc,

AICC =−2Lmax + 2p+
2pð1+ pÞ
n− p− 1

,

where p is the number of parameters in the model and n = 128 is
the number of observations. For example, with model 165, there
are three α values, two β values, and σ1652 for a total of P = 6. We
used the AICc because there are relatively few observations com-
pared with the number of parameters estimated by each model (7).
For comparison of models for each gene, we consider models

that lie within 2 AICc of the model with the minimum AICc. We
are less confident in our choice of model if any model lying
within 2 AICc of that model has a small value of J, such as J ≤ 5,
indicating that the algorithm might have missed the best value.
This occurred for only 46 of the 18,674 genes, less than 0.3%.
The estimated σ2 provides another measure of goodness of fit for
a model. We found that 1,381 genes (or 7.4%) had a σ2 >
0.065 for the model with the minimum AICc. Because these have
a SD of approximately σ = 0.25, a large proportion of the pos-
sible variation for measurements that range from 0 to 1, these
genes were excluded from further analysis.
We selected the model with the minimum AICc for each tran-

script, and the averaged α and β parameter estimates were used in
further analyses. We interpret α values as the baseline mRNA decay
rates because they give the decay rate at t = 0 for each model.
R code for this analysis is available as an R package at https://

github.com/reedssorenson/RNAdecay.

Bioinformatic Analysis. Gene annotation information and se-
quences were obtained from TAIR 10 (www.arabidopsis.org).
Sequences were analyzed using R packages: Biostrings, ggplot2,
gplots, reshape2, GenomicAlignments, grid, and parallel. GO classi-
fications (“gene_association.tair” file accessed May 5, 2017) were
obtained from the Gene Ontology Consortium (geneontology.org).
Gene subsets modeled in distinct α subgroups were evaluated for
GO enrichment using the GOHyperGAll R script (8).

Small RNA Experiment and Analysis. Total RNA was isolated using
Invitrogen’s Plant RNA Reagent from all four genotypes of the
genome-wide decay analysis at the same T0 as the genome-wide
mRNA decay experiment with three biological replicates. Isolated
RNA was digested with RNase-free TURBO DNase followed by
ammonium acetate and ethanol precipitation. Total RNA aliquots
of 1 μg were submitted to the University of Utah Genomics Core
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for small RNA library preparation (NEBNext Small RNA library
prep for Illumina Sequencing) and sequencing on an Illumina
HiSeq 2500. Flow cell reads were trimmed of adapter sequences,
followed by filtering of reads shorter than 21 nt using cutadapt
v. 1.8.3 with Python 2.6.6 (9). Bowtie v. 1.1.2 (10) was used to align
reads to the TAIR10 genome scaffold with 0 mismatches and
allowing only a single best alignment for any individual read (ar-
guments: -k 1–best -n 0). Following alignment, sense and antisense
reads of 21-, 22-, 23-, and 24-nt lengths were counted by gene and
by exon with the Bioconductor package GenomicAlignments

(version 1.6.3). We used DESeq2 version 1.10.1 with a false dis-
covery rate of 5% to quantify differential expression. We excluded
mitochondrial- and chloroplast-annotated mRNAs, as well as an-
notated nuclear-encoded tRNAs (631), rRNAs (4), small nucleolar
RNAs (71), snRNAs (13), miRNAs (178), and tasiRNAs (8), by
searches for RNA types from TAIR10 via the “Bulk data retrieval”
tool; this left a total of 27,591 transcripts that we classified as small
RNAs and used for further analyses of differential expression.
Raw and processed data for each gene are available at the Gene
Expression Omnibus, accession GSE86361.
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Fig. S1. Workflow and data quality. (A) Schematic of analysis workflow of RNA-Seq decay dataset. (B) Heatmap of pairwise sample Pearson correlation values
of library-normalized read counts for 128 RNA sequencing libraries from four biological replicates of WT (VCS SOV), sov, vcs, and vcs sov genotypes from the
time course.
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Fig. S2. Modeling parameter color map and output analysis. (A) Color map indicating α and β groups for maximum likelihood models. Identical box colors
within a model represent equal values. White boxes indicate the absence of β in a model. (B) Model comparison statistics compared. Model 239 was compared
against all other models for each gene using the Likelihood Ratio Test (LRT; model 239 is nested in all other models) and the AICc. The number of significantly
better models using an AICc difference of >2 and LRT P < 0.05 are compared. Fewer different models using the AICc supports its use as a rigorous statistical
approach. (C) Selected model distribution is displayed as a histogram (Upper). Selected models were the models with the lowest AICc. Similarly scoring models
(i.e., the AICc difference with the lowest model was <2) were tallied for all genes and presented as a heatmap matrix (Lower) and depicts the alternative model
frequency of association for each selected model. This reveals that competing models tended to be in the same α group, or, if the α-group deviated, in the same
β group. (D) Histogram of modeled σ2 estimates from the selected model for each gene. Vertical red line demarcates σ2 = 0.0625 used as a quality cutoff. (E)
Comparison of mRNA half-life found in this study to that of Narsai et al. (11). (F) Log-normal RNA half-life distributions in decay mutants as histograms. Vertical
blue lines represent the median half-life (107 min) of WT (VCS SOV), and magenta lines and numbers represent the median half-life of each respective
decay mutant.
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Fig. S3. Small RNA abundances and tasiRNA sensitivity analysis. (A) Distribution of read counts for all identified 21- to 22-nt siRNAs for sov, vcs, and vcs sov,
relative to the WT. (B) Decay rate comparison of tasiRNA targets in WT and sov mutants; similar decay rates suggest that SOV mutants do not show greater
sensitivity to siRNAs. (C) Comparison of tasiRNA abundance in WT and sov mutants.
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Fig. S4. RNA decay feedback. (A) Comparison of transcript abundance (RPK) from T0 samples of sov (Upper), vcs (Middle), and vcs sov (Lower) relative to WT,
and separated by the magnitude of the decay rate difference. The decay rate differences are labeled in the gray headers, with orange (at left) showing RNAs
with identical decay rates, and increasing decay rate magnitudes toward the right. Magnitude range is given as jlog2 (t1/2/t1/2 WT)j; square brackets, inclusive;
parentheses, exclusive. RNA decay rates (relative to WT) shown by color, with faster depicted in red, and slower depicted in blue. (B) Relative RNA abundances
for RNAs with faster, equal, and slower decay rates, relative to the WT. Near-WT RNA abundance in sov requires VCS. Dashed lines, jlog2 rel. abundancej >1;
solid line, equal expression.
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exclusive). Note that the correlation between VCS dependence and increased abundance only holds for fast-decaying RNAs.
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Fig. S6. Nucleotide frequency in coding sequence and 3′ UTR in relationship to RNA half-life. (Upper) We found no consistent relationship between the
frequency of A, T, C, and G in the CDS and RNA half-life. (Lower) Nucleotide frequency in the 3′ UTR also did not vary with half-life, although we did find that
the 3′ UTR was relatively depleted in C and G, and had elevated levels of T.
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Fig. S7. Analysis of β values of genes expressed in specific cell types. To determine whether β (the decay of decay rate) arose because cordycepin poorly
penetrated some tissues, we compared the distributions of β in cell-specific gene sets (1, 2). The mean β and range of β values were similar for cell type
populations on the exterior and interior of the seedling, suggesting that differential cordycepin penetration was unlikely to have influenced estimated decay
rates or decay-of-decay rates.
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