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Results

Sequence diversity. The numbers of sequence reads obtained (after quality-
filtering) per sample ranged from 26,102 — 257,186 (Table S2). Overall, read depth
varied between samples, but was highest in giant and upland moa from southern
beech sites (Table S2). Taxonomic identities assigned to OTUs (Operational
Taxonomic Units) included a variety of fungi, land plants, parasites and other
eukaryotes (Fig. 2, S1-S4, Table S3). OTUs that did not assign to eukaryote
reference data were considered unidentified (Fig. 2, S1) and were filtered prior to all
subsequent analyses. These unidentified sequences also comprised a relatively high
proportion of coprolite sequence reads (max. 85%; mean 28%), which may not be
unexpected due to variable rates of endogenous DNA degradation that are specific
to environment. Sequences from the mammal samples (1) were relatively
homogenous, similar, and dominated by a small number of abundant, microfungal
taxa (Fig. S1)). In contrast, both the modern and ancient bird samples showed
greater sequence heterogeneity. Coprolites demonstrated significantly higher
sequence diversity than all modern samples (p=0.003) (Fig. S5, Dataset S2). Moa
coprolites from southern-beech forest contained higher sequence diversity than
those from semi-arid shrubland / grassland sites (p=0.03, Fig S6, Dataset S2),
possibly reflecting poorer DNA preservation in the latter’'s hotter and more seasonally
variable environment (supported by very low read counts of expected taxa such as
plants or parasites from semi-arid coprolites). Within moa species, upland moa had
the highest OTU diversity, while heavy-footed moa had the lowest, although the
difference was not statistically significant (Fig. S5, Dataset S4).

PCoA analysis of jackknifed Unifrac distance values clustered mammals
separate to birds (100%) (Fig S7, S8). Coprolite samples fell within two groups; all
kakapo, and moa from southern beech sites (100%) clustered into a distinct region
relative to moa from shrubland/grassland sites and modern birds (86%) (Fig. S7,
S9). However, modern ostrich and kiwi failed to cluster with either group (Fig. S7,
S9).

Methods

Site and specimen details. Coprolites used in this study came from eight sites in

New Zealand’s South Island, covering a variation of palaeoecologies which can be



roughly categorised as follows: one subalpine Southern beech forest (Euphrates
Cave), three southern beech forest (Dart River Valley, Honeycomb Cave, Hodge
Creek), one mixture southern beech / conifer-broadleaf forest (Mount Nicholas), and
three semi-arid shrubland / grassland (Kawarau Gorge, Roxburgh Gorge,
Shepherd’s Creek) (see Fig. 1, Table S1). Full site descriptions can be found in
previous publications (2—17) (See Table S1). Species included South Island giant
moa (Dinornis robustus, 4 from Dart River Valley), upland moa (Megalapteryx
didinus, 4 from Dart River Valley, 2 Euphrates Cave, 2 Shepherd’s Creek),
Pachyornis elephantopus (heavy-footed moa, 2 from Dart River, 1 Karawua Gorge, 1
Roxburgh Gorge), little bush moa (Anomalopteryx didiformis, 1 from Dart River, 2
Mount Nicholas), and kakapo (Strigops habroptilus, 1 Hodge Creek, 3 Honeycomb
Cave). Full descriptions are in Table S2.

All samples were confirmed to species by aDNA analyses, most of which are
in previous publications (see Table S2). The only exception was a single Mt.
Nicholas coprolite, which DNA identification supported either coastal moa
(Euryapteryx curtis) or little bush moa as the depositor. However, known
biogeography of coastal moa makes an association with this species extremely
unlikely. In addition, little bush moa coprolites have been confirmed from this site (6).
AMS radiocarbon C** dates were obtained for 9 of the 23 coprolite samples at the
Waikato radiocarbon dating laboratory, Waikato University, New Zealand.
(http://www.radiocarbondating.com/), and were calibrated using the Southern

Hemisphere calibration curve (18). Most dates have been previously published (6,
10, 17), except dates for two kakapo coprolites from Honeycomb Cave which are
new to this study (see Table S2). More generally, five of the eight coprolite sites
(Euphrates Cave, Dart River Valley, Honeycomb Cave, Mt Nicholas, and Kawarau
Gorge) have had radiocarbon dates estimated of their coprolites (including coprolites
not used in this study). Non-dated coprolites from these five sites are expected to
have ages falling within, or near-to, these ranges (see Table S1). No dates are
available of coprolites from Hodge Creek, Shepherd’s Creek or Roxburgh Gorge,
although coprolites from these sites are likely to be late Holocene in age (7). Fresh
faecal samples were obtained from captive ratites from one North Island brown kiwi
(Apteryx mantelli) and two ostrich (Struthio camelus), from San Diego and Houston

zoos respectively, and were extracted following the standard Earth Microbiome
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Project protocols (http://www.earthmicrobiome.org/emp-standard-protocols/dna-

extraction-protocol/). In addition, lllumina 18S rRNA sequences from of 23 captive

and wild modern mammals were included in the analyses from the study by Parfrey
et al. (1).

DNA extraction and amplification. Coprolite samples were extracted in an isolated,
fully contained, ancient DNA laboratory at the Australian Centre for Ancient DNA
(ACAD), using the PowerSoil DNA extraction kit (Mo Bio Laboratories, Carlsbad, CA,
USA). Most extractions used were from past studies by Wood et al. (4, 10, 12, 14,
15), in which information on host ID determination, radiocarbon dating, and
extraction protocols can be found. DNA extractions new to this study included all four
kakapo coprolites, and two upland moa coprolites from Shepherd’s creek, each of
which had host DNA amplified by primers specific either to moa or kakapo (4, 10).
Extracts (including extraction blanks) were amplified by PCR (in triplicate) by the
universal 18S rRNA gene-targeting, Eukaryote-specific, primers Euk1391f and EukBr
based on Amaral-Zettler et al. (19), and can be found on the Earth Microbiome

Project (EMP) webpage (http://www.earthmicrobiome.org/emp-standard-protocols/).

All sets of PCR reactions were pooled, had DNA concentrations quantified, and were
purified using the Mobio UltraClean PCR Clean-up kit (Mo Bio laboratories,
Carlsbad, CA, USA). High-throughput sequencing (HTS) reads were generated on a
single lane of the Illumina HiSeq platform at BioFrontiers Institute Next-Generation

Genomics Facility at University of Colorado, Boulder.

QIIME analyses. Combined reads were analysed in the QIIME software package
(20), of which raw barcoded sequences were demultiplexed and quality filtered using
default parameters, resulting in reads roughly 100bp in length. Sequences were
open-reference clustered into OTUs (operational taxonomic units) using an RDP
classifier towards the PR? database (Protist 2, http://ssu-rrna.org), modified to be

QIIME compatible. For a clustering threshold, we elected to utilise 97% pairwise
nucleotide similarity between reads. A 97% threshold is most often utilised by similar
studies, and is widely considered to account for predicted sequencing error whilst
still identifying high-resolution taxonomic diversity (21, 22). OTUs that clustered with
the reference database inherited the reference taxonomy. Non-assigned hits were
clustered de-novo, and were blasted to the PR? database using an e-value cut-off of
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1e?®, For OTUs that fell below the threshold, the RDP classifier retrained on PR?
using a 50% confidence threshold. In all instances the most abundant sequence for
each cluster was selected as the representative sequence.

All OTUs sequenced from extraction blanks were filtered from the remaining
biom file to control for in-vitro contaminants in QIIME. All circumstances of <5 reads
per OTU per sample (maximum 0.015% of total reads and considered a sequencing
error risk) were additionally removed. This was achieved by splitting all files into
separate biom files for each individual sample, filtering out all reads <5 per OTU, and
re-merging all into a single biom file. All OTUs that could not be assigned to a
particular Eukaryote kingdom were then removed from any subsequent analyses. To
improve specificity and flexibility of downstream analyses, five biom files were
generated representing different sample groups: all samples, all bird taxa, ancients
only (all moa and kakapo), ratites only (including modern kiwi and ostrich, but not
kakapo), and moa only. Each was subsequently split into groupings specified by
OTU taxonomy including all samples, fungi, plants and parasites (which included all
taxa identified as vertebrate parasites by BLAST and phylogenetic inferences, see
below).

All split biom files were subsequently analysed using a range of available
scripts in QIIME. Multiple rarefactions with minimum reads (-m) 100, maximum reads
(-x) 10000, and number of repetitions (—n) 10), were run on each biom file and were
used to calculate Shannon diversity and t-test differences using the script
“‘compare_alpha.py”. A phylogenetic tree of the entire dataset was calculated using a
fasta file of all the reads present in each biom file, and used as an estimation of
difference matrices in downstream analyses. Sequences were aligned using
MUSCLE (23), through the script “align_seqgs.py”, and a UPGMA phylogenetic tree
constructed using FastTree (24) via the script “make_phylogeny.py” (both using
default parameters). The script “jackknifed_beta.diversity” was used to calculate
UniFrac distance matrices, using custom parameters with a rarefaction depth of
2,500 (all), 250 (fungi only) or 100 (plants or parasites only), and the number of
rarefactions set to 1,000. This script then generated preliminary UPGMA UniFrac
distance-matrix trees, and unweighted UniFrac distances were used to generate
PCoA plots using the script “make_2d_plots.py”. The script
“beta_diversity_through_plots” was used to create unweighted distance matrix files
(not jackknifed), used for statistical analyses (“‘compare_categories” adonis test



statistics, and “group_significance” g-test and Kruskal Wallis test statistics). All
statistical tests were run independently on a diversity of categories specified in a
mapping file, including coprolites vs. moderns, environment type, host genus, local
site, host genus / local site, lower host taxonomy (moa, kiwi, ostrich, kakapo and

mammals) and higher host taxonomy (ratites, kakapo and mammals).

BLASTN identifications. Although higher-level taxonomic identifications are
sufficient for most QIIME analyses, ecologically informative inferences required the
deepest taxonomic identification possible. Despite the usefulness of curated
databases such as PR?, reference data is missing for a diversity of taxa below a
certain taxonomic threshold. We therefore sought to improve taxon identification
with alternative methods and databases. All eukaryotic 18S rRNA reads available

were downloaded from Genbank (http://www.ncbi.nlm.nih.gov/genbank/) into a fasta

file, which was converted into a local, custom BLAST database. To counteract
genbank’s lack of curation, any sequences with the tags “uncultured”, “clonal’,
“‘environmental” and “unidentified” were filtered from the search terms. The fasta file
generated from QIIME representing all collapsed reads was then blasted to the
custom database (BLASTn, maximum target sequences 25, minimum identity
percentage match 80%). The output file was opened and processed in MEGANS
(http://ab.inf.uni-tuebingen.de/software/megan5/), and was collapsed into reliable
taxonomic identifications using custom parameters (Min score 150, top 5%, minimum
percentage support 0.1%, minimum support 5). The results from MEGAN compared
closely to the earlier results using QIIME, and were used as the basis for most final
IDs (to genus level or higher), although some sequences were further analysed
phylogenetically (Table S4).

Due to a paucity of plant sequences on PR?, QIIME IDs of plants were
restricted to high taxonomic levels, and provided a poor comparison for plant
identifications in MEGAN (dataset S1). Furthermore, limited 18S rRNA reference
data or barcoding studies of plants potentially made these ID’s spurious. Therefore
we elected to restrict most plant IDs to the Order level or higher, which is
conservative (25). The only plant ID lower than Order level, was a single OTU

identified in the family Ophioglossaceae (the only family in the Ophioglossales) (26).
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Phylogenetic identifications. Sequences from coprolites that were identified from
QIIME and BLASTn analyses as taxa of ecological importance, except for plants,
were analysed phylogenetically (Table S4). Firstly, these were OTUs identified as
plant-symbiotic Agaricales fungi considered likely to be dietary, which included the
genera Armillaria (Physalacriaceae), Cortinarius (Cortinariacae) or Inocybe
(Inocybaceae). Secondly, these were OTUs identified as parasites, including the
nematode order Ascaridida, Trematoda or the apicomplexan suborder Eimeriorina.
These OTUs were grouped into seven different phylogenetic datasets of varying
taxonomic rank (fungal families Physalacriaceae, Cortinariacae, Inocybaceae; the
nematode order Ascaridida; the trematode superfamily Pronocephaloidea; and the
Eimeriorina families Eimeriidae and Sarcocystidae).

All representative OTU sequences for each group were filtered into individual
fasta files and aligned using ClustalW (27) if multiple sequences were present. All
available genbank 18S rRNA sequences from each taxonomic group were
downloaded and assembled either to the single OTU sequence (if only one OTU per
taxon), or alternatively a consensus sequence each alignment (if several OTUs per
taxon), in Geneious v. 7.0.5 (28) (one iteration using “medium sensitivity”
parameters, modified to have a “minimum overlap” of 80 base pairs, thus leaving
only sequences for which at least 80 base pairs of the barcoding sequence was
present). Base pairs overlapping the barcoding region were removed, duplicate
sequences were removed, and sequences were re-aligned using ClustalW. The
fungus Lepiota cristata, the apicomplexans Calpytospora funduli and Isospora
parvum, the Guinea worm (Dracunculus mediensis), and the Common Liver Fluke
(Fasciola hepatica) were used as outgroups for all three fungal families, Eimeriidae,
Sarcocystidae, Ascaridida and Pronocephaloidea respectively. The most appropriate
substitution model for each alignment was estimated in jModelTest 2 v. 2.1.7 (29)
using AIC (Akaike’s Information Criterion) calculations, using default parameters
(Table S6). Each full alignment was then subjected to phylogenetic analyses in
MrBayes v. 3.2 (30—32) using between 10-50 x 10° generations (generations were
increased until the average standard deviation of split frequencies reached <0.01),
with the first 25% of trees used as a burn-in. Trees were visualised in FigTree v. 1.4

(http://tree.bio.ed.ac.uk/software/figtree/).
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Figures
Fig. S1. Stacked column graph of raw (unfiltered) of total read proportions per sample, to taxonomic and ecological groups as

determined through QIIME. Note read counts non-equal. Includes extraction blanks, duplicates, and all modern samples.
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Fig. S2. (Above) Stacked column graph of fungal (kingdom: Fungi) proportions post-
filtering, using QIIME (PR2 database) and MEGAN (custom database) based

taxonomic associations. (Below) bar graph of proportion of total reads determined as
fungal by each taxonomic assignment.

5 S
Taxon ° " &
e kS QO & °
NS Q° & o ?
’2 N & N ) < &£
& & a & ¥ & & ®
S S X R R S\
o || o © ~ @ :5 3
- ™ o o (=] o < oOl||lv @ © wn
2 E8 |l ‘E éﬁsééé%ﬁﬂ
© © © © © © © © © © © © il N
100% ]

Legend
Fungi: Other

JNIID

B Basidiomycota: Agaricomycetes
20%

Other

= ¥ Basidiomycota: Agaricomycetes
100%

©
=3
2
3
©
| | I|I I I I | | ' =

o’b ® Site Ecology
<\\° N [ Southern Beech
&’b «Q bg §
L PRE o M Shrubland / Grassland
£ ° B Modern Animals

3
=}
ES

; Proportion of OTUs
8 8 8
xR X R
>[I N 1050t
é —

Basidiomycota:
Microbotryomycete Yeast

@
Q
ES

IS
o
X

B Ascomycota: Saccharomycete
Yeast

NVO3IN

® Ascomycota: Other

7]
P
ol 70% [ ]
~l 60%
©| 50%
e 0%
= o
o| i 1 =
O 10% 11 i QIIME
= 0% +=——r—r T T T T T e -
o T O NITONNODWOOMNMr- N FTOOLTDOND— OO = MEGAN
= CONDOVWOODOONOBOMNT OO DMOMO®D .M T
= VYIIFTOCO TNV C YAV O T == ORI~ &
o ONMNANNNOOOOOOOMMOONNT—OO«AOWLW
ol ~ 0 ©© © © @~ — — O~ ©© ©C© C+~—v—O c NN &
) O g oo @@ ®©®® T OCOCOCOC= ©OCOC ggo®0=Ccc®
gl 8825223388888 :88888§538¢g288=
— e T
ST C=EEEEEEE 222 .ggg%_éﬁﬁ
O EE € a i e pe e e I AR R S OO
m_j 8808 EDODDDDD DL - Y X @©
i CRCROIF - - X

11



Fig. S3. (Above) Stacked column graph of Embryophyta (land plant) proportions
post-filtering, using QIIME (PR2 database) and MEGAN (custom database) based

taxonomic associations. (Below) bar graph of proportion of total reads determined as
Embryophyta by each taxonomic assignment.
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Fig. S4.

(Above) Stacked column graph of vertebrate parasite proportions post-

filtering, using QIIME (PR2 database) and MEGAN (custom database) based

taxonom

ic associations. Total Nematoda counts (for comparisons with Fig. 2, S2)

are included. (Below) bar graph of proportion of total reads determined as parasitic /

Nematoda by each taxonomic assignment.
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Fig. S5. Alpha diversity (Shannon’s diversity) box and whisker plots of taxonomic

groups.
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Fig. S6. Alpha diversity (Shannon’s diversity) box and whisker plots of collection

sites.
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Fig. S7. UPGMA tree of all samples based on UniFrac distance matrices.
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Fig. S8. PCoA (Principal Coordinates Analysis) plot, of jacknifed rarefied sampling of

unifrac distances from all filtered reads from all modern and ancient samples.
Samples are clustered relative to general similarity between OTU assemblages of
each sample. Circles around icons represent error due to differences between the

rarefied datasets. Samples are unweighted (number of reads per OTU are not

included).
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Fig. S9. PCoA (Principal Coordinates Analysis) plots, of jacknifed rarefied sampling
from unifrac distances of all filtered reads from bird samples only. Samples are
clustered relative to general similarity between OTU assemblages of each sample.
Circles around icons represent error due to differences between the rarefied
datasets. Samples are unweighted (number of reads per OTU are not included).

Grouped to ecology category, host taxon, and collection site.
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Fig. S10. PCoA (Principal Coordinates Analysis) plots, of jacknifed rarefied sampling

of unifrac distances from fungal reads from bird samples only. Samples are clustered

relative to general similarity between OTU assemblages of each sample. Circles
around icons represent error due to differences between the rarefied datasets.

Samples are unweighted (number of reads per OTU are not included). Grouped to

ecology category, host taxon, and collection site.
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Fig. S11. PCoA (Principal Coordinates Analysis) plots, of jacknifed rarefied sampling

of unifrac distances from plant reads from bird samples only. Samples are clustered

relative to general similarity between OTU assemblages of each sample. Circles
around icons represent error due to differences between the rarefied datasets.

Samples are unweighted (number of reads per OTU are not included). Grouped to

ecology category, host taxon, and collection site.
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Fig. S12. PCoA (Principal Coordinates Analysis) plots, of jacknifed rarefied sampling
of unifrac distances from parasite reads from bird samples only. Samples are
clustered relative to general similarity between OTU assemblages of each sample.
Circles around icons represent error due to differences between the rarefied
datasets. Samples are unweighted (number of reads per OTU are not included).

Grouped to ecology category, host taxon, and collection site.
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Fig. S13. Bayesian phylogeny of available Cortinariaceae (Fungi: phylum
Basidiomycota: class Agaricoycetes: order Agaricales: family Cortinariaceae)
sequences of the 18S barcoding region, inclusive of sequenced OTUs identified as
members of this taxon group. Lepiota cristata (Agaricomycetes: family Agaricaceae)

used as outgroup. Bayesian posterior probabilities shown.
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Fig. S14. Bayesian phylogeny of available Inocybaceae (Fungi: phylum
Basidiomycota: class Agaricomycetes: order Agaricales: family Inocybaceae)
sequences of the 18S barcoding region, inclusive of sequenced OTUs identified as
members of this taxon group. Lepiota cristata (Agaricomycetes: family Agaricaceae)

used as outgroup. Bayesian posterior probabilities shown.
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Fig. S15. Bayesian phylogeny of available Physalacriaceae (Fungi: phylum
Basidiomycota: class Agaricoycetes: order Agaricales: family Physalacriaceae)
sequences of the 18S barcoding region, inclusive of sequenced OTUs identified as
members of this taxon group. Lepiota cristata (Agaricomycetes: family Agaricaceae)

used as outgroup. Bayesian posterior probabilities shown.
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Fig. S16. Bayesian phylogeny of available Eimeriidae (Alveolata: phylum
Apicomplexa: class Conoidasida: order: Eucoccidiorida: suborder Eimeriorina: family
Eimeriidae) sequences of the 18S barcoding region, inclusive of sequenced OTUs
identified as members of this taxon group. Calyptospora funduli (Eimeriorina: family

Calyptosporiidae) used as outgroup. Bayesian posterior probabilities shown.
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Fig. S17. Bayesian phylogeny of available Sarcocystidae (Alveolata: phylum

Apicomplexa: class Conoidasida: order: Eucoccidiorida: suborder Eimeriorina:

subfamily Eimeriorina: family Sarcocystidae) sequences of the 18S barcoding region,

inclusive of sequenced OTUs identified as members of this taxon group. Isospora sp.

(Eimeriorina: family Eimeriidae) used as outgroup. Bayesian posterior probabilities

shown.
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Fig. S18. Bayesian phylogeny of available Ascaridida (Nematoda: class

Chromadorea: order: Acaridida) sequences of the 18S barcoding region, inclusive of

sequenced OTUs identified as members of this taxon group. Guinea worm

Dracunculus medinensis (Chromadorea: order Camallanida) used as outgroup.

Bayesian posterior probabilities shown.
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Fig. S19. Bayesian phylogeny of available Pronocephaloidea (Platyhelminthes: class

Trematoda: order Echinostomida: superfamily Pronocephaloidea) sequences of the

18S barcoding region, inclusive of sequenced OTUs identified as members of this

taxon group. Sheep liver fluke Fasciola hepatica (Echinostomida: superfamily

Echinostomatoidea) used as outgroup. Bayesian posterior probabilities shown.
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Fig. S20. Chart of parasite distributions. ‘Mammals’ group comprises average of

mammals with parasites present only.
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Tables

Table S1: Table of site details. Note that coprolite localities in New Zealand are also reviewed in detail in Wood & Wilmshurst (1).

Species codes: L = little bush Moa; G = giant moa, U = upland moa, H = heavy-footed moa, K = kakapo.

Site Radiocarbon Age
Site Type Species Known from Site Region Palaeovegetation Ranges L G U H K References

Anomalopteryx didiformis (little bush moa) (2-4)
Dinornis robustus (S.1. giant moa)
Megalapteryx didinus (upland moa)

Dart River Valley Rock Pachyornis elephantopus (heavy-footed

(Daley’s Flat) Shelter  moa) West Otago Southern Beech Forest 664 + 25 - 853 +25 (2) 1 4 4 2
(5,6)
Hodge Creek Cave North West
System Cave Strigops habroptilus (kakapo) Nelson Southern Beech Forest 725 +43 (5) 1
Honeycomb Cave North West 172 +£20 - 2514 + 43 (this (5,7,8)
System Cave Strigops habroptilus (kakapo) Nelson Southern Beech Forest  study) (5) 3
North West Subalpine Southern (9, 10)

Euphrates Cave Cave Megalapteryx didinus (upland moa) Nelson Beech Forest 694 +30- 6368 =31 (9) 2
Shepherd’s Creek, ~ Rock Dry shrubland, (11)
Waitaki Valley Shelter ~ Megalapteryx didinus (upland moa) North Otago herbfield Unknown 2
Mount Nicholas Southern Beech / (12)
(Possum’s Rock Anomalopteryx didiformis (little bush moa) Podocarp-Broadleaf
Rockshelter) Shelter  Dinornis robustus (S.1. giant moa) Central Otago Forest 1440 £30-1582+34 (12) 2
Roxburgh Gorge Rock Pachyornis elephantopus (heavy-footed Dry shrubland, (3, 13, 14)
(Rockshelter B) Shelter  moa) Central Otago herbfield Unknown 1

Rock Pachyornis elephantopus (heavy-footed Dry shrubland, (3, 13, 14)

Kawarau Gorge Shelter  moa) Central Otago herbfield Unknown 1
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Table S2. Table of all 23 coprolites and modern faecal samples sequenced in this study.

Specimen

A10501 (replicate 1)
A10501 (replicate 2)
A7491

A7493

A10203

A2062

A2064

A2103

A10197

A10500 (replicate 1)
A10500 (replicate 2)
A10504

A10525

A10163

A10171

A13013

A13014

A10200

A10508

A2069

A2074

A10186

A10187

A10188

Al1135

SanDS8i.1

25734

25735

Species

Anomalopteryx didiformis (little bush moa)
Anomalopteryx didiformis (little bush moa)
Anomalopteryx didiformis (little bush moa)
Anomalopteryx didiformis (little bush moa)
Dinornis robustus (South Island giant moa)
Dinornis robustus (South Island giant moa)
Dinornis robustus (South Island giant moa)
Dinornis robustus (South Island giant moa)
Megalapteryx didinus (upland moa)
Megalapteryx didinus (upland moa)
Megalapteryx didinus (upland moa)
Megalapteryx didinus (upland moa)
Megalapteryx didinus (upland moa)
Megalapteryx didinus (upland moa)
Megalapteryx didinus (upland moa)
Megalapteryx didinus (upland moa)
Megalapteryx didinus (upland moa)
Pachyornis elephantopus (heavy-footed moa)
Pachyornis elephantopus (heavy-footed moa)
Pachyornis elephantopus (heavy-footed moa)
Pachyornis elephantopus (heavy-footed moa)
Strigops habroptilus (kakapo)

Strigops habroptilus (kakapo)

Strigops habroptilus (kakapo)

Strigops habroptilus (kakapo)

Apteryx mantelli (North Island brown kiwi)
Struthio camelus (ostrich)

Struthio camelus (ostrich)

Locality

Dart River Valley
Dart River Valley
Mount Nicholas
Mount Nicholas
Dart River Valley
Dart River Valley
Dart River Valley
Dart River Valley
Dart River Valley
Dart River Valley
Dart River Valley
Dart River Valley
Dart River Valley
Euphrates Cave
Euphrates Cave
Shepherd's Creek
Shepherd's Creek
Dart River Valley
Dart River Valley
Roxburgh Gorge
Kawarau Gorge
Honeycomb Cave
Honeycomb Cave
Honeycomb Cave
Hodge Creek

San Diego Zoo
Houston Zoo
Houston Zoo

C" Date

664 +25 (1)
664 %25 (1)
1440 + 30 (4)

721 +30 (1)
841 +30 (1)

678 +25 (1)

172 £ 30 (this study)
192 + 30 (this study)
1020 + 25 (8)

Modern
Modern
Modern

Sequenced
Read Count

138532
139065
156679
139635
56904
26102
88940
76220
193425
90853
133408
227453
257186
174053
227405
143787
100579
73537
137043
125775
67524
52021
96050
47517
90386
137549
27028
102543

Depositor Depositor Fossil

DNA

(©))
(2)
“
(4)
@)
(6)
(6)
(6)
)
(2)
(2
(2)
@)
()
©)
This study
This study
(2)
@)
(6)
(6)
This study
This study
(8)
This study
This study
This study
This study

Haplotype Content

C

C
N/A
N/A
D3
Dl
D6
D2
M5
M4
M4
M1
M6
T

T
M1
M1
P2
P2
P1
P3
N/A
N/A
N/A
N/A
N/A
N/A
N/A

(2,3)
(2,3)
“)

“4)

(2,3)
3, 6)
3, 6)
3, 6)
(2,3)
(2,3)
(2,3)
(2,3)
(2,3)
3, 6)
(3,5)

(2, 3)
2,3)
3,6,7)
(3,6,7)

®)

DNA
Content

(2,3)
(2,3)

(2,3)
3, 6)
3, 6)
3, 6)
(2,3)
(2,3)
(2,3)
(2,3)
2,3)
(3,5)
(3,5)

(2,3)
(2,3)
3, 6)
(3, 6)
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Table S3. Results from Adonis (PERMANOVA) Beta-diversity analyses. All analyses
returned significant p-values (not presented). Values represent the estimated
proportion of variation between samples explained by each selected variable. Habitat

type sorted samples into either “Modern”, “Southern Beech” or “Semi-Arid”.

Variable All Samples Birds Only Coprolites Only Moa Only
Habitat Type 0.37052 0.24029 0.15215 0.23226
Site Specific 0.53008 0.56722 0.53518 0.50041
Host Genus 0.69482 0.44421 0.34115 0.27814
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Table S4. Table of Bayesian phylogenetic trees run in this study, demonstrating taxon group, identified taxa, model selection, and

MCMC generations used.

Average S.D.
Higher taxon / Identified coprolite #OTUs Model of Split
Taxon Rank ecology taxa Outgroup included Generations  Selected Frequencies
Physalacriaceae Family Fungi Armillaria sp. Lepiota cristata 1 25000000 GTR+G 0.007057
Inocybaceae Family Fungi Inocybe sp. Lepiota cristata 1 10000000 JC 0.006434
Cortinariacae Family Fungi Cortinarius spp. Lepiota cristata 2 25000000 GTR 0.008921
Apicomplexa
Sarcocystidae Family Parasites Sarcocystis sp. Isospora orloxi 1 25000000 HKY+G 0.007261
Apicomplexa Eimeria sp., Eimeriidae ~ Calyptospora
Eimeriidae Family Parasites spp. funduli 10 50000000 GTR+G 0.006167
Heterakoidea spp.,
Nematoda Seuratidae sp., Dracunculus
Ascaridida Order Parasites Ascaridida sp. medinensis 11 10000000 HKY+G 0.009734
Trematoda Fasciola
Pronocephaloidea  Superfamily  Parasites Notocotylidae sp. hepatica 1 25000000 SYM+G 0.006288
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Dataset Legends

Dataset S1. Modified and formatted, tabulated biom file from all samples, displaying raw
read counts (post-filtering). Separate columns are displayed for the original QIIME-based
and later MEGAN-based taxonomies. The various mapping categories used for QIIME
analyses are also shown. Values in the grey-coloured cells represent total count of filtered
reads.

Dataset S2. Results from Kruskal-Wallis Beta-diversity analyses, identifying significant
differences in diversity between mapping categories.

Dataset S3. All clustered 18S rRNA sequences found in this study (.txt formatted FASTA
file).

Dataset S4. Comparison between plant and parasite taxa identified in all the 23 coprolites
analysed in this study, using NGS data (this study), and Sanger-sequencing and fossil
(pollen, spores, macrofossils) data (past study). Numbers refer to total number of identified
different taxa, DNA sequences or DNA OTUs. Values with *, did not have individual counts
per sample available, and these values instead refer to the sum total from all samples from
the same moa taxon and collection site.
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