1	SI Appendix
2	Text S1 Glutamate restores susceptibility of drug-resistant <i>E. tarda</i> to kanamycin.
3	Text S2 Mass isotopomer analysis for ¹³ C labeled glutamate detected in a nontargeted
4	manner.
5	Text S3 Pharmacologic inhibition of enzyme catalysis is a widely accepted.
6	
7	SI Materials and methods
8	
9	Fig. S1 Glutamate restores susceptibility of drug-resistant <i>E. tarda</i> to kanamycin.
10	Fig. S2 Glutamate restores susceptibility to kanamycin and regulates NADH, PMF
11	and cellular kanamycin.
12	Fig. S3 Lactate measurement.
13	Fig. S4 Effect of inhibitors on the P cycle.
14	Fig. S5 Mass isotopomer analysis for ¹³ C labeled glutamate detected in a nontargeted
15	manner in E. coli K12 cultured in different culture conditions.
16	Fig. S6 Percent survival of rescued strains and oleate-enabled killing of E. coli K12
17	by gentamicin.
18	
19	Table S1. Summary of all compounds being detected as labeled by the $[U^{-13}C]$
20	labeled L-glutamate in E. tarda EIB202, which were cultured in LB medium and then
21	incubated in M9 plus acetate with the labeled glutamate
22	Table S2. Non-targeted detection of [U- ¹³ C] labeled L-glutamate in <i>E. tarda</i> EIB202,

which were cultured in LB medium and then incubated in M9 plus acetate with thelabeled glutamate

Table S3. Non-targeted detection of [U-¹³C] labeled L-glutamate in *E. coli* K12
BW25113, which were cultured in LB medium and then in M9 medium plus acetate
with the labeled glutamate.

Table S4. Non-targeted detection of [U-¹³C] labeled L-glutamate in *E. coli* K12
BW25113, which were cultured in M9 medium with acetate plus 0.3% glucose and
then incubated in M9 medium plus acetate with the labeled glutamate.

Table S5. Non-targeted detection of $[U^{-13}C]$ labeled L-glutamate in *E. coli* K12 BW25113, which were cultured in SOC medium and then incubated in M9 medium plus acetate with the labeled glutamate.

Table S6. Non-targeted detection of $[U^{-13}C]$ labeled L-glutamate at 2 h in *E. coli* K12

- 35 BW25113, which were cultured in LB medium and then incubated in M9 medium
- 36 plus acetate with the labeled glutamate

Table S7. Non-targeted detection of $[U^{-13}C]$ labeled L-glutamate at 4h in *E. coli* K12

BW25113, which were cultured in LB medium and then incubated in M9 mediumplus acetate with the labeled glutamate.

Table S8. Non-targeted detection of [U-¹³C] labeled L-glucose in *E. coli* K12
BW25113, which were cultured in LB medium and then incubated in M9 medium
plus acetate with the labeled glucose.

43 **Table S9.** Primers used for qPCR.

44 **Table S10.** Primers used for gene complementation.

45	Text S1, Glutamate restores susceptibility of drug-resistant <i>E. tarda</i> to kanamycin.
46	In our previous study, we showed depressed glutamate as alanine and glucose did in E.
47	tarda LTB4-R (lab-generated kanamycin-resistant strain) and EIB202 (isolated
48	multidrug-resistant strain from dead fish) (SI Appendix Fig. S1A) (1). Alanine and
49	glutamate are in the same pathway alanine, aspartate and glutamate metabolism,
50	which are reversibly converted to pyruvic acid and α -ketoglutarate, respectively, by
51	glutamic-pyruvic transaminase (GPT) and feed the TCA cycle (SI Appendix Fig.
52	S1B). To investigate the adjunct effect of glutamate on kanamycin, viability of E .
53	tarda LTB4-R and EIB202 was assessed in the presence of different incubation
54	periods, kanamycin concentrations and glutamate concentrations. The viability of
55	LTB4-R and EIB202 decreased over time (SI Appendix Fig. S1C), and in a
56	kanamycin dose-dependent manner (SI Appendix Fig. S1D). An approximate
57	2,000-fold decrease in viability was observed for LTB4-R and EIB202 in the presence
58	of 1,000 and 50 μ g/mL kanamycin, respectively (SI Appendix Fig. S1D). The
59	viability of LTB4-R and EIB202 was decreased with increasing glutamate, when
60	approximate 120-fold and 600-fold decreased were detected in viability under the
61	synergistic effect of 2.5 glutamate and 500 µg/mL and 30 µg/mL kanamycin for 6 h,
62	respectively, but was unaffected if glutamate or kanamycin was present individually
63	(SI Appendix Fig. S1E).

65 Reprogramming the energy flow in antibiotic-resistant bacteria is an important 66 mechanism by which alanine could increase the antibiotic uptake through increased

Western blot analysis showed that glutamate stimulates expression of NuoI and NuoF 77 78 and promotes activity of respiratory chain dehydrogenase in a dose-dependent manner (SI Appendix Fig. S2A), which was consistent with PMF measurements and enzyme 79 activity under comparable conditions (SI Appendix Figs. S2B and S2C). When 80 81 respiration was blocked with rotenone, antimycin A or NaN₃, the effect of glutamate 82 plus kanamycin on PMF and cell viability was abrogated (SI Appendix Figs. S2D and S2E). The effect of glutamate plus kanamycin on cell viability is pH-dependent 83 (SI Appendix Fig. S2F). The PMF promoted by glutamate is not observed under 84 85 anaerobic conditions (SI Appendix Fig. S2G). Malonate, a competitive inhibitor of the enzyme succinate dehydrogenase, downregulated NADH and PMF (SI Appendix 86 87 Fig. S2H), abrogating the effect of glutamate on viability of EIB202 (SI Appendix Fig. S2I), and concurrent intracellular drug concentrations decreased, while cell 88

89	viability increased, consistent with these results (SI Appendix Fig. S2J). OD value of
90	antibiotic-sensitive LTB4-S and antibiotic-resistant LTB4-R was higher in M9
91	medium with or without acetate and glucose, and then glutamate with or without
92	acetate than in M9 medium with or without acetate (SI Appendix Fig. S2K).
93	However, these different culture conditions didn't impact their minimum inhibitory
94	concentration (MIC). When kanamycin is added to nongrowing cells, glutamate or
95	glucose or plus acetate elevated kanamycin-induced killing of EIB202 by
96	approximately 2 folds, compared with or without acetate (SI Appendix Fig. S2L).
97	Glutamate could potentiate other antibiotics including gentamicin, ampicillin,
98	rifampicin and erythromycin to kill EIB202 (SI Appendix Fig. S2M). Among them,
99	gentamicin and erythromycin targets are protein synthesis (the two drugs belong to
100	aminoglycosides and macrolides, and target at 30S rRNA and 50S rRNA,
101	respectively), while ampicillin and rifampicin targets are the cell wall and the RNA
102	polymerase, respectively. These results indicate that glutamate has the potential in
103	promoting different antibiotics with differential work mechanisms.

alanine, aspartate and glutamate metabolism, and was no significant difference with

glucose plus kanamycin (SI Appendix Fig. S2O). These results suggest the effect of
metabolic difference on the action between glutamate and alanine.

114 Text S2. Mass isotopomer analysis for ¹³C labeled glutamate detected in a
115 nontargeted manner.

Three potential cycles/pathways were identified. In the first cycle, ${}^{13}C_5$ -glutamate 116 entered the TCA cycle via α-ketoglutarate to produce M4-labeled succinate, fumarate, 117 and malate, oxaloacetate, and then citrate. The low abundance of M4-labeled citrate 118 119 indicated the transformation of M4-labeled oxaloacetate with unlabeled acetyl-CoA (AcCoA) to citrate was limited by the TCA cycle. The data indicate a high ¹³C-120 response from M4-oxaloacetate in alanine, glycine, threonine, pyruvate and fatty 121 acids. It is possible that ¹³C-alanine, -glycine and -threonine may be transferred to 122 phosphoenolpyruvate (PEP) and then pyruvate, but ¹³C-pyruvate and -fatty acids are 123 not irreversibly converted to PEP (http://www.genome.jp/kegg). Thus, the labeled 124 alanine, glycine and threonine should be coming from ¹³C-oxaloacetate through 125 ¹³C-PEP rather than ¹³C-pyruvate. We further deduced that M2-labeled AcCoA was 126 generated from M3-labeled pyruvate, which was converted from M3-labeled PEP and 127 subsequently processed to M2-labeled citrate, with unlabeled oxaloacetate present 128 downstream from the TCA cycle due to limited flux through the TCA cycle, which is 129 supported by a relatively low amount of M6-labeled citrate. It should be noted that if 130 M4-labeled oxaloacetate was utilized in the transformation, significantly more 131 M6-labeled citrate would be expected. In the second cycle, M2-labeled oxaloacetate 132

from M2-labeled citrate generated M2-labeled pyruvate and M1-labeled AcCoA, by 133 oxidative decarboxylation of pyruvate to AcCoA, with subsequent generation of 134 135 M1-labeled citrate. In the third cycle, M1-labeled oxaloacetate from M1-labeled citrate generated M1-labeled pyruvate, as well as unlabeled AcCoA and citrate, since 136 the pathway also involved oxidative decarboxylation of pyruvate to AcCoA. The M3 137 label may have also been generated from M2-labeled oxaloacetate and M1-labeled 138 AcCoA or M1-labeled oxaloacetate and M2-labeled AcCoA via the TCA cycle. 139 However, less M3 label was detected than M1 or M2 label due to limited flux through 140 141 the TCA cycle. Meanwhile, M2-labeled glycine from M4 labeled oxaloacetate was transformed to M2-labeled serine and then M2-labeled pyruvate, contributing to the 142 higher abundance of M2-labeled pyruvate. The M2-labeled pyruvate generated 143 144 M1-labeled AcCoA through oxidative decarboxylation, generating more M1 label than M2 label. Equal amounts of M4, M2, and M1/M2 were required to generate M2, 145 M1, and M3 compounds, respectively. As shown in Fig. 1B, the ratio of each pool (i.e. 146 147 M1 + M2 + M3) / (M1 + M2 + M4 + M2 from glycine) represents relative flux for that metabolite in the TCA cycle plus the OAA-PEP-Pyr-AcCoA-citrate pathway 148 $(v_{TCA-PLUS}/v_{GLUTAMATE})$, where $v_{TCA-PLUS}$ refers to the turnover of a particular 149 metabolite pool and $v_{GLUTAMATE}$ refer to the flux of glutamate carbon atoms to the 150 151 cycle (Fig. 1B).

152

Text S3 Pharmacologic inhibition of enzyme catalysis is a widely accepted.

154 Pharmacologic inhibition of enzyme catalysis is a widely accepted approach (2), and

the inhibitors used in the present study are well characterized (1, 3-7). In microbes, 155 malonate showed high specificity for succinate dehydrogenase (3, 5) and 156 Bromopyruvate and furfural are more specific than Na₂-ATP in target proteins. 157 Bromopyruvate acts initially as a competitive inhibitor with pyruvate ($Ki = 90 \mu M$) 158 but then proceeds to react irreversibly with the enzyme. Bromopyruvate also inhibits 159 dihydrodipicolinate synthase (DHDPS), which catalyzes the condensation of pyruvate 160 and aspartate beta-semialdehyde, with a Ki of 1600 µM, indicating 18-fold inhibitory 161 decreases in PDH efficacy (4). Furfural is an inhibitor of PDH, alcohol dehydrogenase 162 163 (ADH), and aldehyde dehydrogenase (AIDH), although there is no AIDH in E. tarda EIB202. Furfural decreases the activity of PDH by more than 90%, whereas ADH 164 activity decreased by less than 20% at the same concentration. Furfural inhibits ADH 165 166 competitively and PDH non-competitively (7), while Na₂-ATP is an inhibitor of PCK, citrate synthase, isocitrate dehydrogenase, and α -oxoglutarate dehydrogenase. These 167 data indicate that bromopyruvate and furfural show the strongest inhibition of PDH. 168 169 More importantly, effects of these inhibitors can be confirmed using a genetic approach (i.e. comparison between a gene-specific mutant and an isogenic wild type 170 control). The inhibition of the conversion from pyruvate to AcCoA completely 171 abolished the glutamate-triggered killing effects, implying the critical role of the 172 alternative three steps and their effect on the TCA cycle. 173

174

175 SI Materials and methods

176 Bacterial strains and culture conditions.

177	The bacterial strains used in this study included E. coli K12 BW25113 and its
178	gene-deleted mutants, which was obtained from NBRP (NIG, Japan), and seven other
179	pathogens E. coli, Vibrio anguillanum, V. alginolyticus, V. parahaemolyticus, V
180	vulnificus, V. flurialis and Klebsiella pneumonia from the collections of our laboratory.
181	Bacterial culture conditions were essentially carried out as previously described $(1, 8)$.
182	Unless otherwise noted, frozen glycerol stocks were used to inoculate Luria-Bertani
183	broth (LB) medium, supplemented with 50 $\mu g/mL$ kanamycin for mutants, at 30 0C
184	(Vibrio species) or 37 0 C (E. coli and K. pneumonia) overnight. The cultures were
185	diluted to 1:100 using fresh LB medium, or M9 medium (Na ₂ HPO ₄ 47.7 mM,
186	KH ₂ PO ₄ 22 mM, NH ₄ Cl 18.7 mM, NaCl 8.6 mM, MgSO ₄ 2 mM, CaCl ₂ 0.1 mM) with
187	10 mM acetate plus 0.3% glucose or SOC medium and incubated overnight (24 h for
188	E. tarda and 14 h for the others) at 200 r.p.m. and 80% humidity in 250 mL flasks or
189	20 mL tubes. Bacterial cells were collected by centrifugation at 8,000 g for 5 min in 4
190	0 C. Followed by washing three times using sterile saline solution, bacterial cells were
191	suspended in M9 medium with 10 mM acetate to arrive at 10^8 cells (<i>E. tarda</i>) or 5
192	$\times 10^8$ (the others) or plus desired metabolites (or labeled) or/and antibiotics and
193	cultured for 6 h (or 2h, or 4h for some isotope tracer experiments) in the same culture
194	conditions. Harvested cells were used for GC-MS, plate counting and biochemical
195	analysis.

197 GC-MS.

198 GC-MS analysis was carried out with a variation on the two-stage technique, the

199	resulting data were proceeded using pattern recognition methods, and the data matrix
200	was normalized using internal control and the total peak area each strain as described
201	previously (9, 10). Briefly, initial peak and mass spectral deconvolution were detected
202	using MSD ChemStation (version EA. 02.02). Identification of metabolites was
203	performed by the National Institute of Standards and Technology (NIST) library and
204	NIST MS search 2.0 program. Using ribitol as the internal standard allowed
205	normalization of the metabolites data. In the dataset the resulting normalized peak
206	intensities formed a single matrix with Rt-m/z pairs for each file. This output file was
207	used for further analysis.

209 Antibiotic bactericidal assays.

Antibiotic bactericidal assays were carried out as previously described (1, 8). 210 Bacterial cells were collected as described above and suspended in M9 medium with 211 10 mM acetate, and in the presence or absence of 2.5 mM glutamate plus 30 and 500 212 $\mu g/mL$ kanamycin for EIB202 and LTB4-R at 30 ^{0}C , respectively, and plus 1.2 $\mu g/mL$ 213 gentamicin for E. coli (E. coli K12 BW25113 gene-deleted mutants with kanamycin 214 resistance) at 37 °C for 6 h. Otherwise, the desired antibiotic was indicated in the 215 context. Percent survival was performed by serially diluted and spot-plated onto LB 216 agar plates to determine colony-forming units (CFU) per mL and survival. Percentage 217 of survival was determined by dividing the CFU obtained from a treated sample by 218 the CFU obtained from control. 219

220

The effects of ¹³C₅-labeled glutamate tracers on flux estimation precision were 222 investigated as previously described (11, 12). In brief, EIB202 or E. coli K12 cells 223 were harvested in LB medium, or in M9 medium with 10 mM acetate plus 0.3% 224 glucose or in SOC medium, and then suspended in M9 medium with 10 mM acetate at 225 6 h, or harvested in LB medium and then in M9 medium with 10 mM acetate at 2 h or 226 4 h using 2.5 mM unlabeled compound glutamate or 1.25 mM $[U^{-13}C_5]$ and 1.25 mM 227 unlabeled substrate as control and test groups, respectively. When 10 mM unlabeled 228 compound glucose or 5 mM $[U^{-13}C_6]$ and 5 mM unlabeled substrate were used, *E. coli* 229 K12 cells were harvested in LB medium and then suspended in M9 medium with $\frac{10}{10}$ 230 mM acetate at 6 h. Three biological replicates were performed each growth condition. 231 232 GC-MS was performed using an Agilent 7890A GC equipped with a 30 m DB-35MS capillary column connected to an Agilent 5975C MS operating under electron impact 233 (EI) ionization. The effectiveness of each tracer was gauged using the software 234 downloaded from Internet (13). The software provides the mass isotopomer 235 distributions (MID) data of all labeled compounds detected in the GC-MS data. 236 Labeled compounds were identified from the MID data, which were used for 237 estimation of metabolic fluxes. The estimation was carried out by the tracing of 238 labeled atoms present in an externally supplied compound as it is metabolized. Both 239 the spectrum obtained from the labeled chromatogram and the spectrum obtained 240 from the unlabeled chromatogram was normalized by their total signal. 241

243

Ultra-performance liquid chromatography-MS/MS (UPLC-MS/MS).

Quantification of certain metabolite in bacteria by UPLC-MS/MS was carried out as 244 245 previously described (14, 15). 10 mL bacteria suspension (OD₆₀₀=0.6) was collected, washed three times with 0.85% saline solution, and re-suspended in 1 mL of 50% 246 acetonitrile (ACN). The bacteria were lysed with sonication. After centrifugation, 247 supernatants were collected for UPLC-MS/MS analysis. UPLC was performed in 248 Waters ACQUITY UPLC system equipped with an Acquity BEH C₁₈ column (50 mm 249 $\times 2.1$ mm i.d., 1.7 µm; Waters Corp.). Metabolites were separated by linear gradient 250 251 elution with mobile phase A (ACN) and B (0.1% formic acid in ultra-pure water) at a flow rate of 0.3 mL/min. The gradient elution was as follows: 0 - 0.5 min, 10% A; 0.5 252 - 1.2 min, 90% A; 1.2 - 3 min, 10 % A. The injection volume was 10 µL, and the 253 254 column temperature was maintained at 35 °C. Mass spectrometry detection was carried out with QUATTRO PREMIER XE equipped with an electrospray ionization 255 source operating in negative ionization mode (ESI-). The capillary voltage was set to 256 257 -3,000 V; the cone voltage was set to 10V. The extractor voltage and RF Lens were set at -3 V and -0.1 V, respectively. The desolvation gas flow was set to 650 L/h at 258 temperature of 450 °C, the cone gas flow rate was set at 50 L/h and the source 259 temperature was set at 120 $^{\circ}$ C. 260

261

262 **Determination of NAD⁺/NADH ratio.**

263 The NAD⁺/NADH ratio was measured with the EnzyChromTM NAD/NADH assay kit

264 (BioAssay Systems, USA) according to manufacturer's instructions. In brief, 1 mL of

265	bacterial suspension (OD ₆₀₀ = 0.6) was collected, resuspended in NAD ⁺ or NADH
266	extraction buffer, and incubated at 60 $^{\circ}$ C for 5 min. The opposite extraction buffer
267	(NADH extraction buffer was added for detection of NAD ⁺ ; NAD ⁺ extraction buffer
268	was added for detection of NADH) was added to neutralize the extracts. Following
269	vortex briefly, the neutralized extracts were centrifuged at 14,000 rpm for 5 min.
270	Supernatants were collected for measurement of NAD^+ and $NADH$ using the
271	EnzyChrom [™] NAD/NADH Assay Kit. Relative amounts of NAD ⁺ or NADH were
272	determined by comparing the absorbance of the samples to a standard curve generated
273	by the cycling assay performed on 0 to 10 μ M of pure NAD ⁺ . Optical density (OD0)
274	for time "zero" and OD15 after a 15-min incubation were read at 565 nm (520-600nm)
275	in room temperature. OD0 was subtracted from OD15 for the standard and sample
276	wells. The ΔOD values were used to determine sample NAD ⁺ /NADH concentration
277	from the standard curve.

279 Quantification of intracellular adenosine nucleotides in bacteria.

To extract adenine nucleotides from bacteria, 2 mL of bacterial suspension ($OD_{600} =$ 0.6) was collected and mixed immediately with 600 µL hot ethanol. The mixture was incubated at 80 °C for 10 min in hot-water bath. After cooling in ice, the volume was readjusted to 2 mL with cold solution buffer (50 mM tricine, 10 mM MgSO4, and 2 mM EDTA at pH7.8), followed by centrifugation to remove the denatured protein. To quantify intracellular concentration of ATP, ATP plus ADP and total adenosine nucleotides, 40 µL of the cell extract was added to the reaction buffer (75 mM tricine, pH7.5; 5 mM MgCl₂, and 0.0125 mM KCl), reaction buffer supplemented with 0.5 mM phosphoenolpyruvate (Sigma) and 4 μ g of pyruvate kinase (Sigma), and reaction buffer supplemented with 7.5 U of adenylate (myo) kinase (Sigma), respectively. The mixtures were incubated at 30 °C for 15 min. ATP was then determined with luciferin/luciferase using BacTiter-GloTM Microbial Cell Viability Assay. Adenylate energy charge (AEC) was calculated as described by (ATP + 0.5 × ADP) / (ATP +ADP + AMP).

294

295 Membrane potential.

BacLight bacterial membrane potential kit (Invitrogen) was used to measure 296 membrane potential. In brief, 1 mL of bacterial suspension ($OD_{600} = 0.6$) was 297 collected and diluted to 10^6 CFU/mL and mixed immediately with 10 μ L of 3 mM 298 $DiOC_2(3)$ (3, 3'-diethyloxa-carbocyanine iodide). The mixture was incubated with 299 oscillation at 37 °C for 30 min. Membrane potential was assessed by FACSCalibur 300 flow cytometer (Becton Dickinson, San Jose, CA, USA). The green fluorescence was 301 detected through a 488- to 530-nm bandwidth band-pass filter, and the red 302 fluorescence was detected through a 488- to 610-nm bandwidth band-pass filter. The 303 membrane potential was determined and normalized as the intensity ratio of the 304 red/green fluorescence. The membrane potential was calculated with the following 305 formula: $\text{Log}(10^{3/2} \times (\frac{\text{red fluorescence}}{\text{green fluorescence}}))$. 306

307

308 ELISA assay for intracellular kanamycin and gentamicin.

309	Bacterial intracellular kanamycin and gentamicin were detected using ELISA rapid
310	diagnostic kit (Beijing Clover Technology Group Inc. Beijing, China). In brief,
311	samples were incubated in M9 medium with glutamate or/and an antibiotic for $\frac{6}{6}$ h,
312	and collected by centrifugation at 8,000g for 5 min. The resulting pellets were washed
313	three times, re-suspended in sterile saline and adjusted to $OD_{1.0}$. Then 1 mL samples
314	were sonicated for 5 min and supernatant was for determination of antibiotic content.
315	Luminescence intensity was taken on a Perkin-Elmer LS55 Fluorescence
316	Spectrophotometer. The luminescence intensity was cuvette path length (10 mm)
317	quartz cell with excitation and emission spectra were recorded as 287 and 450 nm,
318	respectively. Kanamycin and gentamicin working standard solutions were from 0 to 3
319	ng/mL. The duplicate readings were averaged for each standard and zero standard
320	optical density 450 nm was subtracted. A standard curve was constructed by plotting
321	the mean absorbance for each standard on the y-axis against the concentration on the
322	x-axis, drawing the best fit curve, and then determining sample concentration from the
323	standard curve.

325 Quantitative reverse-transcription PCR.

Quantitative reverse-transcription PCR (qRT-PCR) was carried out as previously
described (16). Total RNA of each sample was isolated with Trizol (Invitrogen, USA).
The RNA was then quantified spectrophotometrically. The first-strand cDNA was
synthesized using a PrimeScriptTM RT reagent kit with gDNA eraser (TaKaRa). At
first, 1 μg of RNA extract was mixed with gDNA eraser and buffer at 42 °C for 2 min

in total volume of 10 µL mixture to remove genomic DNA (gDNA). Then, the 331 mixture was used to synthesize cDNA according to the manufacturer's instructions. 332 333 The reaction was carried out at 37 °C for 15 min, 85 °C for 5 sec. Real-time PCR was performed using specific primers in a LightCycle 480 system (Roche, Germany). 334 Each sample was assayed in triplicate. Primers used for qRT-PCR were shown in SI 335 Appendix Table S9. Reactions were performed in the LightCycle 480 system (Roche, 336 Germany) according to the manufacturer's instructions. 10 µL reaction volumes 337 containing 1 μ L cDNA diluted with ddH₂O, 5 μ L of 2 × SYBR-Green Master Mix 338 339 (TaKaRa), and 400 nM of each primer. The cycling parameters were listed as follows: 95 $\$ for 30 s to activate the polymerase; 40 cycles of 95 $\$ for 10 s; 60 $\$ for 30 s. 340 Fluorescence measurements were performed at 70 $\,$ $\,$ for 1 s during each cycle. 341 342 Cycling was terminated at 95 $\,^{\circ}$ C with a calefactive velocity of 5 $\,^{\circ}$ C/s to obtain a melting curve. To analyze the relative expression level of genes, we converted the 343 data to percentages relative to the value of control group. 344

345

346 Enzyme assays.

Phosphoenolpyruvate carboxykinase / citrate synthase activity was determined using the enzymatic kit (Suzhou Comin Biotechnology Co., Ltd., Suzhou, China). The reaction started by the addition of 30 μ g phosphoenolpyruvate carboxykinase or 50 μ g citrate synthase. OAA concentration varied between 0.625 and 320 mM. Substrate saturation curves were fit to the Michaelis-Menten equation. The Michaelis-Menten constant (K_m) and the maximum velocity of the enzyme (V_{max}) were calculated from

353	the direct linear plot of Eisenthal and Cornish-Bowden (17). Isocitrate dehydrogenase
354	and α -ketoglutarate dehydrogenase activities were measured using Assay kits
355	(Genmed Scientifics Inc., USA). In brief, 24-h EIB202 cultures were diluted in M9
356	medium plus 10 mM acetate to an OD_{600} of 0.2 and then incubated in M9 medium
357	plus 10 mM acetate with an exogenous metabolite at 30 0 C for 6 h. Cells were
358	collected, washed and resuspended in lysate (from the Assay kits), and disrupted by
359	intermittent sonic oscillation. Following centrifugation, supernatant was transferred to
360	new tube and used Bradford Assay to detect the protein concentrations. Then samples
361	were detected by Assay kits.
362	
363	Western blot
364	Western blot was carried out as previously described (18). In brief, Bacterial protein
365	samples were separated in a 3% stacking gel (pH 6.8) and a 10% separating gel (pH
366	8.9) in Tris-glycine buffer (pH 8.3) and then transferred onto PVDF membranes for 6
367	h at 200 mA in transfer buffer (25 mM Tris, 0.1 M glycine and 20% methanol).
368	Membranes were blocked for 60 min with 5% skimmed milk in TBS (20 mM Tris,
369	150 mM NaCl, pH 7.4) at 37 0 C, then incubated first with primary antibodies for 2 h
370	at 37 ⁰ C, followed by second antibody at 37 ⁰ C in TBST (20 mM Tris, 150 mM NaCl,
371	0.5% Tween-20, pH 7.4) containing 5% skimmed milk on a shaker. Band intensities
372	were detected by using a gel documentation system, LAS-3000 (Fujifilm Medical
373	systems, Stamford, USA).

375 Genetic complementation.

376	Ge	mes tdcE, aceE, lpdA, pykF, pflD from E. coli K12 were amplified by PCR with
377	pri	mers as shown in SI Appendix Table S10. PCR products from <i>lpdA</i> , <i>pykF</i> and
378	pfl	D were digested by restriction enzyme HindIII/BamHI, and cloned into the
379	lin	earized plasmid pACYC184. PCR products from tdcE and aceE with flanking
380	sec	quences which were homogenous with pACYC184 were purified and cloned into
381	the	e linearized pACYC184 using ClonExpressTM II One Step Cloning kit (Vazyme
382	Bi	otech Co. Ltd., Nanjing, China). Recombinant plasmids were checked by digestion
383	wi	th restriction endonucleases and electroporated into <i>E. coli</i> deletion cells.
384		
385	Re	ferences
386	1.	Peng B, Su YB, Li H, Han Y, Guo C, Tian YM, Peng XX. (2015) Exogenous
387		alanine or/and glucose plus kanamycin kills antibiotic-resistant bacteria. Cell
388		<i>Metab</i> 21:249-261.
389	2.	Mainguet SE, Gronenberg LS, Wong SS, Liao JC. (2013) A reverse glyoxylate
390		shunt to build a non-native route from C4 to C2 in Escherichia coli. Metab Eng
391		19:116-127.
392	3.	Grahl N, Demers EG, Lindsay AK, Harty CE, Willger SD, Piispanen AE, Hogan
393		DA. (2015) Mitochondrial activity and Cyr1 are key regulators of Ras1 activation
394		of C. albicans virulence pathways. PLoS Pathog 11:e1005133.
395	4.	Asanuma N, Hino T. (2001) Molecular characterization, enzyme properties and
396		transcriptional regulation of phosphoenolpyruvate carboxykinase and pyruvate

- kinase in a ruminal bacterium, *Selenomonas ruminantium*. *Microbiology* 147(Pt
 3):681-690.
- Lowe PN, Perham RN. (1984) Bromopyruvate as an active-site-directed inhibitor
 of the pyruvate dehydrogenase multienzyme complex from *Escherichia coli*. *Biochemistry* 23:91-97.
- 402 6. Minato Y, Fassio SR, Häse CC. (2013) Malonate inhibits virulence gene
 403 expression in *Vibrio cholerae*. *PLoS One* 8:e63336.
- 404 7. Modig T, Lid én G, Taherzadeh MJ. (2002) Inhibition effects of furfural on alcohol
- 405 dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. *Biochem J*406 363(Pt 3):769-776.
- 407 8. Allison KR, Brynildsen MP, Collins JJ. (2011) Metabolite-enabled eradication of
 408 bacterial persisters by aminoglycosides. *Nature* 473:216-220.
- 409 9. Du CC, Yang MJ, Li MY, Yang J, Peng B, Li H, Peng XX. (2017) Metabolic
- 410 mechanism for L-Leucine-induced metabolome to eliminate *Streptococcus iniae*. J
- 411 *Proteome Res* 16:1880-1889.
- 412 10. Zeng ZH, Du CC, Liu SR, Li H, Peng XX, Peng B. (2017) Glucose enhances
- tilapia against *Edwardsiella tarda* infection through metabolome reprogramming.
- 414 Fish Shellfish Immunol 61:34-43.
- 415 11. Hiller K, Metallo CM, Kelleher JK, Stephanopoulos G. (2010) Nontargeted
 416 elucidation of metabolic pathways using stable-isotope tracers and mass
 417 spectrometry. *Anal Chem* 82:6621-6628.
- 418 12. Hiller K, Wegner A, Weindl D, Cordes T, Metallo CM, Kelleher JK,

419	Stephanopoulos G. (2013) NTFD - a stand-alone application for the non-targeted
420	detection of stable isotope-labeled compounds in GC/MS data. Bioinformatics
421	29:1226-1228.
422	13. Hiller K, Wegner A, Weindl D, Cordes T, Metallo CM, Kelleher JK,
423	Stephanopoulos G. (2013) NTFD - a stand-alone application for the non-targeted
424	detection of stable isotope-labeled compounds in GC/MS data. Bioinformatics
425	29:1226-1228.
426	14. Birkler RI, Støttrup NB, Hermannson S, Nielsen TT, Gregersen N, Bøtker HE,
427	Andreasen MF, Johannsen M. (2010) A UPLC-MS/MS application for profiling
428	of intermediary energy metabolites in microdialysis samples - a method for
429	high-throughput. J Pharm Biomed Anal 53:983-990.
430	15. Rühl M, Rupp B, Nöh K, Wiechert W, Sauer U, Zamboni N. (2012) Collisional
431	fragmentation of central carbon metabolites in LC-MS/MS increases precision of
432	¹ C metabolic flux analysis. <i>Biotechnol Bioeng</i> 109:763-771.
433	16. Li WX, Yao ZJ, Sun LN, Hu WJ, Cao JJ, Lin WX, Lin XM. (2016) Proteomics
434	analysis reveals a potential antibiotic cocktail therapy strategy for Aeromonas
435	hydrophila infection in biofilm. J Proteome Res 15:1810-1820.
436	17. Eisenthal R, Cornish-Bowden A. (1974) The direct linear plot. A new graphical
437	procedure for estimating enzyme kinetic parameters. <i>Biochem J</i> 139:715-720.
438	18. Zhang YL, Peng B, Li H, Yan F, Wu HK, Zhao XL, Lin XM, Min SY, Gao YY,
439	Wang SY, Li YY, Peng XX. (2017) C-terminal domain of hemocyanin, a major
440	antimicrobial protein from litopenaeus vannamei: Structural homology with

441 immunoglobulins and molecular diversity. *Frontires Immunol* 8:611.

443 **Fig. S**

452 and EIB202 with increasing incubation periods (C), or increasing kanamycin (D) or

453 increasing glutamate (*E*). Cells were grown in LB medium and then incubated in M9

- 454 medium plus acetate (10 mM) and glutamate (2.5 mM) and kanamycin (500 μg/mL
- 455 and 30 μ g/mL, respectively) for the indicated incubation periods (C), or for the
- 456 indicated kanamycin concentrations for 6h (D). or for the indicated glutamate
- 457 concentrations for 6 h (*E*). (*F*) Intracellular NADH of EIB202, Cells were grown in

458	LB medium and then incubated in M9 medium plus acetate (10 mM) with and without
459	glutamate (2.5 mM). (G) PMF of EIB202. Cells were grown in LB medium and then
460	incubated in M9 medium plus acetate (10 mM) with and without glutamate (2.5 mM)
461	in the presence or absence of CCCP (20 μ M). (<i>H</i> and <i>I</i>) Intracellular kanamycin (<i>H</i>)
462	and percent survival (I) of EIB202. Cells were grown in LB medium and then
463	incubated in M9 medium plus acetate (10 mM) and kanamycin (30 μ g/mL) with and
464	without glutamate (2.5 mM) or/and CCCP (20 μ M). Results (A. C - I) are displayed as
465	mean \pm SEM, and three biological repeats were carried out. Significant differences are
466	identified (*p < 0.05, **p < 0.01) as determined by Student's t test. p < 0.01 in
467	Results (C-E).

472 Fig. S2. Glutamate restores susceptibility to kanamycin and regulates NADH, PMF
473 and cellular kanamycin. (*A-C*) Expression of NuoI and NuoF determined by Western
474 blot (*A*), PMF (*B*) and activity of respiratory chain dehydrogenase (*C*) in EIB202.

475	Cells were grown in LB medium and then incubated in M9 medium plus acetate (10
476	mM) with and without the indicated concentrations of glutamate. (D) PMF of EIB202.
477	Cells were grown in LB medium and then incubated in M9 medium plus acetate (10
478	mM) and in the presence or absence of glutamate (2.5 mM) and inhibitor rotenone (50
479	μ M), antimycin A (80 μ M) or NaN ₃ (16 mM) effect. (<i>E</i>) Percent survival of EIB202.
480	Cells were grown in LB medium and then incubated in M9 medium plus acetate (10
481	mM) and in the presence or absence of the increasing dosages of rotenone (50 μ M),
482	antimycin A (80 μ M) or NaN ₃ (16 mM) in the presence of glutamate (2.5 mM) and
483	kanamycin (30 μ g/mL). (F) Effect of environment pH on EIB202 growth (without
484	kanamycin) (left) and percent survival (with 30 μ g/mL kanamycin) (right). Cells were
485	grown in LB medium and then incubated in M9 medium plus acetate (10 mM) in the
486	presence or absence of glutamate (2.5 mM). (G) PMF of EIB202. Cells were grown in
487	LB medium and then incubated in M9 medium plus acetate (10 mM) and in the
488	presence or absence of glutamate (2.5 mM) under aerobic or anaerobic conditions. (H)
489	NADH and PMF of EIB202. Cells were grown in LB medium and then incubated in
490	M9 medium plus acetate (10 mM) in the presence or absence of glutamate (2.5 mM),
491	and effect of malonate (20 mM). (I) Percent survival of EIB202. Cells were grown in
492	LB medium and then incubated in M9 medium with acetate (10 mM) in the presence
493	or absence of glutamate (2.5 mM) and effect of the indicated concentrations of
494	malonate plus kanamycin (30 μ g/mL). (J) Effect of glutamate (2.5 mM), rotenone (50
495	μ M), antimycin A (80 μ M), NaN ₃ (16 mM) and/or CCCP (20 μ M) on intracellular
496	kanamycin. Cells were grown in LB medium and then incubated in M9 medium with

497	acetate (10 mM) plus kanamycin (30 µg/mL). (K) OD value of LTB4-S and LTB4-R.
498	Cells were grown in LB medium and then incubated in M9 medium or plus the
499	indicated metabolites acetate (10 mM), glutamate (2.5 mM), acetate (10 mM) and
500	glutamate (2.5 mM), glucose (10 mM), or acetate (10 mM) and glucose (10 mM) for 6
501	h. (L) Percent survival of nongrowing EIB202. Cells were grown in LB medium. The
502	cultures incubated in M9 medium or plus acetate (10 mM) for 24 h. The resulting
503	cells were incubated in M9 medium or plus acetate (10 mM), respectively, or the cells
504	cultured in M9 medium plus acetate (10 mM) were incubated in M9 medium with
505	glutamate (2.5 mM), or acetate (10 mM) and glutamate (2.5 mM), or glucose (10
506	mM), or acetate (10 mM) and glucose (10 mM) in the presence or absence of
507	kanamycin (30 µg/mL). (M) Percent survival of EIB202. Cells were grown in LB
508	medium and then incubated in M9 medium with acetate (10 mM) in the presence or
509	absence of glutamate (2.5 mM) plus gentamicin (8 µg/mL), ampicillin (160 µg/mL),
510	rifampicin (100 μ g/mL) or erythromycin (6.4 mg/mL). (N) NADH (left) and PMF
511	(right) of EIB202. Cells were grown in LB medium and then incubated in M9
512	medium with acetate (10 mM) in the presence or absence of glutamate (2.5 mM) or
513	alanine (40 mM). (O) Percent survival of EIB202. Cells were grown in LB medium
514	and then incubated in M9 with acetate (10 mM) in the presence or absence of
515	glutamate (2.5mM), alanine (40mM), glucose (10 mM) or aspartate (10 mM) plus
516	kanamycin (40 μ g/mL). Results (B - O) are displayed as mean \pm SEM, and three
517	independent biological repeats were carried out. Significant differences are identified
518	(* $p < 0.05$, ** $p < 0.01$) as determined by Student's t test.

- 520
- 521 Fig. S3. Lactate measurement. EIB202 cells were grown in LB medium and then
- 522 incubated in M9 with acetate (10 mM) in the presence or absence of glutamate (2.5
- 523 <mark>mM)</mark>

Fig. S4. Effect of inhibitors on the P cycle. (A and B) Two other inhibitors - 1) 526 furfural, a non-competitive inhibitor for PDH (pyruvate dehydrogenase), and - 2) 527 Na₂-ATP, an inhibitor for PEPCK (phosphoenolpyruvate carboxykinase), CS (citrate 528 (isocitrate dehydrogenase), 529 synthase). IDH and OGDH $(\alpha$ -oxoglutarate 530 dehydrogenase) - were used to further define the role of the three distinguishing steps of the P cycle (A). All of these inhibitors showed strong inhibition of 531 glutamate-triggered killing effects, regardless of which cycle these enzymes belong to, 532 and they did not affect the growth of EIB202. Furfural inhibited glutamate-mediated 533 killing most efficiently while the other compounds inhibited the killing promoted by 534 glutamate (2.5 mM) and kanamycin (30 μ g/mL), in a dose-dependent manner (B). 535 Cells were grown in LB medium and then incubated in M9 with acetate (10 mM) in 536 the presence or absence of glutamate (2.5 mM) plus the indicated inhibitors. Results 537 (B) are displayed as mean \pm SEM, and three biological repeats were carried out. 538 Significant differences are determined by Student's t test. All are p < 0.01. 539

542 manner in E. coli K12 cultured in different culture conditions. (A), Mass isotopomer 543 distributions in the P cycle of E. coli K12. Cells were grown M9 medium with acetate 544 (10 mM) plus 0.3% glucose and then incubated in M9 medium with acetate (10 mM) 545 plus ¹³C labeled glutamate (1.25 mM) and unlabeled glutamate (1.25 mM) at 6h. (B), 546 Mass isotopomer distributions in the P cycle of E. coli K12. Cells were grown in SOC 547 medium and then incubated in M9 medium with acetate (10 mM) plus ¹³C labeled 548 glutamate (1.25 mM) and unlabeled glutamate (1.25 mM) at 6h. (C), Mass isotopomer 549 distributions in the P cycle of E. coli K12. Cells were cultured in LB medium and then 550 incubated in M9 medium with acetate (10 mM) plus ¹³C labeled glutamate (1.25 mM) 551 and unlabeled glutamate (1.25 mM) at 2h. (D), Mass isotopomer distributions in the P 552

- 553 cycle of *E. coli* K12. Cells were cultured in LB medium and then incubated in M9
- ⁵⁵⁴ medium with acetate (10 mM) plus ¹³C labeled glutamate (1.25 mM) and unlabeled
- 555 glutamate (1.25 mM) at 4 h. Each dot shows a biological or technical replicate.

Fig. S6. Percent survival of rescued strains and oleate-enabled killing of *E. coli* K12 by gentamicin. (*A*) Percent survival of *E. coli* K12 and selected P cycle mutants. Cells were grown in LB medium and then incubated in M9 with acetate (10 mM) in the presence or absence of glutamate (2.5 mM) plus gentamicin (1.2 μ g/mL). (*B*), Percent survival of rescued strains. 1, Mutant; 2, Plus plasmid pACYC184; 3, Plus plasmid pACYC184 + gene in the presence or absence of glutamate (2.5 mM) plus gentamicin

564	(1.2 μ g/mL). (<i>C</i> - <i>F</i>) Oleate-enabled inactivation of <i>E. coli</i> K12 by gentamicin. Oleate
565	level of <i>E. coli</i> K12 and $\triangle aceF$, which was determined by GC-MS detection. (<i>C</i>)
566	Intracellular concentration of gentamicin of <i>E. coli</i> K12 and $\Delta aceF$ with the presence
567	of 1.2 μ g/mL gentamicin (D). Intracellular gentamicin concentration in the presence
568	of the indicated concentration of oleate with the presence of 1.2 μ g/mL gentamicin (E).
569	Percent survival of <i>E. coli</i> K12 in the presence of oleate plus gentamicin (0.75 μ g/mL)
570	(F). Cells were grown in LB medium and then incubated in M9 with acetate (10 mM)
571	plus the indicated oleate or/and gentamicin. (G) , Mouse urinary tracts were
572	catheterized and infected with <i>E. coli</i> K12 and its mutants $\triangle aceE$ and $\triangle aceF$ with
573	glutamate (250 mg/kg) and gentamicin (2 mg/kg). Results (A - G) are displayed as
574	mean \pm SEM, and three biological repeats were performed. Significant differences are
575	identified (*p < 0.05, **p < 0.01; **p < 0.01 was detect in <i>E</i> and <i>F</i>) as determined by
576	Student's t test.
577	

Tables S

579

Table S1. Summary of all compounds being detected as labeled by the $[U^{-13}C]$

labeled L-glutamate in *E. tarda* EIB202, which were cultured in LB medium and then

582

incubated in M9 plus acetate with the labeled glutamate

RT	Name	Fragments	Pathway
7.45	Alanine	3	Alanine,aspartate and glutamate metabolism
9.16	Butanoate	4	Butanoate metabolism
9.56		2	
10.27	L-Valine	1	Valine, leucine and isoleucine biosynthesis
11.23		3	
12.86	Succniate	4	TCA cycle
13.42	Uracil	4	Pyrimidine metabolism
13.80	Fumarate	4	TCA cycle
14.31	α-D-Glucopyranoside	1	
14.69	L-threonine	3	Glycine, serine and threonine metabolism
15.01		4	
16.01	L-Homoserine	3	Glycine, serine and threonine metabolism
16.22		3	
17.26	Malate	3	TCA cycle
18.03	L-Proline	6	Arginine and proline metabolism
18.29		5	
19.35	Pentanedioic acid	4	L-Lysine degradation
19.83	2-Propenoic acid	3	Styrene degradation
20.09	Obstanuala	3	
20.38	Giutamate	1	Alanine,aspartate and glutamate metabolism
21.38		5	
24.34	Citrata	1	
24.07	Cadavarias	3	Clutathiana matabaliam
24.90	Cauavenne	2	Giutatrione metabolism
20.97	Tyrosine	5	l yrosine metabolism
20.00		5	
20.83		0	
20.88		5	
20.18	Oleic acid	6	Eatty acid biosynthesis
30.45	Oleic dolu	1	r ally acid biosynthesis
30.86	Hexadecanoic acid	1	Fatty acid biosynthesis
31.31	9 12 15-Octadecatrienoic aci	id 2	Riosynthesis of unsaturated fatty acids
35.07	0,12,10-00la000alifeitoio aoi	6	Diosynthesis of unsaturated faity acids
35.17		2	
38.54	Glycine	1	Glycine, serine and threonine metabolism
40.22	ci j ci i c	1	
42.73		3	

583

Table S2. Non-targeted detection of [U-¹³C] labeled L-glutamate in *E. tarda*

EIB202, which were cultured in LB medium and then incubated in M9 plus

acetate with the labeled glutamate

Glutamate(13C)																	
RT	Name	Frag	R^2	M+0		M+1		M+2		M+3		M+4		M+5		M+6	
-				100%	SD	100%	SD	100%	SD	100%	SD	100%	SD	100%	SD	100%	SD
7.45	Alanine	116	1	0.5797	0.0102	0.3094	0.0080	0.0846	0.0047	0.0279	0.0013						
12.86	Succriate	247	1	0.6740	0.0118	0.1434	0.0048	0.0791	0.0028	0.0263	0.0039	0.0780	0.0019				
13.8	Fumarate	245	1	0.6773	0.0097	0.1434	0.0051	0.0790	0.0014	0.0280	0.0038	0.0737	0.0012				
17.26	Malate	233	1	0.6974	0.0081	0.1633	0.0038	0.0647	0.0043	0.0706	0.0053	0.0057	0.0039				
20.38	Glutamate	246	1	0.5285	0.0275	0.0007	0.0007	0.0169	0.0435	0. <mark>01</mark> 04	0.0094	0.0001	0.0127	0.4740	0.0344		
24.67	Citrate	273	1	0.5452	0.0326	0.2163	0.0214	0.1227	0.0246	0.0715	0.0116	0.0113	0.0035	0.0090	0.0026	0.0006	0.0020
26.9318	Hexadecanoic acid	123	1	0.9410	0.01 <mark>1</mark> 8	0.0493	0.0048	0.0079	0.0025	0.0020	0.0021	0.0007	0.0011	0.0004	0.0008		
30.1785	Oleic acid	242	1	0.4456	0.0340	0.2193	0.0123	0.1024	0.0192	0.0504	0.0064	0.0942	0.0170	0.0387	0.0029	0.0124	0.0018
31.3143	9,12,15-Octadecatrienoic acid	57	1	0.6141	0.0661	0.2858	0.0611	0.0374	0.0435	0.0858	0.0382	0.0305	0.0224	0.0048	0.0076		

 Table S3. Non-targeted detection of [U-¹³C] labeled L-glutamate in E. coli K12

592 BW25113, which were cultured in LB medium and then in M9 medium plus acetate

with the labeled glutamate

Glutamate(¹³ C)		_															
RT	Name	Frad	R^2	M+0 M+7		M+1 M+8		M+2 M+9		M+3 M+10		M+4		M+5		M+6	
				100%	SD	100%	SD	100%	SD	100%	SD	100%	SD	100%	SD	100%	SD
7.85	Alanine	116	1	0.8063	0.0020	0.1382	0.0063	0.0425	0.0033	0.0130	0.0010						
12.70	Isoleucine	85	1	0.6008	0.0740	0.0705	0.0166	0.1544	0.0219	0.0328	0.0289	0.0531	0.0267	0.0318	0.0127	0.0566	0.0004
12.83	Proline	148	1	0.5753	0.0155	0.2412	0.0270	0.1113	0.0249	0.0158	0.0020	0.0283	0.0235	0.0282	0.0079		
13.01	Glycine	248	1	0.8935	0.0209	0.1077	0.0252	0.0030	0.0017								
13.32	Succriate	172.247	1	0.7648	0.0112	0.0704	0.0010	0.0547	0.0137	0.0407	0.0038	0.0439	0.0024				
13.88	Uracil	85	1	0.5977	0.0469	0.2410	0.0334	0.1153	0.0023	0.0264	0.0141	0.0195	0.0029				
14.25	Fumarate	79.245	1	0.7648	0.0112	0.0704	0.0010	0.0547	0.0137	0.0407	0.0038	0.0439	0.0024				
14.93	Citrate	347	1	0.6656	0.0339	0.1617	0.0400	0.1023	0.0305	0.0346	0.0098	0.0208	0.0175	0.0138	0.0045	0.0012	0.0017
15.09	Threonine	160	1	0.5732	0.0048	0.2506	0.0032	0.0409	0.0150	0.0987	0.0335	0.0365	0.0104				
17.68	Malate	119.233	1	0.8007	0.0720	0.0825	0.0011	0.0534	0.0010	0.0507	0.0023	0.0472	0.0036				
20.80	Glutamate	246	1	0.5073	0.5220	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.4927	0.4780		
24.18	Glutamine	116	1	0.6288	0.0100	0.2264	0.0143	0.0779	0.0117	0.0369	0.0116	0.0112	0.0073	0.0187	0.0116		
27.49	Tyrosine	280,354	1	0.5324	0.0197	0.2401	0.0143	0.1096	0.0010	0.0699	0.0025	0.0279	0.0054	0.0147	0.0032	0.0032	0.0001
32.67	Oleic acid	264	1	0.6475 0.0407	0.0145 0.0229	0.0853 0.0408	0.0033 0.0009	0.0127 0.0154	0.0064 0.0070	0.0366 0.0121	0.0173 0.0127	0.0163	0.0135	0.0410	0.0374	0.0222	0.0078

Table S4. Non-targeted detection of $[U^{-13}C]$ labeled L-glutamate in *E. coli* K12

598 BW25113, which were cultured in M9 medium with acetate plus 0.3% glucose and

599

then incubated in M9 medium plus acetate with the labeled glutamate

Glutamate(¹³ C) RT	Name	Frag	R^2	M+0 100%	SD	M+1 100%	SD	M+2 100%	SD	M+3 100%	SD	M+4 100%	SD	M+5 100%	SD	M+6 100%	SD
7.85	Alanine	116	1	0.7165	0.0062	0.1966	0.0038	0.0690	0.0023	0.0178	0.0002						
12.70	Isoleucine	158	1	0.6011	0.0088	0.2130	0.0016	0.0987	0.0060	0.0601	0.0038	0.0180	0.0015	0.0074	0.0010	0.0017	0.0002
12.83	Proline	148	1	0.5934	0.0034	0.1717	0.0023	0.0752	0.0007	0.0550	0.0018	0.0201	0.0001	0.0846	0.0012		
13.01	Glycine	248	1	0.7616	0.0049	0.1697	0.0035	0.0687	0.0014								
13.32	Succriate	172.247	1	0.6695	0.0077	0.1505	0.0011	0.0910	0.0033	0.0392	0.0012	0.0498	0.0033				
13.88	Uracil	85	1	0.6225	0.0050	0.2123	0.0052	0.1101	0.0135	0.0246	0.0033	0.0305	0.0061				
14.25	Fumarate	79.245	1	0.6707	0.0048	0.1479	0.0017	0.0885	0.0023	0.0384	0.0008	0.0545	0.0034				
14.93	Citrate	347	1	0.5305	0.0627	0.1772	0.0107	0.1568	0.0197	0.0776	0.0250	0.0383	0.0035	0.0161	0.0091	0.0080	0.0013
15.09	Threonine	160	1	0.6028	0.0241	0.1469	0.0221	0.1092	0.0152	0.0994	0.0421	0.0417	0.0196				
17.68	Malate	119.233	1	0.6702	0.0052	0.1219	0.0388	0.0839	0.0190	0.0719	0.0236	0.0521	0.0014				
20.80	Glutamate	246	1	0.4964	0.0096	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.5036	0.0096		
24.18	Glutamine	116	1	0.5612	0.0056	0.2302	0.0050	0.1122	0.0092	0.0472	0.0043	0.0149	0.0043	0.0343	0.0045		
27.49	Tyrosine	280,354	1	0.4891	0.0122	0.2197	0.0031	0.1431	0.0057	0.0887	0.0058	0.0361	0.0028	0.0140	0.0007	0.0056	0.0002
32.67	Oleic acid	264	1	0.3812	0.0270	0.0747	0.0028	0.0818	0.0094	0.0481	0.0078	0.0528	0.0072	0.0169	0.0033	0.0118	0.0039
				0.0052(M+7)	0.0003	0.0050(M+8)	0.0014	0.0039(M+9)	0.0039	0.0116(M+10)	0.0046						

Table S5. Non-targeted detection of $[U^{-13}C]$ labeled L-glutamate in *E. coli* K12

BW25113, which were cultured in SOC medium and then incubated in M9 medium

plus acetate	with	the	labeled	glutamate
--------------	------	-----	---------	-----------

Glutamate(¹³ C) RT	Name	Frag	R^2	M+0	00	M+1	00	M+2	90	M+3	00	M+4	90	M+5	00	M+6	00
7.85	Alanine	116	1	0.7030	0.0013	0.2036	0.0032	0.0741	0.0009	0.0193	0.0020	100 /6	30	IUU/o	30	100 /0	
12.70	Isoleucine	158	1	0.6845	0.0142	0.1875	0.0077	0.0717	0.0035	0.0385	0.0024	0.0117	0.0009	0.0046	0.0007	0.0015	0.0004
12.83	Proline	148	1	0.5826	0.0087	0.1984	0.0018	0.0902	0.0021	0.0555	0.0013	0.0190	0.0007	0.0543	0.0049		
13.01	Glycine	248	1	0.7132	0.0080	0.2017	0.0066	0.0850	0.0028								
13.32	Succriate	172.247	1	0.6858	0.0082	0.1647	0.0054	0.0811	0.0016	0.0359	0.0009	0.0326	0.0162				
13.88	Uracil	85	1	0.6855	0.0172	0.1753	0.0134	0.0951	0.0103	0.0173	0.0047	0.0269	0.0101				
14.25	Fumarate	79.245	1	0.6781	0.0098	0.1658	0.0072	0.0868	0.0027	0.0383	0.0012	0.0310	0.0023				
14.93	Citrate	347	1	0.5437	0.0402	0.1920	0.0223	0.1512	0.0195	0.0621	0.0070	0.0283	0.0031	0.0154	0.0106	0.0047	0.0035
15.09	Threonine	160	1	0.5954	0.0084	0.2529	0.0144	0.0551	0.0092	0.0719	0.0034	0.0247	0.0003				
17.68	Malate	119.233	1	0.6664	0.0287	0.1169	0.0012	0.0788	0.0231	0.0775	0.0163	0.0604	0.0207				
20.80	Glutamate	246	1	0.4996	0.0083	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.5004	0.0083		
27.49	Tyrosine	280,354	1	0.5285	0.0193	0.2112	0.0122	0.1281	0.0052	0.0769	0.0110	0.0350	0.0045	0.0140	0.0040	0.0064	0.0038

- Table S6. Non-targeted detection of [U-¹³C] labeled L-glutamate at 2 h in *E*.
- *coli* K12 BW25113, which were cultured in LB medium and then incubated in

M9 medium plus acetate with the labeled glutamate

Glutamate(¹³ C) RT	Name	Frag	R/2	M+0	00	M+1	00	M+2	00	M+3	0.0	M+4	0.0	M+5	00	M+6	00
7.85	Alanine	116	1	0.7589	0.0068	0.1771	0.0061	0.0484	0.0028	0.0157	0.0023	100%	30	100%	30	100%	50
13.01	Glycine	248	1	0.8159	0.0115	0.1278	0.0127	0.0563	0.0023								
13.32	Succriate	172,247	1	0.7350	0.0094	0.1445	0.0031	0.0718	0.0030	0.0277	0.0015	0.0211	0.0022				
13.88	Uracil	85	1	0.6667	0.0272	0.1801	0.0236	0.0986	0.0217	0.0179	0.0050	0.0367	0.0157				
14.25	Fumarate	79,245	1	0.7329	0.0101	0.1437	0.0026	0.0733	0.0034	0.0281	0.0020	0.0220	0.0023				
14.93	Citrate	347	1	0.6360	0.0200	0.1660	0.0202	0.1070	0.0114	0.0613	0.0043	0.0206	0.0015	0.0068	0.0020	0.0023	8000.0
15.09	Threonine	160	1	0.6522	0.0816	0.1246	0.0184	0.1381	0.0764	0.0772	0.0205	0.0080	0.0385				
17.68	Malate	119,233	1	0.8195527	0.050317973	0.1066674	0.034779414	0.044477	0.005986731	0.011781035	0.009807	0.017521875	0.00567547				
20.80	Glutamate	246	1	0.5748	0.0109	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.4252	0.0109		
24.18	Glutamine	116	1	0.4178	0.0609	0.1153	0.0278	0.0644	0.0224	0.0285	0.0179	0.0178	0.0034	0.0260	0.0225		

Table S7. Non-targeted detection of [U-¹³C] labeled L-glutamate at 4h in *E*.

coli K12 BW25113, which were cultured in LB medium and then incubated in

M9 medium plus acetate with the labeled glutamate

Glutamate(¹³ C) RT	Name	Frag	R/2	M+0 100%	SD	M+1 100%	SD	M+2 100%	SD	M+3 100%	SD	M+4 100%	SD	M+5 100%	SD	M+6 100%	SD
7.85	Alanine	116	1	0.7002	0.0386	0.2173	0.0239	0.0670	0.0083	0.0155	0.0082						
12.70	Isoleucine	158	1	0.7798	0.0140	0.1494	0.0111	0.0444	0.0034	0.0177	0.0021	0.0047	0.0006	0.0022	0.0026	0.0018	0.0007
12.83	Proline	148	1	0.2645	0.0583	0.1251	0.2976	0.2172	0.2369	0.1333	0.0925	0.0767	0.0503	0.1831	0.0769		
13.01	Glycine	248	1	0.7896	0.0294	0.1455	0.0271	0.0649	0.0047								
13.32	Succriate	172,247	1	0.6756	0.0087	0.1796	0.0058	0.0798	0.0004	0.0391	0.0013	0.0259	0.0018				
13.88	Uracil	85	1	0.6895	0.0273	0.1671	0.0278	0.0965	0.0067	0.0230	0.0054	0.0239	0.0090				
14.25	Fumarate	79,245	1	0.7115	0.0104	0.1566	0.0048	0.0751	0.0043	0.0338	0.0017	0.0231	0.0001				
14.93	Citrate	347	1	0.5396	0.0324	0.1883	0.0215	0.1340	0.0050	0.0657	0.0076	0.0234	0.0016	0.0404	0.0124	0.0085	0.0062
15.09	Threonine	160	1	0.6131	0.0185	0.1612	0.0408	0.0718	0.0340	0.1319	0.0218	0.0220	0.0182				
17.68	Malate	119,233	1	0.6889	0.0868	0.1468	0.0154	0.0665	0.0448	0.0594	0.0728	0.0384	0.0092				
20.80	Glutamate	246	1	0.5400	0.0042	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.4600	0.0042		
24.18	Glutamine	116	1	0.6924	0.0252	0.1688	0.0104	0.0745	0.0052	0.0434	0.0153	0.0127	0.0153	0.0081	0.0048		
27.49	Tyrosine	280,354	1	0.5592	0.0264	0.1885	0.0237	0.1218	0.0099	0.0575	0.0009	0.0278	0.0064	0.0180	0.0047	0.0138	0.0125

Table S8. Non-targeted detection of [U-¹³C] labeled L-glucose in *E. coli* K12

619 BW25113, which were cultured in LB medium and then incubated in M9

medium plus acetate with the labeled glucose

Glucose(¹³ C) RT	Name	Frag	R^2	M+0 100%	SD	M+1 100%	SD	M+2 100%	SD	M+3 100%	SD	M+4 100%	SD	M+5 100%	SD	M+6 100%	SD
7.85	Alanine	116	1	0.6672	0.0065	0.1644	0.0024	0.1498	0.0078	0.0186	0.0009						
12.70	Isoleucine	158	1	0.6561	0.0044	0.1560	0.0029	0.1201	0.0002	0.0444	0.0010	0.0167	0.0007	0.0057	0.0006	0.0009	0.0000
12.83	Proline	148	1	0.6030	0.0173	0.1750	0.0041	0.1133	0.0030	0.0372	0.0015	0.0120	0.0012	0.0595	0.0128		
13.01	Glycine	248	1	0.7304	0.0111	0.2049	0.0144	0.0647	0.0126								
13.32	Succhiate	172,247	1	0.4912	0.0055	0.2346	0.0009	0.1441	0.0011	0.0986	0.0024	0.0314	0.0014				
13.88	Uracil	85	1	0.5534	0.0079	0.2232	0.0023	0.1298	0.0017	0.0719	0.0038	0.0216	0.0022				
14.25	Fumarate	79,245	1	0.5337	0.0068	0.2134	0.0030	0.1315	0.0020	0.0905	0.0027	0.0309	0.0025				
14.93	Citrate	347	1	0.4240	0.0359	0.2237	0.0217	0.1938	0.0128	0.0974	0.0088	0.0356	0.0044	0.0136	0.0006	0.0115	0.0042
15.09	Threonine	160	1	0.5665	0.0150	0.2013	0.0070	0.1444	0.0112	0.0619	0.0031	0.0259	0.0005				
17.68	Malate	119,233	1	0.5419	0.0133	0.2200	0.0052	0.1467	0.0030	0.0755	0.0057	0.0159	0.0010				
20.80	Glutamate	246	1	0.5332	0.0021	0.1594	0.0020	0.0661	0.0003	0.0212	0.0002	0.0212	0.0002	0.0043	0.0001		
24.18	Glutamine	116	1	0.5036	0.0275	0.2133	0.0140	0.1597	0.0076	0.0735	0.0120	0.0385	0.0120	0.0114	0.0051		
27.49	Tyrosine	280,354	1	0.3377	0.0211	0.1497	0.0068	0.1897	0.0089	0.1426	0.0064	0.0896	0.0088	0.0488	0.0059	0.0255	0.0051
				0.0098 (M+7)	0.0012	0.0053 (M+8)	0.0019	0.0013 (M+9)	0.0008								

Table S9 Primers used for QRT-PCR

A: Escherichia coli

			Product
Gene	Primer	Primer sequence	size(bp)
16 5 -DNA	Forward	5'-ACTGAGACACGGTCCAGACTCCTAC-3'	146
IUSIKINA	Reverse	5'-TTAACGTTCACACCTTCCTCCCTAC-3'	140
nck	Forward	5'-GATGAACGGAGCCAAATGCA-3'	230
рск	Reverse	5'-GGCCAAAGAAGATCGCCAC-3'	239
nvkF	Forward	5'-TTCACCACCGACCAGAGCG-3'	112
руки	Reverse	5'-TCAGGCCATCGTCCACCAG-3'	112
acoF	Forward	5'-ACCTCTGGACGCACCACCCT-3'	181
uttL	Reverse	5'-AGTACACGTTCTCCTGCTTCTCA-3'	101
aceF	Forward	5'-CAGGGCGGCTGCTTCACTA-3'	141
utti	Reverse	5'-CGCAAACTCTTTCCCATTCCA-3'	141
alt A	Forward	5'-TGAGCTGGGTATGAATGACGA-3'	127
81121	Reverse	5'-CAGTATGATGCCGGAGTAGAAG-3'	127
acnR	Forward	5'-TCCCTGTGCATGGGCAACC-3'	194
ucnb	Reverse	5'-CCCACCTTCGCCATAAACTGC-3'	171
icd	Forward	5'-AAACGCCGAGGATATTTACGC-3'	126
104	Reverse	5'-ATGCCGCAGTGCTCAGGGA-3'	120
sucA	Forward	5'-ACCTACTGCGGAACCATCGG-3'	119
54011	Reverse	5'-TTCTCCTGCGGGCTAAACG-3'	117
sucC	Forward	5'-GCCGAACAGTGGCTGGGTA-3'	89
succ	Reverse	5'-GTCGCTCCCTCCACCAGAAT-3'	07
sdh A	Forward	5'-ACCCGTTCCCATACCGTTTC-3'	80
SUNA	Reverse	5'-TGCCATTCCCAGTTGTCTTCAT-3'	80
fredA	Forward	5'-GCTGTCCGTGGAGCCGTAA-3'	Q 1
JIUA	Reverse	5'-CAAACCAGGTGCGTTCAATCT-3'	01
fumC	Forward	5'-GCCGTATGGACTCCTATGTCG-3'	177
jume	Reverse	5'-TCAGGCTCTTGATGCTCTGC-3'	177
mdh	Forward	5'-ATCCGCTCCAACACCTTCG-3'	202
mun	Reverse	5'-CGGCCTTAGCCTCTACCACC-3'	202
asnC	Forward	5'- GCTGTTCCACGGCTGTTGC-3'	178
uspC	Reverse	5'- CAAAGCCCTGATAGGCGAAGT-3'	120
nne	Forward	5'-TCGCCAAGTCCGATCTGTG-3'	11/
ppc	Reverse	5'- CCGCCTGAATATCTCGCTGTA-3'	114
111 (1.0	Forward	5'-AGCGTAATGACGATAACACCT-3'	222
mqo	Reverse	5'-CCGTAAACCTTCGCCAGA-3'	232
nul-A	Forward	5'-ACGCCGTTCTGGATGGTA-3'	120
рука	Reverse	5'-ACGTTGATGCTCGGGATT-3'	150

B: Klebsiella pneumoniae

Gene	Primer	Primer sequence	Product size(bp)
16S rRNA	Forward	5'-CCTGGACAAAGACTGACGC-3'	104
	Reverse	5'-GGGCACAACCTCCAAATC-3'	
oadA	Forward	5'-CGTGGAGGTGGAAGGCAAAG-3'	91
	Reverse	5'-AGAGGCAGGAGCAGGAGCAG-3'	
oadB	Forward	5'-CACGGTGAGTAAGCGGGAGA-3'	110
	Reverse	5'-GGTTGCCGAAGCAGAACATC-3'	
oadC	Forward	5'-GGGCTTTGTGCTGGTGTTCC-3'	187
oaaC	Reverse	5'-AAGACGGCGATGGTGGTGA-3'	
mqo	Forward	5'-GCTCAGCACTACCACC-3'	166
	Reverse	5'-CAGTTTCCAGTCTTCTTTACGC-3'	
mqo2	Forward	5'-CGAAGGTCTACGGTCAGGC-3'	116
	Reverse	5'-CGAGAAGGTGGCGAATGGT-3'	
mdh	Forward	5'-AACTGTTCGGCGTTACCAC-3'	110
	Reverse	5'-GGAGTGACCACCAATGACC-3'	
pckA	Forward	5'-CCATCCGTCGAAGGTGATT-3'	208
	Reverse	5'-GTACTGGGTCGGGTGAAGC-3'	
pckA2	Forward	5'-ACTTCGTCGCCTTCAACCT-3'	82
	Reverse	5'-AACATCCCTTTCTTCATCTCG-3'	

C:Vibrio parahaemolyticus

Gene	Primer	Primer sequence	Product size(bp)
16S rRNA	Forward	5'-GCACAAGCGGTGGAGCAT-3'	202
	Reverse	5'-TCGCTGGCAAACAAGGAT-3'	202
oadA	Forward	5'-CTTACTTATGCGTTGTTCC-3'	97
	Reverse	5'-CAATGTAGGTGCTGGTTC -3'	07
oadB	Forward	5'-AGAAGAGGACATCAACCCAC-3'	155
	Reverse	5'-CGGAGCCAAGTACACCAG-3'	155
mdh	Forward	5'-GATTGCGGTTGTTTGTCCTA-3'	83
	Reverse	5'-GAACTTCAGCAGCGATTGG-3'	03
pck	Forward	5'-TACCGACTTCACTACCAGGTG-3'	02
	Reverse	5'-AGTCTTTCGCTTTGCTTTCC-3'	95

Primer	Sequence(5 ² -3 ²)
tdcE-S	GCTTATCATCGATAAGCTTAAGAAGGTAGATATTGATAC
tdcE-AS	ATGCGTCCGGCGTAGAGGGATCCTTAGAGCGCCTGGGTAAAGG
aceE-S	GCTTATCATCGATAAGCTTATGTCAGAACGTTTCCCAAA
aceE-AS	CACGATGCGTCCGGCGTAGAGGGATCCTTACGCCAGACGCGGGTTAA
lpdA-S	CGC <u>AAGCTT</u> ATGAGTACTGAAATCAAAAC
lpdA-AS	GCG <u>GGATCC</u> TTACTTCTTCGCTTTCG
pykF-S	CGC <u>AAGCTT</u> ATGAAAAAGACCAAAATTGT
pykF-AS	GCG <u>GGATCC</u> TTAGTAGTGCCGCTCGGTAC
pflD-S	CGC <u>AAGCTT</u> ATGACGAATCGTATCTCTCG
pflD-AS	GCG <u>GGATCC</u> TTACAGCTGATGCGCTGTCC

Table S11 Primers for PCK complementation

Mutation		Primers
site(s)		
R65A	Forward	5'-accggtgcttcaccaaaagataagtatatcgtccgtgacgatacc-3'
	Reverse	5'-ttggtgaagcaccggtgaagatcccggtatcgacgg-3'
G209A	Forward	5'-tacggcgctgaaatgaagaaagggatgttctcgatgatgaactacctgc-3'
	Reverse	5'-tcatttcagcgccgtaccaggtgccgccaatcagct-3'
K212A	Forward	5'-gaaatggctgctgggatgttctcgatgatgaactacctgctgccgctg-3'
	Reverse	5'-catcccagcagccatttcgccgccgtaccaggtgcc-3'
H232A	Forward	5'-tctatggcgtgctccgccaacgttggtgagaaagg-3'
	Reverse	5'-cggagcacgccataga agcgatacctttcagcggcag-3'
S250A	Forward	5'-ggccttgcgggcaccg gtaaaaccaccctttccacc-3'
	Reverse	5'-cggtgcccgcaaggcc gaagaacaccgcaacatcgc-3'
T256A	Forward	5'-aaaaccgcgcttteca ccgacccgaaacgtcgcctg-3'
	Reverse	5'-tggaaagcgcggtttt accggtgccggaaaggccga-3'
D268A/D269A	Forward	5'-attggcgctgctgaac acggctgggacgatgacggc-3'
	Reverse	5'-gttcagcagcgccaat caggcgacgtttcgggtcgg-3'
Y286A/K288A	Forward	5'-ggctgcgccgcagccact atcaagctgtcgaaagaagcggaacc -3'
	Reverse	5'-agtggctgcggcgcagcc gccttcgaagttaaacacgc-3'
E297A	Forward	5'-gaageggeacetgaaa tetacaaegetateegtegt-3'
	Reverse	5'-tttcaggtgccgcttc tttcgacagcttgatagtttttgcgtagcagcc-3'
R333A	Forward	5'-aacaccgcggtttctt atccgatctatcacatcgat-3'

	Reverse	5'-aagaaaccgcggtgtt ctcggtttttgaaccatcat-3'
R449A	Forward	5'-ggcaaagctateteg attaaagataceegegecattategaegecateet-3'
	Reverse	5'-cgagatagctttgcc agtgccgttccagccagtgt-3'
I452A/T455A	Forward	5'-tcggcgaaagatgcgcgc gccattatcgacgccatcct-3'
	Reverse	5'-gcgcgcatctttcgccga gatagctttgccagtgccgt-3'