Inventory of the Supplementary Information

- Figure S1. Full-length RidL and RidL-N, but not RidL-C, bind to PtdIns(3)P.
- Figure S2. Cellular localization of RidL-FL, RidL-N, and RidL-C.
- Figure S3. Stereo view of RidL loop with a composite Simulated Annealing omit map at 2.5 Å resolution and contoured at 1σ.
- Figure S4. Sequence comparision of RidL from different *Legionella* species.
- Figure S5. Identification and characterization of PtdIns(3)P binding residues in RidL-N.
- Figure S6. VARP and TBC1d5 recognize VPS29 through similar modes.
- Figure S7. Interaction between TBC1d5 and VPS29 proteins.
- Table S1. Crystallography Data Collection and Refinement Statistics.
- Table S2. DNA Constructs Used in this Study.
- Table S3. Summary of Antibodies Used in this Study

Figure S1

Figure S1. Full-length RidL and RidL-N, but not RidL-C, bind to PtdIns(3)P.

Left: Proteins associated with PtdIns(3)P-containing or PtdIns(3)P-free liposomes were immunoblotted with anti-GST antibody. Right: GST-fusion proteins in pellet stained by coomassie blue.

Figure S2. Cellular localization of RidL-FL, RidL-N, and RidL-C. Hela cells were transfected with GFP, or GFP-RidL-FL, RidL-N, RidL-C (green), and then fixed and labeled with anti-EEA1 (red) antibody.

Figure S3. Stereo view of the RidL loop with a composite Simulated Annealing omit map at 2.5 Å resolution and contoured at 1σ .

Figure S4

Figure S4. Sequence comparision of RidL from different *Legionella* species. *L. moravica* or *L. shakspearei* RidL proteins are the two closest homologs to *L. pneumophila* RidL. Sequence alignments were performed with ClustalW, with protein secondary structure listed above and consensus sequence listed below. The residues that interact with VPS29 are labeled with a "*" at the bottom of alignment.

Figure S5

Figure S5. Identification and characterization of PtdIns(3)P binding residues in RidL-N.

- (A) VPS29-RidL complex structure highlighting two positively charged surfaces (circled) on RidL that are distant from the VPS29-binding site.
- (B) PtdIns(3)P-containing liposome flotation assay. Left: liposome-bound samples were probed with anti-GST antibody; right: GST-fusion proteins in pellet stained by coomassie blue.
- (C) VPS29-interacting deficent RidL mutants binds to PtdIns(3)P-containing liposome similar to RidL WT. Left: liposome-bound samples were probed with anti-GST antibody; right: GST-fusion proteins in pellet stained by coomassie blue.
- (D)Hela cells were transfected with GFP, or GFP-RidL-N WT, Y166A, KRR, Y166A/KRR (green), and then fixed and labeled with anti-EEA1 (red) antibody.
- (E) Quantitation of GFP colocalization with EEA1 in cells in (c). Each dot represents Pearson's correlation coefficients from one cell. P values shown are the result of oneway ANOVA, post hoc Tukey's test.

А

		T T T T T T T T T T T T T T T T T T T	
Human_TBC1d5	132	GQQDLMINNPLSQDEGSLWNKFFQDKE	158
Human_VARP	424	KDTVQKMCHPLCFCDDCEKLVSGRLND	450
Human_VARP	704	SAADPEFCHPLCQCPKCAPAQKRLAKV	730

Figure S6

Figure S6. VARP and TBC1d5 recognize VPS29 through similar modes.

- (A) Sequence comparision of Ins1 of TBC1d5 and two cysteine-rich motifs of VARP. Conserved residues are highlighted in machaccino. The leucine residue mutated in the pull-down experiment in (B) is labeled with a black triangles on top.
- (B) GST-VARP (aa1-450) WT, mutants or GST pull-down of purified VPS29. Shown are a coomassie blue stained SDS-PAGE gel of purified proeins and bound samples (top),

and immunoblot using anti-VPS29 antibody for the same sample (bottom). The GST-VARP samples contained multiple degraded proteins whose sizes range from that of GST-VARP to that of GST.

Figure S7

Figure S7. Interaction between TBC1d5 and VPS29 proteins.

GST-TBC1d5 (aa1-419) or GST pull-down of purified VPS29 WT or mutants. Shown are a coomassie blue stained SDS-PAGE gel of purified proeins and bound samples (top).

	VPS29:RidL ⁵⁻²⁰⁵
	<i>a</i> =44.31, <i>b</i> =82.05, <i>c</i> =87.33
Cell axial lengths (Å)	α=101.73, β=104.26, γ=104.77
Spacegroup	P1
Data collection	
Resolution range (Å)	50.00-2.50 (2.54-2.50)
Number of observed reflections	139107 (6728)
Number of unique reflections	36022 (1764)
Completeness (%)	96.7 (97.0)
Redundancy	3.7 (3.7)
Rmerge	0.106 (0.891)
Highest shell CC1/2	0.722
Mean I/I _{sigma}	14.4 (1.9)
Solvent content (%)	62.6
Refinement	
Resolution range (Å)	50.00-2.50 (2.57-2.50)
Number of working reflections	30261 (405)
Number of test reflections	1602 (23)
$R_{work}{}^{a}$ (no. of reflections)	0.188 (0.232)
R _{free} ^b (no. of reflections)	0.224 (0.326)
R.m.s. deviation bond lengths (Å)	0.010
R.m.s. deviation bond angles ()	1.406
Average B-factors (Å2) (# of atoms)	
VPS29 atoms	47.5 (2938)
RidL atoms	60.9 (3209)
Waters atoms	43.1 (226)
Ramachandran nlot	
Most favored regions (%)	90.3
Allowed regions (%)	88
General allowed regions (%)	0.3
Disallowed regions (%)	0.6
Disanowed regions (%)	0.0

Table S1. Crystallography Data Collection and Refinement Statistics.

 $R_{work}^{b} = \Sigma |Fo - Fc|/|Fo|$, where Fc and Fo are the calculated and observed structure factor amplitudes, respectively R_{free}^{c} calculated as for R_{work} but for 5.0% of the total reflections chosen at random and omitted from refinement for all data sets # values in the parenthesis is information from highest resolution shell.

Table S2. DNA Constructs Used in this Study.

Construct name	Source or reference	
pEGFP-C1	Clontech #6084-1	
pEGFP-C1-RidL	This paper	
pEGFP-C1-RidL-N (aa1-200)	This paper	
pEGFP-C1-RidL-N-Y166A	This paper	
pEGFP-C1-RidL-N- I170A	This paper	
pEGFP-C1-RidL-N-P172A	This paper	
pEGFP-C1-RidL-C (aa201-C)	This paper	
pEGFP-C1-RidL-N-KRR	This paper	
pEGFP-C1-RidL-N-Y166A/KRR	This paper	
pGEX-4T-1-RidL	This paper	
pGEX-4T-1-RidL-N (aa1-200)	This paper	
pGEX-4T-1-RidL-C (aa201-C)	This paper	
pGEX-4T-1-RidL-N Y166A	This paper	
pGEX-4T-1-RidL-N P168A	This paper	
pGEX-4T-1-RidL-N I170A	This paper	
pGEX-4T-1-RidL-N I170E	This paper	
pGEX-4T-1-RidL-N I170L	This paper	
pGEX-4T-1-RidL-N I170W	This paper	
pGEX-4T-1-RidL-N P171A	This paper	
pGEX-4T-1-RidL-N P172A	This paper	
pGEX-4T-1-RidL-N-NKS (N176L/K177D/S178A)	This paper	
pGEX-4T-1-loop ^{LP} (aa160-180)	This paper	
pGEX-4T-1-RidL ^{LM}	This paper	
pGEX-4T-1-RidL ^{LS}	This paper	
pGEX-4T-1-RidL ^{LS} -loop ^{LP}	This paper	

pCDF-1b-VPS29	(Jia et al., 2012)	
pCDF-1b-VPS29 L2A	This paper	
pCDF-1b-VPS29 L25A	This paper	
pCDF-1b-VPS29 K30A	This paper	
pCDF-1b-VPS29 Y163A	This paper	
pCDF-1b-VPS29 Y165A	This paper	
pCDF-1b-VPS29 R176A	This paper	
pCDF-1b-VPS29 K56A	This paper	
pCDF-1b-VPS29 KKR (K27A/R33A/K122A)	This paper	
pGEX-4T-1-VPS35	(Jia et al., 2012)	
pCDF-1b-VPS26	(Jia et al., 2012)	
pGEX-4T-1-TBC1D5	(Jia et al., 2016)	
pGEX-4T-1-VARP (aa1-450)	(Hesketh et al., 2014) : this paper	
pGEX-4T-1-VARP-L434I	This paper	
pGEX-4T-1-VARP-L434A	This paper	
pSTxB	(Liu et al., 2012)	

Table S3. Summary of Antibodies Used in this Study

Antibody	SOURCE	Catalog #
VPS35	Gift from Dr. Dan Billadeau; (Jia et al., 2016)	N/A
VPS29	GeneTex	GTX104768
EEA1	BD Biosciences	610457
TBC1D5	PTG	17078-1-ap
TGN46	abcam	ab50595
STxB	Gift from Dr. Guihua Tai; (Liu et al., 2012)	N/A
GST	PTG	66001-1-Ig
Goat anti-rabit IgG-HRP	Santa Cruz	sc-2004
TRITC affinipure goat anti-mouse IgG	Jackson ImmunoResearch	115-025-003
TRITC affinipure goat anti-rabbit IgG	Jackson ImmunoResearch	111-025-003
Alexa Fluor 647 affinipure goat anti-rabbit IgG	Jackson ImmunoResearch	111-605-003