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TF-Resolved Photon Counting for the Time-Dependent JC Model. In
this section, we show the power of TF-resolved photon count-
ing to the canonical JC model of quantum optics. We add one
additional level of complexity by treating the cavity mode–atom
as time dependent. The gating will then provide a versatile tool
to study exciton dynamics through photon correlations. We will
provide a simple analytical solution for a particular form of time-
dependent cavity modulation.

The Propagator for the Time-Dependent JC Model. To describe the
quantized radiation field, we introduce the Hermitian photon
number operator A0. Changes of the cavity photon number by
m quanta are represented by creation and annihilation opera-
tors A±, where A†±=A∓, which satisfy the relation A0A± =
A±(A0±m), where m is a nonzero real number of quanta. They
satisfy the commutation relations [A0,A±] = ±mA±. A+A−,
which represents a process in which m quanta are first destroyed
and then created, depends on the number of initial quanta A0,
such that A+A−=χ(A0), where χ is the real function of its
argument. Similarly, A−A+ should satisfy A−A+ = χ(A0 + m).
The operators A0, A+, and A− form a closed oscillator algebra
for any m-quanta ladder. We can construct a generalized time-
dependent JC model Hamiltonian

H = r(A0) + s(A0)σz + λ(t)(A+σ− + A−σ+). [S1]

For single-photon transition processes, such that A0 = a†a =n ,
r(n) =ωn , s(n) =ω0/2, and χ(∆) = ∆, Eq. S1 reduces to Eq. 1.

After the general algebra, one can split the Hamiltonian into
H = H0 + Hi , where H0 = ω(∆) is the field energy function:

ω(∆) =
1

2
[r(∆−m) + r(∆) + s(∆−m)− s(∆)], [S2]

while Hi = δ(∆)σz + λ(t)(A+σ− +A−σ+), where the detuning
function δ(∆) is given by

δ(∆) =
1

2
[r(∆−m)− r(∆) + s(∆−m) + s(∆)]. [S3]

We thus have the SU(2) algebra governed by F± and F0, which
connect with angular momentum algebra as

F± = ±J±, F0 = 2Jz , J± = Jx ± iJy . [S4]

It is easy to see that A±σ∓ satisfies

[A−σ+,A+σ−] = χ(∆)σz , [S5]

{A−σ+,A+σ−} = χ(∆), [S6]

which yields

F0F± = ±F±, F±F0 = ∓F±, F±F∓ = −1

2
(1± F0).

[S7]

We further have F 2
0 = 1, F 2

± = 0. The time evolution operator
can be recast as

U (t) = e−iω(∆)tUi(t), [S8]

where Ui(t) is the evolution operator governed by Hi . Using the
SU(2) algebra, we can recast the Hamiltonian Hi as

Hi = δ(∆)F0 + λ(t)
√
χ(∆)(F+ − F−). [S9]

Following the Wei–Norman formalism [S58] and using the expo-
nentiating rule of SU(2) algebra

e ia(n·σ) = I cos a + i(n · σ) sin a [S10]

for arbitrary a , using relations [S7], and neglectingO(f 2, g2, fg),
we obtain for the evolution operator

Ui(t) = cosh[h(t)] + sinh[h(t)]F0 + G(t)F+ + F(t)F−,

[S11]

where G(t) = g(t)eh(t), F(t) = f (t)e−h(t). Unitarity implies
that G(t)= F∗(t). We also introduce the auxiliary function
H(t) = e−h(t). On resonant δ = 0, functions X =F ,H satisfy
Eq. 6 with initial conditions H(t0) = 1, Ḣ(t0) = 0, F(t0) = 0,
Ḟ(t0) = i

√
n + 1λ(t0) = −iα/(2τ). Changing the variable to

z (t) =
e(t−T)/τ

1 + e(t−T)/τ
, [S12]

Eq. 6 reads

z (1− z )
d2X

dz 2
+ (β − z )

dX

dz
+ α2X = 0, [S13]

where β = 1/2. This is the hypergeometric equation with β =
−α. The solution of Eq. S13 for β = 1/2 as given by Eq. 7.

Spontaneous Emission in an Imperfect Cavity. A two-level atom in
the cavity can be described by a joint photon–atom wave function

|ψ〉 = v(t)| ↓, 0〉+ w(t)| ↑, 1〉, [S14]

where the first argument in the bracket corresponds to the atomic
state and the second represents the photon number. The total
Hamiltonian H =HJC + Hvac contains the strong atom–cavity
mode coupling governed by Eq. 1 and the coupling to vacuum
noncavity modes

Hvac = V
∑

k

gka
†
k + H .c.. [S15]

The quantum master equation for the density operator including
cavity modes is calculated to first order in HJC and second order
in Hvac :

ρ̇ = − i

~
[HJC (t), ρ]− 1

~2

∫ t

dt ′[Hvac(t)[Hvac(t ′), ρ(t ′)]]

−Lκ[ρ], [S16]

where Lκ[ρ] represents the Lindblad operator responsible for
cavity damping given by the rate κ. Using Markovian and
Wigner–Weisskopf approximations, one can calculate the den-
sity operator assuming that ρ↑↑(0) = 1, ρ↓↓(0) = 0, and the
ground-state population remains the same ρ̇↓↓ = 0. We then
obtain the excited-state population

ρ↑↑ ' e−2(λ2
0/κ+γ0)t , [S17]

where γ0 = ω3|µ|2
3~ε0πc3 is the free space rate of spontaneous emis-

sion. Here, we assume that the solid angle extended by the cavity
mirrors is very small and that the atomic decay rate into non-
cavity modes will then be comparable with the rate of atomic
decay in free space. The bad cavity limit corresponds to the case
when κ� λ0, γ0. The free space density of states is governed by
ρ0 = Vω2

2π2c3 , while in the cavity,

ρcav =
1

π

ωc
2Q

(ωc − ωk )2 +
(
ωc
2Q

)2 . [S18]
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At atom–cavity resonance ωk = ωc = ω0, we obtain for the cavity
decay in the bad cavity limit 2λ2

0/κ� γfree :

γcav = 2
λ2

0

κγfree
=

2Q |µ|2

~ε0V
. [S19]

The Purcel factor is then defined as

f ≡ γcav
γfree

=
3Q

V
2πc3

ω3
0

. [S20]

From this expression, we can see that f � 1, and the photons
are predominantly emitted into the cavity mode. One can, there-
fore, use perturbation theory with respect to the coupling to the
noncavity mode and define the photon counting signals of the
noncavity modes.

TF-Resolved Photon Counting. TF gated N th-order photon corre-
lation measurement performed at N detectors centered at time
tj and frequency ωj , j = 1, ...,N is defined as

g
(N )
TF (t1, ω1,Γ1; ..., tN ;ωN ,ΓN ) = 〈T n̂t1,ω1 ...n̂tN ,ωN 〉, [S21]

where g(1) corresponds to a gated photon number, g(2) is a gated
photon coincidence counting (PCC) signal, 〈...〉= Tr[...ρ(t)], and
ρ(t) represents the full matter plus field density matrix and con-
tains information about the system evolution before the detec-
tion (e.g., photon generation process, etc.). Γj , j = 1, ...N repre-
sent other parameters of the detectors, such as bandwidth (ΓTj

and Γωj are the time gate and frequency gate bandwidths, respec-
tively). The TF gated photon number superoperator is given by

n̂t,ω =

∫
dt ′
∫

dτD(t , ω; t ′, τ)n̂(t ′, τ). [S22]

Here, D(t , ω, t ′, τ) is a detector time domain spectrogram (ordi-
nary function, not an operator), which takes into account the
detector parameters

D(t , ω, t ′, τ) =

∫
dω′′

2π
e−iω′′τ |Ff (ω′′, ω)|2F ∗t (t ′ + τ, t)

×Ft(t
′, t), [S23]

where Ft and Ff are TF gating functions that are characterized
by central time t , frequency ω, and detection bandwidths ΓT and
Γω , respectively; n̂(t , t ′) is a bare photon number superoperator
defined in terms of the bare field operators a(t) as

n̂(t ′, τ) =
∑
s,s′

Ê †sR(t ′ + τ)Ês′L(t ′)ρ(t ′). [S24]

Eq. S22 can be alternatively recast in terms of Wigner
spectrograms

n̂t,ω =

∫
dt ′
∫

dω′

2π
WD(t , ω; t ′, ω′)n̂(t ′, ω′), [S25]

where WD(t , ω, t ′, ω′) is a detector Wigner spectrogram
given by

WD(t , ω, t ′, ω′) =

∫
dτD(t , ω, t ′, τ)e iω′τ [S26]

and the Wigner spectrogram for the bare photon number opera-
tor is given by

n̂(t ′, ω′) =

∫
dτe−iω′τ n̂(t ′, τ). [S27]

For Gaussian gates,

Ft(t
′, t) = e−

1
2

Γ2
T (t′−t)2 , Ff (ω′, ω) = e

− (ω′−ω)2

4Γ2
ω , [S28]

and the detector time domain and Wigner spectrograms are
given by

D(t , ω, t ′, τ) =
Γω√
2π

e−
1
2

Γ2
T (t′−t)2− 1

2
Γ̃2
ωτ

2−[Γ2
T (t′−t)+iω]τ [S29]

WD(t , ω; t ′, ω′) = NDe
− 1

2
Γ̃2
T (t′−t)2− (ω′−ω)2

2Γ̃2
ω
−iA(ω′−ω)(t′−t)

,

[S30]

where

Γ̃2
ω = Γ2

T + Γ2
ω, Γ̃2

T = Γ2
T + 1

Γ−2
ω +Γ−2

T

,

ND = 1

ΓT [Γ2
ω+Γ2

T ]1/2 , A =
Γ2
T

Γ2
T+Γ2

ω
. [S31]

Note that, although ΓT and Γω can be controlled independently,
the actual TF resolution is controlled by Γ̃T and Γ̃ω , respec-
tively, which satisfy Fourier uncertainty Γ̃ω/Γ̃T > 1. Assuming
Lorentzian gates

Ft(t
′, t) = θ(t − t ′)e−ΓT (t−t′), Ff (ω′, ω) =

i

ω′ − ω + iΓω
,

[S32]

the detector time domain and Wigner spectrograms are given by

D(t , ω, t ′, τ) =
i

2Γω
θ(τ)θ(t ′ − t)e−(iω+Γω+ΓT )τ−2ΓT (t′−t)

[S33]

WD(t , ω; t ′, ω′) = − 1

2Γω
θ(t − t ′)

e−2ΓT (t′−t)

ω′ − ω + i(ΓT + Γω)
.

[S34]

In our calculations, we will use the latter, as it yields simpler and
more transparent results.

Expressions for the gated spectrogram were derived earlier
[S39]. The gated photon number operator is given by

n̂t,ω =

∫
dt ′′Ê †t,ω(t ′′)Êt,ω(t ′′), [S35]

where the gated field operator Êt,ω(t ′′) is connected to the bare
field operator Ê(t) as follows:

Êt,ω(t ′′) =
∫∞
−∞ dt ′Ff (t ′′ − t ′, ω)Ft(t

′, t)Ê(t ′). [S36]

Here, we have assumed that the time gate is applied before the
frequency gate. Similarly, if the frequency gate is applied first
followed by the time gate, the gated field operator is given by

Êω,t(t
′′) =

∫∞
−∞ dt ′Ft(t

′′, t)Ff (t ′′ − t ′, ω)Ê(t ′). [S37]

As one can see from Eq. S36, the PS gating [S40] can be recov-
ered by removing the time gate Ft = 1 and keeping an exponen-
tial frequency gate, such that

Ff (ω, ω′) =
i

ω′ + ω + iΓps/2
. [S38]

In this case, the PS photon coincidence signal is given by

g
(2)
PS (ω1, ω2; τ) = limt→∞〈Â†ω1,Γps1

(t)Â†ω2,Γps2
(t + τ)

×Aω2,Γps2(t + τ)Âω1,Γps1(t)〉, [S39]

where

Âω,Γps (t) =

∫ t

−∞
dt1e

(iω−Γps/2)(t−t1)Ê(t1) [S40]

is a PS gated field. This form of the gated signal works for a sta-
tionary process (dependence on τ in the left-hand side rather
than on t and τ , such that there are no integrals over t and τ). It
also works if t � Γ−1

ps , which means that Γps cannot approach
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zero (perfect reflection in a Fabri Perot cavity). It also works
when Γpsτ0 � 1, where τ0 is the scale of change in the field
envelope. For comparison, the TF PCC [S21] for N = 2 reads

g
(2)
TF (t1, ω1,ΓT1,Γω1; t2;ω2,ΓT2,Γω2) = 〈T n̂t1,ω1 n̂t2,ω2〉,

[S41]

which depends on two times t1, t2 and two frequency arguments
ω1, ω2. Clearly, expression [S41] with the gating spectrograms
[S22] and the bare signal [S24] is very general. First, indepen-
dent control of TF gates, which guarantees Fourier uncertainty
for the TF resolution along with the fact that bare photon num-
ber operator depends on two time variables n̂(t , τ), allows us to
capture any dynamical process down to very short-scale dynam-
ics especially important for the ultrafast spectroscopy applica-
tions. Second, the versatile gating [S22] provides a unique tool
that can capture nonequilibrium and nonstationary states of mat-
ter, which can be controlled by gating bandwidths. In this case, a
series of frequency correlation plots for ω1, ω2 (keeping central
frequency of the spectral gates as variables) for different time
delays t1 − t2 yields a fully capable 2D spectroscopy tool capa-
ble of measuring ultrafast dynamics. Third, the superoperator
expressions require time ordering and therefore, can be general-
ized on other correlation functions of the field operators that are
not normally ordered. Superoperator algebra provides an effec-
tive tool for bookkeeping of field–matter interactions. Fourth,
as we show in the next section, PCC can be recast in terms of
matter correlation function by expanding the total density matrix
operator in perturbation series and tracing the vacuum modes.
This way, the photon counting measurement can be related to
matter response, which is the standard treatment in nonlinear
spectroscopy.

Connecting Photon Counting to Matter Correlations. To connect
PCC signal to matter response, one needs to expand the den-
sity operator in Eq. S24 in perturbative series over field–matter
interactions:

ρ(t) = T e−
i
~

∫ t
−∞ dτ ′H ′−(τ ′), [S42]

where the Hamiltonian H ′− in the interaction picture in dipole
and rotating wave approximation is given by

H ′−(t) = V̂ †(t)Ê(t) + H .c., [S43]

where V †(V ) represents raising (lowering) dipole operator,
Ê(t) =

∑
s

√
2π~ωs/V âse−iωs t is a field operator for vacuum

modes, and V denotes mode quantization volume. We first cal-
culate the TF-resolved photon number

nt,ω =

∫
dt ′
∫

dτD(t , ω; t ′, τ)n(t ′, τ), [S44]

where bare photon number n(t ′, τ) ≡ 〈T n̂(t ′, τ)〉 is an expecta-
tion value of the bare photon number operator. The leading con-
tribution is coming from second-order expansion of field–matter
interactions with vacuum modes. The result yields

n(t ′, τ) =
1

~2

∫ t′

−∞
dt1

∫ t′+τ

−∞
dt2〈V †(t2)〈V (t1)〉′

×
∑
s,s′

〈Ês′(t2)Ê †s′(t
′ + τ)Ês(t

′)Ê †s (t1)〉, [S45]

where we used superoperator time ordering, and 〈...〉′=
Tr[...ρ′(t)], where ρ′(t) is the density operator that excludes vac-
uum modes. One can now evaluate explicitly the vacuum field

correlation function, where â†s (âs) is a creation (annihilation)
operator for modes that satisfy boson commutation relation
[âs , âs′ ] = δs,s′ . Replacing the discrete sum over modes by a con-
tinuous integral

∑
s →

V
(2π)3

∫
dωsD̃(ωs) with D̃(ωs) being the

density of states, one can obtain

n(t ′, τ) = D2(ω)〈V †(t ′ + τ)V (t ′)〉′, [S46]

whereD(ω) = 1
2π
D̃(ω) is a combined density of states evaluated

at the central frequency of the detector ω for smooth-enough
distribution of modes.

One can similarly calculate the second-order bare correlation
function

〈T n̂t1,ω1 n̂t2,ω2〉 =

∫
dt ′1

∫
dτ1D

(1)(t1ω1; t ′1, τ1)

×
∫

dt ′2

∫
dτ2D

(2)(t2, ω2; t ′2, τ2)

×〈T n̂(t ′1, τ1)n̂(t ′2, τ
′
2)〉. [S47]

The leading contribution to the bare PCC rate 〈T n̂(t ′1, τ1)n̂(t ′2,
τ ′2)〉 is coming from fourth-order expansion over field–matter
interactions

〈T n̂(t ′1, τ1)n̂(t ′2, τ
′
2)〉 =

1

~4

∫ t′1

−∞
dt1

∫ t′1+τ1

−∞
dt3

×
∫ t′2

−∞
dt2

∫ t′2+τ2

−∞
dt4〈V †(t4)V †(t3)V (t1)V (t2)〉′

×
∑
s,s′

∑
r,r′

〈Er′(t4)Es′(t3)E †r′(t
′
2 + τ2)E †s′(t

′
1 + τ1)

×Es(t
′
1)Er (t ′2)E †s (t1)E †r (t2)〉. [S48]

After tracing back the vacuum modes, we obtain

〈T n̂(t ′1, τ1)n̂(t ′2, τ
′
2)〉= D2(ω1)D2(ω2)

×〈V †(t ′2 + τ2)V †(t ′1 + τ1)V (t ′1)V (t ′2)〉′. [S49]

Therefore, the fundamental material quantity that yields the
emission spectra [S44] is a two-point dipole correlation function
in Eq. S46, and for the coincidence g(2) measurement [S41], it is
the four-point dipole correlation function in Eq. S49.

Evaluation of Matter Correlation Functions. One can use the alge-
bra [S7] to show that

F0|n, ↑〉 = |n, ↑〉, F0|n, ↓〉 = −|n, ↓〉,
F+|n, ↑〉 = 0 F+|n, ↓〉 = |n −m, ↑〉,

F−|n, ↓〉 = 0, F−|n, ↑〉 = −|n + m, ↓〉. [S50]

We first calculate atomic inversion 〈σz (t)〉′= 〈ψ0|U (t)
F0U

†(t)|ψ0〉, which yields

〈σz (t)〉′ =
∑
n

(|wn |2 − |vn+m |2)(1− 2|Fn+m(t)|2)

− 4Re
∑
n

wnv
∗
n+mHn+m(t)Fn+m(t). [S51]

Similarly, we calculate two-point [S46] and four-point [S49] cor-
relation functions, which read as Eqs. 8 and 10, respectively.
Limiting case: Time-independent coupling. In the case of time-
independent coupling λ(t) =λ0, the solution of differential
Eq. 6 reads

Hn+m(t) = cos(Ωn+m t), Fn+m(t) = i sin(Ωn+m t), [S52]
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where Ωn+m = 2λ0

√
χ(n + m) is a Rabi frequency. In this case,

inversion satisfies the famous JC result

〈σz (t)〉′ =
∑
n

(|wn |2 − |vn+m |2) cos(2Ωn+m t)

−i
∑
n

(wnv
∗
n+m − w∗n vn+m) sin(2Ωn+m t). [S53]

The corresponding expressions (Eqs. 8–10) involves

Gin(t) = wn cos(Ωn+m t) + ivn+m sin(Ωn+m t),

Gcn(ti , tj ) = i sin(Ωn+m(ti − tj )),

Gpn(ti , tj ) = cos(Ωn+m(ti − tj )). [S54]

Since the coupling is static, one does not need the time gating.
In this case, one can use the frequency gating characterized by
frequency bandwidth Γ according to Eq. S40 as in the work of del
Valle and coworkers (51–53). Assuming that, initially, atom is in
the ground state and the field probability distribution is governed
by p(n), we obtain for emission spectra

〈Â†ω,Γ(t)Âω,Γ(t)〉 =

∫ ∞
0

dτ1

∫ ∞
0

dτ2e
[i(ω0−ω)−Γ]τ1

×e [i(ω−ω0)−Γ]τ2〈V †(t − τ1)V (t − τ2)〉′

[S55]

〈Â†ω1,Γ1
(t1)Â†ω2,Γ2

(t2)Aω2,Γ2(t2)Âω1,Γ1(t1)〉

=

∫ ∞
0

dτ1dτ2dτ3dτ4e
[i(ω0−ω1)−Γ1]τ1e [i(ω1−ω0)−Γ1]τ2

×e [i(ω0−ω2)−Γ2]τ3e [i(ω2−ω0)−Γ2]τ4〈V †(t1 − τ1)V †(t2 − τ3)

×V (t2 − τ4)V (t1 − τ2)〉′, [S56]

where the matter correlation functions are given by

〈V †(t − τ1)V (t − τ2)〉′= D2(ω)|µ|2
∞∑

n=0

p(n)

× cos Ωn+m(t − τ1) cos Ωn+m(τ2 − τ1) cos Ωn+m(t − τ2)

[S57]

and

〈V †(t1 − τ1)V †(t2 − τ3)V (t2 − τ4)V (t1 − τ2)〉′

= D2(ω1)D2(ω2)|µ|4
∞∑

n=0

p(n) cos Ωn+m(t − τ1)

× sin Ωn+m(t2 − τ3 − t1 + τ1) cos Ωn+m(τ4 − τ3)

× sin Ωn+m(t2 − τ4 − t1 + τ2) cos Ωn+m(t2 − τ2).

[S58]

Different states of light show different correlations. For
instance, for thermal photons, the probability is given by
pth(n) = n̄n

th/(n̄th + 1)n+1, where the average number of ther-
mal photons is given by n̄th = [exp(~ω/kBT )− 1]−1. For coher-
ent state, pc(n) = exp(−n̄c)n̄n/n! is Poissonian.
Qualitative discussion of the joint time/frequency resolution.
Below, we present a qualitative analysis of the resolution in both
PS and TF techniques. An interesting conclusion can be made
just by comparing the gating spectrograms with the gated signals.
To that end, one can recast the TF-resolved gated signal in the

form that resembles the PS the most. One can recast Eqs. S44
and S55 as follows:

nPS (t , ω) =

∫ ∞
0

dt ′1

∫ ∞
0

dt ′′1 e
[i(ω−ω0)−Γ/2]t′1e [i(ω0−ω)−Γ/2]t′′1

×〈V †(t − t ′′1 )V (t − t ′1)〉′ [S59]

for the PS and

nTF (t , ω) =

∫ ∞
0

dt ′1

∫ ∞
0

dt ′′1 θ(t
′′
1 − t ′1)e [i(ω−ω0)−Γ−/2]t′1

×e [i(ω0−ω)−Γ+/2]t′′1 〈V †(t − t ′′1 )V (t − t ′1)〉′

[S60]

for the TF-resolved photon number. Eqs. S59 and S60 can be
generally recast as Eq. 4. Similarly, we obtain for the coincidence
counting signal

g
(2)
PS (t1, ω1; t2, ω2)

=

∫ ∞
0

dt ′1

∫ ∞
0

dt ′′1 e
[i(ω1−ω0)−Γ1/2]t′1e [i(ω0−ω1)−Γ1/2]t′′1

×
∫ ∞

0

dt ′2

∫ ∞
0

dt ′′2 e
[i(ω2−ω0)−Γ2/2]t′2e [i(ω0−ω2)−Γ2/2]t′′2

×〈V †(t − t ′′1 )V †(t − t ′′2 )V (t − t ′2)V (t − t ′1)〉′ [S61]

for the PS and

g
(2)
TF (t1, ω1; t2, ω2)

=

∫ ∞
0

dt ′1

∫ ∞
0

dt ′′1 θ(t
′′
1 − t ′1)e [i(ω1−ω0)−Γ1−/2]t′1

×e [i(ω0−ω1)−Γ1+/2]t′′1

∫ ∞
0

dt ′2

∫ ∞
0

dt ′′2 θ(t
′′
2 − t ′2)

×e [i(ω2−ω0)−Γ2−/2]t′1e [i(ω0−ω2)−Γ2+/2]t′′2 〈V †(t − t ′′1 )

×V †(t − t ′′2 )V (t − t ′2)V (t − t ′1)〉′ [S62]

for the TF-resolved PCC signal. Eqs. S61 and S62 can be gener-
ally recast as Eq. 5.

Consider the asymptotic expansion of Eq. 7, such that, in the
zeroth order, one can approximate it for t0 = 0 as

Hn(t) ' (cos(παn) + [1− cos(παn)]e−(t−Thn+)/2τ )

×θ(t − Thn+) + [1− 2e(t−Thn−)/2τ ](1− θ(t − Thn−))

+(−1)n+1 cos(Ω̃n(t − T ))θ(t − Thn−)(1− θ(t − Thn+)),

Fn(t) ' i [(− sin(παn) + [1 + sin(παn)]e−(t−Tfn+)/2τ )

×θ(t − Tfn+)− e(t−Tfn−)/2τ (1− θ(t − Tfn−))

+(−1)n sin(Ω̃n(t − T ))θ(t − Tfn−)(1− θ(t − Tfn+))],

[S63]

where Ω̃n = παn/8τ is a Rabi frequency, and

Thn− = T − 16τk/αn , Thn+ = T + 8τ(1 + 2k/αn), [S64]

Tfn− = T − 8τk/αn , Tfn+ = T + 8τ(−1 + 2k/αn), [S65]

where k = 1,±1,±2, .... Performing time integrals in Eqs. 4 and
5 analytically with the asymptotic form of Eq. S63, we obtain a
sum of several terms of generic form presented in the text.
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