Supplementary Information

p66Shc Signaling Mediates Diabetes-Related Cognitive Decline

Yohei Minami¹, Noriyuki Sonoda^{1,2,6}, Eiichi Hayashida¹, Hiroaki Makimura¹, Makoto Ide¹, Noriko Ikeda¹, Masahiro Ohgidani³, Takahiro A. Kato^{2,3}, Yoshihiro Seki³, Yasutaka Maeda^{1,2}, Shigenobu Kanba³, Ryoichi Takayanagi¹, Yoshihiro Ogawa^{1,4,5}, Toyoshi Inoguchi^{1,2}

¹Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan, ²Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan, ³Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan, ⁴Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan, ⁵CREST, Japan Agency for Medical Research and Development, Tokyo, Japan ⁶Lead Contact.

Correspondence and reprint requests should be addressed to Noriyuki Sonoda. (E. mail: noriyuki@intmed3.med.kyushu-u.ac.jp)

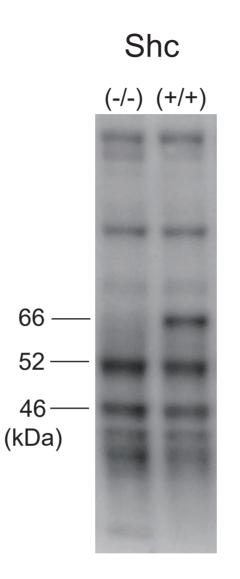
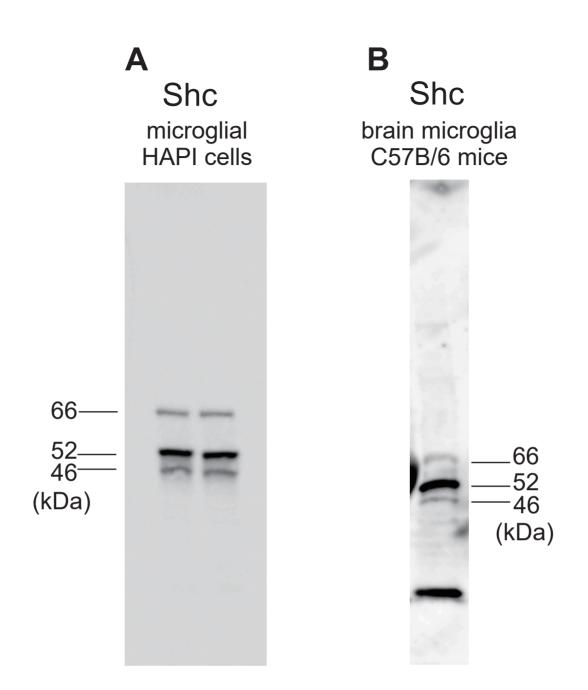

Gene	Forward primer (5'→3')	Reverse primer (5'→3')	
gp91phox	ACTGCGGAGAGTTTGGAAGA	GGTGATGACCACCTTTTGCT	
p22phox	TGGCTACTGCTGGACGTTTCAC	CTCCAGCAGACAGATGAGCACAC	
IL-1β	AAATACCTGTGGCCTTGGGC	CTTGGGATCCACACTCTCCAG	
TNF-α	CTCCTGGCCAACGGCATGGAT	ATCGGCTGACGGTGTGGGTG	
p66Shc	CCCCAAGCCGAAGTACAACCCA	TCCGGGGAAAGAAGGAACACAGG	
β -Actin	TGACAGGATGCAGAAGGAGA	GCTGGAAGGTGGACAGTGAG	

Table S1: Nucleotide Sequences of Primers. Related to Figure 3, 5

Table S2: Body Weight and Blood Glucose in Type 1 and Type 2 diabetic mice.Related to Figure 1 to 3.


	age (weeks)	body weight (g)	Blood glucose (mg/dL)
Type 1 diabetic mice (ICR)			
diabetic (STZ-induced), $n = 9$	7weeks aged	33.6±0.3	133.0±5.6
control (vehicle), n = 9	(before STZ)	33.8±0.5	137.8±8.3
diabetic (STZ-induced), $n = 9$	21weeks aged	41.4±1.3*	681.2±27.9*
control (vehicle), $n = 9$	(14 weeks after	48.0±0.6	164.3±3.8
	STZ)		
Type 2 diabetic mice (db/db)			
diabetic (db/db), $n = 10$	10 weeks aged	44.9±0.5*	543.9±14.7*
control (db/+), $n = 6$		27.6±0.2	128.7±13.6
diabetic (db/db), $n = 10$	30weeks aged	57.0±2.4*	487.4±128.0*
control (db/+), $n = 6$		32.3±0.3	116.5±8.8

Body weight and blood glucose concentrations in type 1 and type 2 diabetic mice. Data are means \pm SE. *P < 0.05 vs. control.

Figure S1: Western blot analysis to confirm deleted protein expression of p66Shc. Related to Figure 4.

Western blotting results using anti-Shc protein antibody, with total protein extracted from liver homogenates of p66Shc (-/-) and p66shc (+/+) mice.

Figure S2: Western blot analysis of microglial cells.

Related to Figure 6.

Western blotting results using anti-Shc protein antibody, (A) with total protein extracted from microglial HAPI (highly aggressively proliferating immortalized) cells, and (B) with total protein extracted from brain microglia of C57B/6 mice.