Supporting information Effects of rigidity on the selectivity of protein kinase inhibitors

Amir Assadieskandar,^a Caiqun Yu,^a Pierre Maisonneuve,^c Xu Liu,^a Ying-Chu Chen,^a G. K. Surya Prakash,^a Igor Kurinov,^d Frank Sicheri,^c and Chao Zhang^{*,a,b}

^a Loker Hydrocarbon Research Institute & Department of Chemistry, University of Southern California, University Park, Los Angeles, CA 90089, USA

^b USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA

^c Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada

^d NE-CAT APS, Building 436E, Argonne National Lab, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA.

* Corresponding author. Tel: (213)-740-7040, E-mail: <u>zhang.chao@usc.edu</u>

Table of content:

Table S1. Kinase Inhibition Profiles.	S3
Figure S1. Percentage inhibition of Abl kinase	S4
Table S2. BRAF:2a crystal structure refinement statistics	S5
Figure S2. Structural analysis of the BRAF:2a complex	S6
Figure S3 . Downstream signaling of Bcr-Abl ^{WT} in Ba/F3 cells	
Table S3. Solubility of Compound 1	S8
Table S4. Solubility of compound 2a	S9
Table S5. Permeability of compound 1 and 2a	S10
¹ H-NMR spectra of title compounds	S11
¹³ C-NMR spectra of title compounds	S31
HPLC chromatograms of title compounds	S38

Fable S1. Kinase	Inhibition	Profiles of	compounds	1 and $2a^a$
------------------	------------	-------------	-----------	--------------

Kinase	1	2a	Kinase	1	2a	Kinase	1	2a	Kinase	1	2a
ABL1	98	96	EPH-A4	99	95	MAPK3	1	1	PKC-ZETA	2	4
AKT1	-1	0	EPH-A5	100	95	MAPKAPK-2	-1	5	PKN1	-2	6
AKT2	0	-10	EPH-A8	100		MAPKAPK-3	13	3	PKN2	3	8
AKT3	2	3	EPH-B1	97	84	MARK1	1	-2	PLK1	1	1
ALK	6	1	EPH-B2	99	97	MARK3	-1	1	PLK3	3	0
AMP-A1B1G1	2	0	EPH-B3	98	86	MARK4	-4	-1	PLK4	74	5
AMP-A2B1G1	3	1	EPH-B4	97	80	MEK1	13	-8	PRAK	-1	7
ARG	99	94	ERB-B2	58	0	MEK2	25	6	PRKACA	2	4
	14	20	END-D4	88	4	MER	-3	2	PRKD2	4	3
AURORA-R	90	29	FFR	-0	12	MET	0 0	1	PRKD3	1	
AURORA-C	33	-2	FES	21	0	MKNK1	0	2	PRKG1	1	1
AXL	12	2	FGFR1	98	91	ALPHA	0	2	PRKG2	24	9
BLK	95	57	FGFR2	99	96	MRCK-BETA	-1	1	PRKX	2	-4
BMX	98	36	FGFR3	52	34	MSK1	-11	5	PTK5	95	18
BRAF		92	FGFR4	89	62	MSK2	3	5	PYK2	74	1
BRK	97	86	FGR	99	71	MSSK1	9	0	RET	100	98
BRSK1	-10	0	FLT-1	99	89	MST1	10	4	RIPK2	98	82
BRSK2	-3	0	FLT-3	29	7	MST2	2	2	ROCK1	5	1
BIK	71	5	FLI-4	99	97	MS13	0	3	ROCK2	18	4
CAMK1A	2	1	FMS	99	87	MS14	9	-1	RON	2	1
CAMK1D	/	10	FIN	101	85	MUSK	8	3	RUS DSK1	18	5
CAMK2B	3	5	GRK0	-9	3		1	-1	PSK2	9	1
CAMK2D	-1	0	GSK-3-ALPHA	5	5	NEK1	-5	-5	RSK3	10	2
CAMK2G	0	2	GSK-3-BETA	19	3	NEK2	-1	0	RSK4	2	0
CAMK4	11	- 6	HASPIN	5	1	NEK6	0	-5	SGK1	-1	0
CDK1	6	0	HCK	107	81	NEK7	1	-2	SGK2	0	-2
CDK2	3	1	HIPK1	-3	-2	NEK9	2	-1	SGK3	-2	-3
CYCLINE	1	-1	HIPK2	0	-1	P38-ALPHA	70	15	SIK	43	7
CYCLINE	3	3	HIPK3	0	-1	P38-BETA	23	3	SLK	92	18
CYCLIND	-1	0	HIPK4	29	9	P38-DELTA	0	2	SNF1LK2	7	10
CDK5	2	3	IGF1R	1	2	P38-GAMMA	1	0	SPHK1	2	4
CDK5-P25	2	2	IKK-ALPHA	26	-3	P70S6K1	5	1	SPHK2	0	20
CYCLIND3	8	1	IKK-BETA	22	2	P70S6K2	5	3	SRC	100	80
	5	-2	INCO	17	8		0	-1	SRIVIS	55	20
CHEK2	-1	-1	INGK IRAK1	12	2	PAK2	2	-2	SRPK2	1	2
CK1	10	-4	IRAK4	20	-5	PAK4	0	2	STK16	-1	-1
CK1-EPSILON	27	8	IRR	2	-3	PAK5	0	-4	STK25	-5	3
CK1-GAMMA1	9	-5	ITK	23	10	PAK6	-1	3	SYK	-4	6
CK1-GAMMA2	1	2	JAK1	97	-3	ALPHA	0	0	TAK1-TAB1	62	5
CK1-GAMMA3	2	-16	JAK2	77	3	PASK	-4	1	TAOK2	17	17
CLK1	2	-1	JAK3	30	10	ALPHA		94	TAOK3	37	33
CLK2	5	-1	JNK1	-9	2	BETA	100	71	TBK1	6	1
CLK3	-1	6	JNK2	26	8	PDK1	4	5	TEC	40	2
CRAF	118	101	JNK3	-8	5	PERK	29	0	TIE2	96	61
CSK	93	31	KDR	109	98	GAMMA1	-3	10	TNIK	71	4
DAPK1	-2	-2	KIT	98	97	GAMMA2	-8	4	TNK1	84	19
DAPK3	11	11	LATS1	-4	3	ALPHA	36	-8	TNK2	13	3
DCAMKL2	0	-1	LATS2	0	-2	PI4-K-BETA	1	-5	TRKA	22	2
DDR2		96	LCK	100	85	PIM2	-1	0	TRKB	43	13
DYRK1A	2	2	LOK	97	59	PIM3	0	1	TRKC	59	14
DYRK1B	0	1	G2019S	36	3	PKACB	2	3	TSSK1	0	-1
DYRK2	11	-3	LTK	4	8	PKC-ALPHA	-7	2	TSSK2	-10	1
DYRK3	7	1	LYNA	99	95	PKC-BETA1	-3	2	TTK	33	-3
DYRK4	-1	-7	LYNB	100	94	PKC-BETA2	2	5	ТХК	94	5
EGFR	55	3	MAP4K2	67	24	PKC-ETA	-5	2	TYK2	31	2
EPH-A1	97	46		69	3	PKC ICTA	-1	2	IYRU3	67	2
EPH-A2	100	90	MARKS	66	33		-3	2	1ES 74P70	101	88
EF E-AS	98	/b	WAPKI	0	2	FNG-INETA	0	-2	LAPIU	3	4

^{*a*}Selectivity profiling of **1** and **2a** was performed using Nanosyn Kinase Profiling Service. Value in each cell represents mean percentage inhibition (from duplicates) of the kinase by the drug (1 μ M). Red: inhibition >90%; yellow: inhibition 40-90%; green: inhibition <40%.

Figure S1. Percentage inhibition of Abl kinase by compounds 1 and 2a-g at a fixed concentration of 30 nM.

 Table S2. BRAF:2a crystal structure refinement statistics

	BRAF: 2a		
Search model	4R5Y		
Space Group	P2 ₁ 2 ₁ 2		
Wavelength (Å)	0.97910		
Unit Cell			
а	85.47		
b	114.53		
С	55.59		
α	90		
β	90		
γ	90		
Molecules/ASU	2		
Data processing			
Possilution $(Å)$	50.00 - 2.55		
	(2.70 – 2.55)		
Total no. of reflections	117664		
Total no. of unique	18363		
reflections	10303		
Redundancy	6.4 (6.6)		
Ι/σΙ	10.52 (0.6)		
Completeness (%)	99.7 (99.9)		
R _{meas}	0.15 (3.50)		
CC (1/2)	(0.557)		
Refinement*			
Rwork/RFree	25.3/28.3		
No. Atoms			
Protein	3672		
Ligand (2a)	70		
Water	3		
Average B-factors			
Protein	101.7		
Ligand (2a)	83.8		
Water	88.8		
RMSD from ideal geometry	y		
Bond Lengths (Å)	0.002		
Bond Angles (°)	0.546		
Ramachandran statistics			
Residues in favoured	977		
regions (%)	<i></i>		
Residues in allowed	23		
regions (%)	<i>4.</i> J		
Residues in disallowed	0		
regions (%)	V		
PDB ID			

Figure S2. Structural analysis of the BRAF:**2a** complex.(A) Comparison of the BRAF:**2a** complex structure with an off-state (monomer) and an on-state (dimer) of BRAF (PDB 4WO5 and PDB 4H58, respectively). (B) The asymmetric unit of the BRAF:**2a** complex forms a side-to-side dimer reflective of the kinase active state.

Figure S3. Effects of **1** and compound **2f** on downstream signaling of Bcr-Abl^{WT} in Ba/F3 cells. Ba/F3cells expressing Bcr-Abl^{WT} were cultured at a density of 8×10^5 cells/mL and treated for 3 h at indicated concentrations of **1** and **2f**. The cell lysates were resolved by PAGE, transferred to nitrocellulose membrane, and sequentially probed with antibodies for Abl, pY412-Abl, and β -actin.

Table S3. Solubility of Compound 1

Table S4. Solubility of compound 2a

Table S5. Permeability of compound 1 and 2a

	Permeability Assay in Caco-2 Data Report										
		cell	Donor	_	Papp (x10 -6	cm/s) (N=2)	Efflux	Permeability	Pgp or		
Sample ID	M.W	number/ well	buffer pH	Pgp inhibitor	A→B	B→A	ratio	Classification	BCRP substrate		
Digovin	780 940			minus	1.2	32.4	26.1	low	3100		
Digoxiii	/80.240			plus	8.9	9.3	1.0	1000	,		
Propagolol	295 800			minus	33.0	20.9	0.6	Madium	No		
riopanoioi	275.000	60000	74	plus	44.4	20.0	0.5	weatur	140		
1	464 157	00000	1.4	minus	0.5	1.0	1.9	lana	Ne		
1	404.137			plus	0.6	0.3	0.5	100	INO		
2-	2 472.162			minus	0.8	2.6	3.2	lana			
2a	472.162			plus	0.2	0.3	1.1	IOW	yes		

Papp A→B ≥ 25(10-6 cm/s) Papp A→B 0-25 (10-6 cm/s) Papp A→B ≤ 10 (10-6 cm/s)

high med low

 $\label{eq:efflux} \begin{array}{l} {\rm Efflux} > 3.0 \ \mbox{ inus Pgp inhibitor} \\ {\rm Efflux} \leqslant 1.0 \ \mbox{ lus Pgp inhibitor} \end{array}$

Pgp substrate

¹HNMR Compound **4a**

¹HNMR Compound **4b**

¹HNMR Compound **5a**

¹HNMR Compound 6a

976-976-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 09 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.8-1.6-1.	7.90 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89	12 81 17 81 17 81 181 17 81 181 17 81 181 17 81		4 4 4 4	13.3	, , , , , , , , , , , , , , , , , , ,	M M M M	25	255	2.4	******
				1	1.1				400		F	-	1				
																1	
							_			-		T	-				
				1	11	1 1	_	_	1					/			
_							_	_		-			-	_			
							_						_	_			_
										_							
												1					
						-	-			-			-				
_							_	_		-		-	-				
					_		_						_				
					1												
					1	1.6											
									30				1 ·				
-						<u> </u>				-	<u>li</u>			n	_		
				4	74	7 / 7	_		7	+	Г ¹	¥ N		۲ <u></u>			
				10	19	112	_		2.0	8	8	5.6		87			

H₃C NH₂

¹HNMR Compound **5b**

ON_01									
102 /	9.64 9.64	-8.44	C728 C728 C727 C727 C727 C727 C727	5.84	525 521 521 521	414	3.36	2.06 2.06 1.63 1.29	L126
			- He R's P						0
						-			
	F	1	111	1	ſ				+
_		~			1		1		_
_									_
_									_
							1		
							· · · · · _ · _		-
									_
_									_
					1				
_		L	Illul		<u> </u>				
	ţ,	Fiz	ゼ ゼ ゼ 8 8 8	Ŧß	Ťa		Ť	Ţ	
	6	1	0.1	1	2		2	2	T

¹³CNMR Compound 2a

2-2-1 SS%##	81 82 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88 38 1 1 2 3 3 3 4 4 5 3 8 4 4 5 3 8 4 4 5 3 8 4 4 5 3 8 4 4 5 3 8 4 4 5 5 8 4 4 5 5 5 5 5 5 5 5 5 5 5 5	kî m	o support o supo	
899 1996 1996 1997	139 130 130 130 130 130 130 130		4.82 / 18.13	21000000000000000000000000000000000000	
					-4
			1		
n na	natari da la stali ang para ba	ahaulalliddillaatulaaanaa, maaalaan	Real and the Castor State		novegraphing (see an other strategy and a second

¹³CNMR Compound **2c**

¹³CNMR Compound **2e**

¹³CNMR Compound **2**f

¹³CNMR Compound **2**g

Sample Name Sample ID Data Filename Method Filename Batch Filename	: AIQ2-1 Purity 1mM in Acnitril : 1 : AIQ2-1 Purity 1mM in Acnitril1.lcd : AIQ2 100B-isocratic.lcm		
Vial #	: 1-1	Sample Type	: Unknown
Injection Volume Date Acquired Date Processed	: 20 uL : 2/3/2017 3:13:04 PM : 2/3/2017 3:28:27 PM	Acquired by	: System Administrator
Date i locessed	. 2/3/2017 3.20.27 1 10	Trocessed by	. System Administrator

<Chromatogram>

FUAC	n i 204nm		
Peak#	Ret. Time	Area	Area%
1	2.874	17491	0.109
2	3.923	198369	1.236
3	4.208	63588	0.396
4	4.628	42072	0.262
5	5.962	11979	0.075
6	7.775	15713460	97.922
Total		16046959	100.000

Sample Name Sample ID Data Filename Method Filename Batch Filename Vial #	: AIQ2-2 Purity 1mM in Acnitril : 1 : AIQ2-2 Purity 1mM in Acnitril1.lcd : AIQ2 100B-isocratic.lcm : 1-1	Sample Type	: Unknown
Injection Volume Date Acquired Date Processed	: 20 uL : 2/3/2017 4:01:49 PM : 2/3/2017 4:15:59 PM	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

PDA Ch1 254nm									
Peak#	Ret. Time	Area	Area%						
1	3.920	185690	0.986						
2	8.504	18653934	99.014						
Total		18839624	100.000						

Sample Name Sample ID Data Filename Method Filename Batch Filename Vial # Injection Volume Date Acquired Date Processed	: AIQ2-3 Purity 1mM in Acnitril : 1 : AIQ2-3 Purity 1mM in Acnitril.Icd : AIQ2 100B-isocratic.Icm : 1-1 : 20 uL : 2/3/2017 4:16:53 PM : 2/10/2017 6:01:34 PM	Sample Type Acquired by Processed by	: Unknown : System Administrator : System Administrator
Date i receccu		110000000000000000000000000000000000000	. Cyclon / lanning alor

<Chromatogram>

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	1.543	35708	0.103
2	3.560	294953	0.852
3	4.128	89454	0.258
4	4.640	40036	0.116
5	6.177	119263	0.345
6	8.024	21276	0.061
7	8.679	151410	0.437
8	9.113	33806980	97.684
9	11.602	49395	0.143
Total		34608473	100.000

<Chromatogram>

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	1.513	27182	0.077
2	3.562	432736	1.223
3	6.601	28901	0.082
4	7.599	34628101	97.862
5	8.717	40811	0.115
6	9.387	162120	0.458
7	10.787	24004	0.068
8	11.873	40914	0.116
Total		35384769	100.000

Sample Name Sample ID Data Filename Method Filename Batch Filename	: AIQ2-5 Purity 1mM in Acnitril : 1 : AIQ2-5 Purity 1mM in Acnitril1.lcd : AIQ2 100B-isocratic.lcm		
Vial #	: 1-1 : 20 ut	Sample Type	: Unknown
Date Acquired Date Processed	: 2/3/2017 4:46:41 PM : 2/3/2017 5:01:51 PM	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

PDA C	n1 254nm		
Peak#	Ret. Time	Area	Area%
1	1.487	26811	0.078
2	3.600	83820	0.243
3	3.813	354149	1.025
4	4.747	52830	0.153
5	5.403	20353	0.059
6	7.944	81136	0.235
7	8.155	33874330	98.035
8	10.189	37379	0.108
9	13.016	22346	0.065
Total		34553153	100.000

Sample Name Sample ID Data Filename Method Filename Batch Filename Vial # Injection Volume Date Acquired	: AIQ2-6 purity 1mM in Acetonitril : 1 : AIQ2-6 purity 1mM in Acnitril5.lcd : AIQ2 100B-isocratic.lcm : : 1-1 : 20 uL : 2/6/2017 6:49:22 PM	Sample Type	: Unknown
Date Acquired	: 2/6/2017 6:49:22 PM	Acquired by	: System Administrator
Date Processed	: 2/6/2017 6:53:49 PM	Processed by	: System Administrator

<Chromatogram>

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	2.152	11938415	99.874	
2	3.071	5822	0.049	
3	3.573	6	0.000	
4	3.909	498	0.004	
5	3.957	523	0.004	
6	4.079	8175	0.068	
Total		11953438	100.000	

Date Processed : 2/3/2017 5:52:40 PM Processed by : System Administrator	Sample Name Sample ID Data Filename Method Filename Batch Filename Vial # Injection Volume Date Acquired Date Processed	: AIQ2-7 Purity 1mM in Acnitril : 1 : AIQ2-7 Purity 1mM in Acnitril1.lcd : AIQ2 100B-isocratic.lcm : : 1-1 : 20 uL : 2/3/2017 5:38:52 PM : 2/3/2017 5:52:40 PM	Sample Type Acquired by Processed by	: Unknown : System Administrator : System Administrator
--	---	--	--	---

<Chromatogram>

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Area%
1	1.491	12512	0.033
2	3.364	15832	0.042
3	3.607	62989	0.168
4	3.693	132644	0.354
5	3.893	54667	0.146
6	4.006	325347	0.867
7	5.526	16897	0.045
8	8.619	36827373	98.159
9	11.635	49536	0.132
10	12.492	20336	0.054
Total		37518133	100.000