## **Supplementary Figures**



## Figure S1. Proliferation of differentiated arterial pole CMs is not affected

**(A-D)** Ventral view, anterior to the top, of the arterial pole region at 48 hpf. Confocal projections of immunohistochemistry for EdU (green), DsRed (red), and MF20 (gray) in wild-type (A,B-B') and  $nkx2.5^{-/-};nkx2.7^{-/-}$  (C,D-D') embryos carrying Tg(-5.1myl7:nDsRed2) following EdU incubation at 24 hpf. Representative images highlight the detection of proliferating nuclei in the OFT myocardium.



## Figure S2. nkx genes regulate shox2

(A-E) Ventral view, anterior to the top, at 52 hpf illustrates *in situ* hybridization for *shox2*. Expression of *shox2* is restricted to the IFT in wild-type (black arrow) (n = 11/13) (A) and *nkx2.5*<sup>+/+</sup>;*nkx2.7*<sup>-/-</sup> (n = 5/6) (B) embryos. However, its expression is expanded throughout the cardiac chambers in *nkx2.5*<sup>-/-</sup>;*nkx2.7*<sup>+/-</sup> (n = 9/10) (C), *nkx2.5*<sup>-/-</sup>;*nkx2.7*<sup>+/-</sup> (n = 12/13) (D), and *nkx2.5*<sup>-/-</sup>;*nkx2.7*<sup>-/-</sup> (n = 5/7) (E) embryos.

Ventricle



Ventricle

## Figure S3. *nkx* genes are required to establish ventricular and atrial electrophysiological identity

Ventricle

(A-D) Representative heat maps demonstrate the spatial distributions of the maximum slope of the action potentials,  $[dF/dt]_{max}$ , in wild-type (A),  $nkx2.5^{+/+};nkx2.7^{+/-}$  (B),  $nkx2.5^{-/-};nkx2.7^{+/+}$  (C), and  $nkx2.5^{-/-};nkx2.7^{+/-}$  (D) hearts. (E-H) Representative heat maps show the spatial distributions of the action potential durations (APDs) in wild-type (E),  $nkx2.5^{+/+};nkx2.7^{+/-}$  (F),  $nkx2.5^{-/-};nkx2.7^{+/+}$  (G), and  $nkx2.5^{-/-};nkx2.7^{+/-}$  (H) hearts. Ventricle