THE LANCET Neurology

Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Rodrigues MA, Samarasekera N, Lerpiniere C, et al. The Edinburgh CT and genetic diagnostic criteria for lobar intracerebral haemorrhage associated with cerebral amyloid angiopathy: model development and diagnostic test accuracy study. *Lancet Neurol* 2018; published online Jan 10. http://dx.doi.org/10.1016/S1474-4422(18)30006-1.

Index test methods

CT head - reformatting

One trainee neuroradiologist (MAR) reformatted the first diagnostic non-contrast head CT scan performed after ICH onset into standard axial (parallel to a line linking the floor of the sella turcica to the fastigium of the fourth ventricle), coronal (parallel to the posterior surface of the brain stem) and sagittal (parallel to the interhemispheric fissure) planes, with standard slice thickness (5mm), spacing (3mm), and windowing (centre 35, width 80).

LINC	HPIN ID:	SC	AN DA	re:		
READ DATE: RAT				ITIALS:		
IMAG	E SERIES: Significant	series (unenhanced 5m	m Axial	, coronal	& sagitta	al reformats)
	Grade overall imag	ge quality: Poor	Ade	equate		Good
1.	Is there any sign of a	cute ischaemic change?		Y	Ν	IF NO, GO TO Q.2
a.	On which side of the	brain is the ischaemia?		R]	L	BOTH
2.	Is there any acute pa haemorrhage?	Ē	Y	Ν	IF NO, GO TO Q.8	
a.	Is the main haemorrh Haemorrhagic Transi Primary Intracerebral	nain haemorrhage most likely rrhagic Transformation of an Infarct or / Intracerebral Haemorrhage?			PICH	IF HTI, GO TO Q.8
3.	Are there multiple sit haemorrhage?		Y]	Ν		
a.	Characterize each se	eparate acute parenchym	ial haen	norrhage	starting	with the largest:
		1 2	3	4	5	
Left/ Cent	Right/ tral					
Anat code whic thou	tomic Location e(s) (site(s) are th the ICH is ght to be centred)					
Dee Mixe Infra Unce	Deep (D), Lobar (L), Mixed lobar & deep (M), Infrantentorial (IT) Uncertain (U)					
Ana	tomic Location Codes for	haemorrhages				
	LOBAR F TE PA O INFRATENTORIAL CE BS	Frontal lobe (not basal gan Temporal lobe Parietal lobe Occipital lobe Cerebellum Brainstem (Midbrain, pons medulla)		DEEP BG Basal ganglia (not thal TH Thalamus IC Internal capsule EC External capsule WM Deep & periventricular corpus callosum		ganglia (notthalamus) nus I capsule al capsule & periventricular WM and callosum

LINCHPIN CTRATING FORM

SCAN ID:

LINCHPIN CT P2

b.	Is there any inte	aventricula	r haemorrhage?	Y	Ν	
c.	Is there any sul	barachnoid	extension?	Y	Ν	IF YES, GO TO 1D. IF NO, GO TO 1E
d.	If there is subar adjacent to the	achnoid ex ICH? Reco	tension, is this rd If distant or both	Y	N	
e.	Is there any sul	odural exte	nsion?	Y	N	
f.	Is there any mi	dline shift o	r herniation?	Y	Ν	
4.	Is there a blood (NOT including	/fluid level an intraver	within any parenchy htricular fluid level; s	mal haemor tart with the	rhage? largest first	i)
			2 3	4	5	Y
Bloo leve	od or fluid I (Y/N)					
5.	Describe the bo the largest first	order and sl (see exam	nape of each separa ples below)	te acute pa	renchymal ł	naemorrhage starting with
		1	2 3	4	5	
a. (Y/N	Irregular border? I)					
b. Fi protr (Y/N	nger-like rusions? I)					
c. Ro (Y/N	ound/oval? I)					
d. R (Y/N	eaches cortex? I)					
5.					5	5
nages 1	<u>-3</u>			Image	<u>s 4</u>	Image

Irregular border with finger-like protrusions to cortex

Irregular border, reaches protrusions

Images 5 Regular border without cortex without finger-like finger-like protrusions & does not reach cortex

						LIN	
6.	Describe the density of e	each acute parei	nchymal ha	emorrhage	e starting	with the larg	gest first
	1	2	3	1 5]		
a. V den	ariable sity? (Y/N)				1		
b. Di appe (Y/N	ute/seeping arance?]		
ble de	hity & dilute/seeping (1-2) y single ICH has variable pnears 'dilute'/seeping int	Blood in	Variable de any single	ensity (3) ICH has va	ariable	Blood in	Uniform densiti any single ICH
ent bra	ain tissue	u u	ensity but	iot unute		innorm nom	ogeneous den
7.	Characterize the parence haemorrhage in the mean	hymal haemorrh isurements)	age(s) liste	d in 3 furth	ier. (Do i	not include e	xtra-axial
a.	What is the size of haem A is largest diameter in the axi perpendicular to A in the axial diameter in craniocaudal plane	norrhage no.1 (m al plane, B is longes plane, C is maximule	nm)? st axis m	A [В	С	
b.	What is the size of haem	orrhage no.2 (m	ım)?	A [В	С	
c.	What is the size of haem	orrhage no.3 (n	nm)?	A	В	С	
d	What is the size of haem	orrhage no.4 (m	nm)? [A	B	0	
u.				<u></u>	-	0	
e.	What is the size of haem	norrhage no.5 (m	וm)? [A [В	С	
и. е. 8.	What is the size of haem	norrhage no.5 (m lar lesions?	nm)? [B	IF NO, GO	το Q.9
и. е. 8. а.	What is the size of haem Are there any old vascular Classify the old vascular	norrhage no.5 (m lar lesions? · lesions	ן (m)? [[B	IF NO, GO	το Q.9
и. е. 8. а.	What is the size of haem Are there any old vascular Classify the old vascular A E	norrhage no.5 (m lar lesions? · lesions 3 C	D E	∴ (A) (Y) (F	B	IF NO, GO	TO Q.9
и. е. 8. а.	What is the size of harm Are there any old vascular Classify the old vascular A Code Y/N	norrhage no.5 (m lar lesions? lesions C	D E		B N G	IF NO, GO	TO Q.9

G = probable old **lobar** haemorrhage

SCAN ID:

LINCHPINCT P4

A-E: axial plane; F-I: coronal plane; J-L: sagittal plane

CT head – rating of other radiographic features

ICH volume was assessed using the ABC/2 method where A is the largest diameter of ICH on in the axial plane (cm), B is the largest diameter at 90° to A on the same slice (cm), and C is the maximal cranio-caudal diameter (cm).¹

ICH shape (e.g. irregular contour, finger-like projections) and appearance (e.g. fluid level and dilute/"seeping" density) was assessed.

We recorded the presence or absence of old infarcts, severity of anterior and posterior white matter lucencies using the van Swieten scale,² deep (enlargement of the ventricles) and superficial (enlargement of the sulci) cerebral atrophy using a template based three-point scale (absent/mild, moderate and severe).³

We used representative pictures to define specific imaging features – such as irregular contour, finger-like projection, dilute/"seeping" density and atrophy grades – which we defined as present or absent.

One trainee neuroradiologist (MAR) recorded ICH location using the Cerebral Haemorrhage Anatomical RaTing Scale (CHARTS),⁴ and re-assessed the scans after a period of three months to evaluate intra-observer agreement.

DNA extraction and APOE genotyping

DNA was extracted from whole blood using a Nucleon Kit (GenProbe) with the BACC3 protocol. DNA samples were re-suspended in 1 ml TE buffer pH 7.5 (10mM Tris-Cl pH 7.5, 1mM EDTA pH 8.0). The yield of the DNA was measured using picogreen and normalised to 10ng/µl before genotyping. DNA was extracted from fresh-frozen brain tissue by homogenising using buffer ATL with proteinase K and incubating at 56°C on a thermomixer at 1000 rpm then isolated using Qiagen DNeasy blood and tissue kit. DNA samples were resuspended in 200µl of Qiagen elution buffer and normalised to 10ng/µl before genotyping. DNA was extracted from formalin fixed paraffin embedded tissue brain tissue using the Covaris E220 Focused Ultra Sonicator and the truXTRAC FFPE DNA kit, following the genomic DNA extraction protocol. 20µm tissue scrolls were deparaffinised by sonication for 2 x 5 minute periods before overnight incubation on a thermomixer at 56°C with proteinase K. Crosslinking was reversed by incubation at 80°C for 1 hour before purification in spin columns and elution in 50µL of Covaris Buffer BE (5mM Tris HCl pH 8.5).

Genotypes for two APOE single-nucleotide polymorphisms (rs429358 and rs7412) were determined using TaqMan single-nucleotide polymorphism genotyping assays (Applied Biosystems, Foster City, CA) on a ThermoFisher QuantStudio 12K Flex Real Time PCR System instrument with QuantStudio 12K Flex Software or Taqman Genotyper Software v1·3.

<u>Reference test methods</u>

Research post-mortem

The cerebral hemispheres were sectioned in the coronal plane at 1cm intervals, the first slice taken through the mammillary bodies. The cerebellum was sectioned in the sagittal plane and the brainstem axially. Tissue samples approximately 20x20x10mm were taken from each cerebral hemisphere from: frontal parasagittal cortex (BA9); Broca's area (BA44/45); temporal tip (BA38); caudate nucleus; basal ganglia; hippocampus; thalamus; frontal, temporal, parietal and occipital white matter; cerebellum; pons and medulla. Samples were bisected in the coronal plane, one block fixed in 10% unbuffered formalin for standard histological processing and the other frozen in nitrogen vapour.^{5,6}

SVD assessment

We detected CAA in all cerebral and cerebellar lobes using immunohistochemistry with a monoclonal mouse antibody to human beta-amyloid, (Clone 6F/3D, Dako, Copenhagen) at a concentration of 1:100.

Parenchymal CAA0123Image: Severe constraintsImage: Severe constraintsImage: Severe constraintsImage: Severe constraintsNoneMildModerateSevere constraintsOther SVDImage: Severe constraintsImage: Severe constraintsImage: Severe constraintsArteriolosclerosisImage: Severe constraintsImage: Severe constraintsImage: Severe constraints

Example images of small vessel disease histopathological assessment grading

Fibrinoid necrosis

Lipohyalinosis

Other severe vessel wall changes

Flowchart of participants through the study

APOE = apolipoprotein. CAA = cerebral amyloid angiopathy. CT = computed tomography. ICH = intracerebral haemorrhage. LINCHPIN study = Lothian IntraCerebral Haemorrhage, Pathology, Imaging and Neurological Outcome study. MRI = magnetic resonance imaging. PM = research post-mortem.

Baseline characteristics of participants	with lobar IC	C H who	underwent	post mortem	versus those	who did
not						

Characteristic	P	ost mortem	No pos	st mortem	p value
		(n=62)	(n	=86)	I
Median age, years	83	(78-86)	78	(69-81)	0.00005
Male	23	(37)	36	(42)	0.56
Hypertension	42	(68)	45	(52)	0.06
Antiplatelet use at ICH	33	(53)	35	(41)	0.15
Anticoagulant use at ICH	9	(15)	14	(16)	0.75
Dementia	10	(16)	5	(6)	0.05
APOE E2+	14	(23)	20	(33) ‡	0.19
APOE E4+	20	(32)	25	(42)‡	0.28
Multiple ICH	9	(15)	5	(6)	0.23
Left side	32	(52)	47	(55)	0.71
ICH location*					
Frontal	29	(47)	36	(42)	
Parietal	14	(23)	23	(27)	0.01
 Temporal 	10	(16)	13	(15)	0.91
 Occipital 	9	(15)	14	(16)	
Median ICH volume, cm ³	60	(20-118)	20	(11-32)	0.000002
Strictly lobar ICH	58	(94)	85	(99)	0.16†
IV extension	31	(50)	17	(20)	0.0001
Any SAH	43	(69)	58	(67)	0.81
Subdural extension	12	(19)	14	(16)	0.63
Midline shift	39	(63)	36	(42)	0.01
Finger-like projections	14	(23)	23	(27)	0.56
Cortical involvement	56	(90)	74	(86)	0.43
Dilute/seeping	24	(39)	36	(42)	0.70
Old vascular lesion	23	(37)	29	(34)	0.67
Anterior WML					
0	10	(16)	22	(26)	
1	37	(60)	48	(56)	0.35
2	15	(24)	16	(19)	
Posterior WML					
0	13	(21)	34	(40)	
1	9	(14)	21	(24)	0.003
2	40	(65)	31	(36)	
Central atrophy	10	(24)			
0	19	(31)	34	(40)	0.461
	39	(63)	49	(57)	0.46†
2	4	(6)	3	(3)	
Cortical atrophy	1.5	(24)	24		
0	15	(24)	24	(28)	0.70
1	33	(53)	46	(53)	0.79
	14	(23)	16	(19)	
UI UAA category	14	(22)	22	(27)	
riigii Intermediate	14	(23)	23	(27)	0.74
Low	29	(47)	30	(41)	0.74
	19	(31)	28	(33)	
UI & APUE CAA category	24	(20)	22	(28)	
nigii Intermediate	24	(39)	23	(36)	0.85
Intermediate	24	(39)	21	(35)	0.85
LOW	14	(23)	16	(27)	

Data are number (%) or median (IQR). AF = atrial fibrillation. APOE ϵ^2 = apolipoprotein E ϵ^2 allele present. APOE ϵ^4 = apolipoprotein E ϵ^4 allele present. CAA = cerebral amyloid angiopathy. CT = computed tomography. ICH = intracerebral haemorrhage. SAH = subarachnoid haemorrhage. TIA = transient ischaemic attack. WML = white matter lucencies.* = presumed epicentre of haematoma defined by CHARTS. \dagger = Fisher's exact test. \ddagger 22 cases excluded as no APOE genotype

Intra-	and inter-	-observer	agreement	for com	puted tom	lography	features.

Characteristic	Frequency, n (%) (n=110)	Intra-observer agreement (95%CI) (n=110)	Inter-observer agreement (95%CI) (n=110)
Multiple ICH	12 (11)	1.00 (1.00-1.00)	0.64 (0.43-0.86)
ICH side			
Left	55 (50)	1.00 (1.00.1.00)	1.00 (1.00, 1.00)
Right	51 (46)	1.00 (1.00-1.00)	1.00 (1.00-1.00)
Central	4 (4)		
Median ICH volume, cm ³ (IQR)	31 (13-82)	0.98* (0.98-0.99)	0.96* (0.91-0.98)
Supratentorial strictly lobar ICH	58 (53)	0.98 (0.95-1.00)	0.42 (0.28-0.56)
IV extension	67 (61)	1.00 (1.00-1.00)	0.73 (0.60-0.86)
Any SAH	51 (46)	0.98 (0.95-1.00)	0.71 (0.58-0.84)
Subdural extension	12 (11)	0.96 (0.87-1.00)	0.59 (0.35-0.83)
Midline shift	66 (60)	0.75 (0.62-0.88)	0.61 (0.48-0.75)
Blood/fluid level	8 (7)	0.70 (0.41-0.98)	0.27 (-0.07-0.60)
Irregular/lobulated	69 (63)	0.68 (0.54-0.82)	0.13 (0.02-0.25)
Finger-like projections	16 (15)	0.72 (0.53-0.92)	0.60 (0.36-0.83)
Round/oval	36 (33)	0.72 (0.58-0.86)	0.05 (0.00-0.09)
Cortical involvement	60 (55)	0.98 (0.95-1.00)	0.80 (0.68-0.91)
Dilute/seeping	29 (26)	0.88 (0.78-0.98)	0.57 (0.39-0.75)
Old vascular lesion	48 (44)	0.95 (0.88-1.00)	0.56 (0.41-0.72)
Anterior WML			
0	14 (13)	0.76+ (0.65.0.99)	0.54+ (0.40.0.67)
1	66 (60)	0.701 (0.03-0.88)	0.34 ($0.40-0.07$)
2	30 (27)		
Posterior WML			
0	27 (25)	0 75+ (0 66 0 84)	0.52+ (0.40.0.64)
1	20 (18)	0.75 (0.00-0.84)	0.32 (0.40-0.04)
2	63 (57)		
Central atrophy			
0	24 (22)	$0.70 \pm (0.58, 0.82)$	0.51 $(0.27.0.64)$
1	66 (60)	0.701 (0.30-0.62)	0.311 (0.37-0.04)
2	20 (18)		
Cortical atrophy			
0	19 (17)	0.65+ (0.52.0.79)	0.55 $(0.41.0.60)$
1	64 (58)	0.031 (0.33-0.78)	0.351 (0.41-0.07)
2	27 (25)		

Agreement assessed with un-weighted Cohen's kappa, linear-weighted kappa[†], or intraclass correlation coefficient*. ICH = intracerebral haemorrhage. Cohen suggested the Kappa result be interpreted as follows: values ≤ 0 as indicating no agreement and 0.01–0.20 as none to slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1.00 as almost perfect agreement. IV = intraventricular. SAH = subarachnoid haemorrhage. WML = white matter lesion.

Baseline characteristics	of	all ICH,	stratified	by	location
---------------------------------	----	----------	------------	----	----------

	All ICH (n=110)	Lobar ICH (n=62)	Non-lobar ICH (n=48)
Median age at ICH, years	83 (76-87)	83 (78-86)	82 (75-87)
Male	49 (45)	23 (37)	26 (54)
Median time from ICH to CT, hours	5 (3-18)	6 (3-29)	4 (3-15)
Median time from CT to post- mortem, days	11 (5-80)	11 (6-134)	9 (5-23)
Previous ischaemic stroke/TIA	23 (21)	12 (19)	11 (23)
Coronary artery disease	25 (23)	16 (26)	9 (19)
Atrial fibrillation	31 (28)	19 (31)	12 (25)
Diabetes	14 (13)	6 (10)	8 (17)
Hypertension	77 (70)	42 (68)	35 (73)
Hyperlipidaemia	15 (14)	8 (13)	7 (15)
Antiplatelet use at ICH	53 (48)	33 (53)	20 (42)
Anticoagulant use at ICH	20 (18)	9 (15)	11 (23)
Dementia before ICH	18 (16)	10 (16)	8 (17)
ΑΡΟΕ ε2+	21 (19)	14 (23)	7 (15)
ΑΡΟΕ ε4+	34 (31)	20 (32)	14 (29)
ICH location*			
• Lobar	62 (56)	62 (100)	
• Lobai • Frontal	29 (26)	29 (47)	
• Parietal	14 (13)	14 (23)	
• Occipital	10 (9)	10 (16)	
e coopiai	9 (8)	9 (15)	
• Deep	41 (37)		41 (85)
• Basal ganglia	22 (20)		22 (46)
• Thalamic	19 (17)		19 (40)
Infratentorial	7 (6)		7 (15)
• Brainstem	4 (4)		4 (8)
o Cerebellum	3 (3)		3 (6)

Data are number (%) or median (IQR). AF = atrial fibrillation. APOE $\varepsilon 2+=$ apolipoprotein E $\varepsilon 2$. allele present. APOE $\varepsilon 4+=$ apolipoprotein E $\varepsilon 4$ allele present. CT = computed tomography. ICH = intracerebral haemorrhage. TIA = transient ischaemic attack. * = presumed epicentre of haematoma defined by CHARTS⁴

	Non-lob:	ar ICH (n=48)	Lobar ICH (n=62)				
Pathology Category	CAA absent	CAA present	CAA absent	CAA present			
Other SVD absent	0 (0)	0 (0)	0 (0)	0 (0)			
Other SVD present	32 (67)	16 (33)	16 (26)	46 (74)			
	1		L				
Pathology Category	CAA absent/mild	CAA moderate/severe	CAA absent/mild	CAA moderate/severe			
Other SVD absent/mild	0 (0)	0 (0)	2 (3)	10 (16)			
Other SVD moderate/severe	42 (88)	6 (13)	24 (39)	26 (42)			

Distribution of cerebral small vessel disease sub-types by ICH location

Data are number (%). CAA = cerebral amyloid angiopathy. ICH = intracerebral haemorrhage. SVD = small vessel disease

Logistic regression model with Firth correction fitted in participants with lobar ICH associated with moderate/severe CAA, excluding 9 cases taking oral anticoagulants at the time of ICH

	β Coefficient (standard error)	Odds ratio (95%CI)	p value
Intercept	-2.43 (0.92)		0.009
APOE E4 +	2.77 (1.00)	15.97 (2.93-587.82)	0.006
Subarachnoid haemorrhage	2.18 (0.97)	8.89 (1.69-277.39)	0.02
Finger-like projections	3.09 (1.60)	21.97 (2.19-∞)	0.05

APOE $\varepsilon 4$ + = apolipoprotein E $\varepsilon 4$ allele present.

	Development	Internal validation
Overall		
Brier score	0.11	0.12
R ² (Nagelkerke)	0.57	0.51
Akaike information criterion	49.90	55.90
Discrimination		
c statistic	0-92	0-91
Discrimination slope	0.52	0.50
Calibration		
Hosmer-Lemeshow test	$\chi^2 = 0.55, p = 0.76$	$\chi^2 = 2 \cdot 79, p = 0 \cdot 25$

Performance measures of the diagnostic prediction model in the development dataset (n=62) and following internal validation using the same dataset (n=62; 2,000 bootstrap samples)

Pre	Predictors present		- Prodicted risk of	Obs	erved fro derate/se	equency of vere CAA	Moderate/severe CAA probability
Subarachnoid haemorrhage	APOE ε4+	Finger-like projections	moderate/severe CAA, % (%) [95%CI		(%) [95%CI]		
-	-	-	7	0/14	(0)	[0-22%]	Low
+	-	-	44	9/19	(47)	[27-68%]	Madian
-	+	-	64	4/5	(80)	[38-99%]	Medium
+	+	-	95	9/10	(90)	[60-99%]	
+	-	+	95	9/9	(100)	[70-100%]	High
+	+	+	100	5/5	(100)	[57-100%]	

Predicted and observed frequencies, and categorisation of the probability of lobar ICH associated with moderate/severe CAA according to the three predictor variables

Cross tabulations of the Edinburgh CT and genetic diagnostic criteria for lobar ICH associated with moderate/severe CAA against the reference standard

Diagnostic criteria (index test)	Reference st	andard	
Subarachnoid haemorrhage or APOE 84+	Moderate/severe CAA	A at post-mortem	
	Present	Absent	Total
Positive	36	12	48
Negative	0	14	14
Total	36	26	62
Diagnostic criteria (index test)	Reference st	andard	
Diagnostic criteria (index test) Subarachnoid haemorrhage and (APOE &4+ or finger-like projections)	Reference st Moderate/severe CAA	andard A at post-mortem	
Diagnostic criteria (index test) Subarachnoid haemorrhage and (APOE ε4+ or finger-like projections)	Reference st Moderate/severe CAA Present	andard A at post-mortem Absent	Total
Diagnostic criteria (index test) Subarachnoid haemorrhage and (APOE ε4+ or finger-like projections) Positive	Reference st Moderate/severe CAA Present 23	andard A at post-mortem Absent	Total 24
Diagnostic criteria (index test) Subarachnoid haemorrhage and (APOE ɛ4+ or finger-like projections) Positive Negative	Reference st Moderate/severe CAA Present 23 13	andard A at post-mortem Absent 1 25	Total 24 38

APOE = apolipoprotein. CAA = cerebral amyloid angiopathy. CT = computed tomography.

Diagnostic test accuracy statistics for the two sets of Edinburgh CT and genetic diagnostic criteria for lobar ICH associated with moderate/severe CAA

	Edinburgh CT and genetic diagnostic criteria				
	Subarachnoid haemorrhage or APOE ϵ 4+		Subarachnoid haemoi or finger-like	rrhage and (APOE ε4+ e projections)	
Sensitivity	100	(88-100)	64	(46-79)	
Specificity	54	(34-73)	96	(78-100)	
Positive likelihood ratio	2.2	(1-4-3-3)	16.6	(2.4-115.3)	
Negative likelihood ratio	0	(0-NaN)	0.4	(0.2-0.6)	
Positive predictive value	75	(60-86)	96	(77-100)	
Negative predictive value	100	(73-100)	66	(49-80)	
Youden's Index	0.54		0.60		

Data are percentage or ratio (95% confidence interval). APOE = apolipoprotein. CAA = cerebral amyloid angiopathy. CT = computed tomography. NaN = not a number – calculation cannot be performed because one of the values includes a zero

Decision curves of predictions and classifications of moderate/severe CAA in participants with lobar ICH using fixed cut-off points from the CT and APOE genotype prediction model to assign patients as positive or negative for moderate/severe CAA.

The threshold probability is the level of diagnostic certainty above which a patient or clinician would choose to be treated. Equally, it could be used by a researcher to identify patients eligible for inclusion in a randomised controlled trial or identify cases and controls for a case-control study. The threshold probability is low in situations where we want to avoid false negatives (e.g. when trying to rule out CAA-associated lobar ICH) and high when false positives are to be avoid (e.g. when trying to rule in CAA-associated lobar ICH). Net benefit is the difference between those expected to benefit (true positives identified using the strategy – expected benefit) and those expected to be harmed (false positives identified using the strategy multiplied by a weighting factor based on the threshold probability – expected harm). The curves which maximise net benefit represent the optimal strategy for the associated threshold probabilities. The solid black line indicates a policy of treating no one, the grey line a policy of treating all.

The combination of subarachnoid haemorrhage or APOEɛ4 is the best diagnostic strategy for low threshold probabilities (0-0.55), where harm of unnecessary treatment is limited and false negatives avoided (i.e. useful for ruling CAA-associated lobar ICH out). For high threshold probabilities (0.55-0.90), where there is harm of overtreatment and false positives should be avoided, the criteria of subarachnoid haemorrhage AND (APOE ɛ4 OR Finger-like projections) maximises net benefit (i.e. for ruling CAA-associated lobar ICH in).

APOE £4 = apolipoprotein E £4 allele present. FLP = finger-like projection. SAH = subarachnoid haemorrhage

	β Coefficient (s	standard error)	Odds ra	tio (95%CI)	p value
Intercept	-3.39	(1.46)			0.02
ΑΡΟΕ ε4 +	4.18	(1.49)	65	(7-∞)	0.005
Subarachnoid haemorrhage	3.09	(1.47)	22	(3-∞)	0.04
Finger-like projections	3.01	(1.61)	20	(2-∞)	0.06

Logistic regression model using PMW ratings for CT-based features and APOE genotype, with Firth correction fitted in participants with lobar ICH associated with moderate/severe CAA.

APOE $\varepsilon 4$ + = apolipoprotein E $\varepsilon 4$ allele present.

This model calculates the predicted probability of moderate/severe CAA as follows:

Predicted probability = $1/(1 + exp^{-risk \text{ score}})$

Risk score = -3.39 + 4.18 x (APOEe4+) + 3.09 x (subarachnoid haemorrhage) + 3.01 x (finger-like projections)

The predictor values are one when present and zero when absent.

Discrimination and calibration measures of CT and APOE diagnostic prediction model performance using PMW CT ratings

A. Receiver operating characteristic (ROC) curve for predicted probability of moderate/severe CAA. The area under the curve (AUC) is equivalent to the c statistic. The shaded area represents the 95% confidence interval of the AUC based on 2,000 bootstrap replicates. The dotted line indicates a non-informative AUC of 0.50 for comparison. B. Calibration plot of predicted probability versus observed frequency of moderate/severe CAA. The grey line indicates perfect calibration, the model's calibration is shown by the dotted line. The triangles represent the six different moderate or severe CAA risk groups produced by the prediction model. The vertical lines along the x axis represent the frequency and distribution of model predicted probabilities.

	Development	Internal validation
Overall		
Brier score	0.13	0.14
R ² (Nagelkerke)	0.51	0.47
Akaike information criterion	53.78	57.86
Discrimination		
c statistic	0.88	0.88
Discrimination slope	0.45	0.43
Calibration		
Hosmer-Lemeshow test	$\chi^2 = 0.74, p = 0.86$	$\chi^2 = 2.01, p = 0.37$

Performance measures of CT and APOE diagnostic prediction model using PMW CT ratings in the development dataset (n = 62) and following internal validation using the same dataset (n = 62; 2,000 bootstrap samples).

Prec	Predictors present		Predicted risk of	Observ	ed frequ	ency of	Moderate/ severe
Subarachnoid haemorrhage	ΑΡΟΕ ε4+	Finger-like projections	moderate/severe CAA, %	moderate/severe CA (%) [95%CI]		re CAA CI]	CAA probability
-	-	-	3	0/9	(0)	[0-30%]	Low
+	-	-	43	11/26	(42)	[26-61%]	
-	+	-	69	5/7	(71)	[36-92%]	Medium
+	+	-	98	11/11	(100)	[74-100%]	
+	-	+	94	7/7	(100)	[65-100%]	High
+	+	+	100	2/2	(100)	[34-100%]	

Risk categories for lobar ICH associated with moderate/severe CAA using CT and APOE diagnostic criteria using PMW CT ratings

APOE ϵ 4+ = apolipoprotein E ϵ 4 allele present. CAA = cerebral amyloid angiopathy

Cross tabulations of the Edinburgh CT and genetic diagnostic criteria for lobar ICH associated with moderate/severe CAA using PMW CT ratings against the reference standard

Diagnostic criteria (index test)	Reference s		
Subarachnoid haemorrhage or APOE 64+	Moderate/severe CA		
	Present	Absent	Total
Positive	36	17	53
Negative	0	9	9
Total	36	26	62
Diagnostic criteria (index test)	Reference standard		
Subarachnoid haemorrhage and (APOE 64+ or	Moderate/severe CA	A at post-mortem	
inger-nke projections)	Present	Absent	Total
Positive	20	0	20
Negative	16	26	42
Total	36	26	62

APOE $\varepsilon 4$ + = apolipoprotein E $\varepsilon 4$ allele present. CAA = cerebral amyloid angiopathy

Diagnostic test accuracy statistics for the Edinburgh CT and genetic diagnostic criteria for lobar ICH associated with moderate/severe CAA using PMW CT ratings

		Edinburgh CT and	genetic diagnostic criteria	
	Subarachnoid haemori	hage or APOE ε4+	Subarachnoid haemorr or finger-like projection	hage and (APOE ε4+ ns)
Sensitivity	100	(88-100)	56	(38-72)
Specificity	35	(18-56)	100	(84-100)
Positive likelihood ratio	1.5	(1.2-2.0)	00	(NaN-∞)
Negative likelihood ratio	0	(0-NaN)	0.4	(0.3-0.6)
Positive predictive value	68	(54-80)	100	(80-100)
Negative predictive value	100	(63-100)	62	(46-76)
Youden's Index	0.35		0.56	

Data are percentage or ratio (95% confidence interval). NaN = not a number – calculation cannot be performed because one of the values includes a zero.

Age at ICH	Modified Boston MRI classification	Edinburgh CT and genetic classification	Pathological CAA grade
79	Probable	High	Severe
76	Probable	High	Moderate
72	Probable	High	Moderate
84	Probable	Intermediate	Severe
90	Probable	Intermediate	Mild
83	Probable	Intermediate	Absent
83	Probable	Low	Absent

Comparison of the Edinburgh CT and genetic criteria with the modified Boston criteria in participants with lobar ICH who underwent MRI during life

Logistic regression model using only CT-based features without APOE genotype, with Firth correction fitted in participants with lobar ICH associated with moderate/severe CAA.

	β Coefficient (standard error)	Odds ratio (95%CI)	p value
Intercept	-1.24 (0.55)		0.02
Subarachnoid haemorrhage	1.71 (0.67)	5.54 (1.63-26.09)	0.01
Finger-like projections	2.89 (1.54)	18.03 (2.04-∞)	0.06

This model calculates the predicted probability of moderate/severe CAA as follows:

Predicted probability = $1/(1 + exp^{-risk \text{ score}})$

Risk score = -1.24 + 1.71 x (subarachnoid haemorrhage) + 2.89 x (finger-like projections)

The predictor values are one when present and zero when absent.

Discrimination and calibration measures of CT-based diagnostic prediction model without APOE genotype

A. Receiver operating characteristic (ROC) curve for predicted probability of moderate/severe CAA. The area under the curve (AUC) is equivalent to the c statistic. The shaded area represents the 95% confidence interval of the AUC based on 2,000 bootstrap replicates. The dotted line indicates a non-informative AUC of 0.50 for comparison. B. Calibration plot of predicted probability versus observed frequency of moderate/severe CAA. The grey line indicates perfect calibration, the model's calibration is shown by the dotted line. The triangles represent the three different moderate or severe CAA risk groups produced by the prediction model. The vertical lines along the x axis represent the frequency and distribution of model predicted probabilities.

Performance measures of CT-based diagnostic prediction model without APOE genotype in the development dataset (n = 62) and following internal validation using the same dataset (n = 62; 2,000 bootstrap samples).

	Development	Internal validation
Overall		
Brier score	0.16	0.17
R ² (Nagelkerke)	0.31	0.28
Akaike information criterion	65.03	68.90
Discrimination		
c statistic	0.82	0.82
Discrimination slope	0.32	0.31
Calibration		
Hosmer-Lemeshow test	$\chi^2 = 0.48, p = 0.92$	$\chi^2 = 1.35, p = 0.72$

Predictors present		Predicted risk of	Observed	Moderate/severe		
Subarachnoid haemorrhage	Finger-like projections	moderate/severe CAA, %	moderate/severe CAA (%) [95% CI]		CAA probability	
-	-	23	4/19 (21)	[9-43]	Low	
+	-	62	18/29 (62)	[44-77]	Medium	
+	+	97	14/14 (100)	[78-100]	High	

Risk categories for lobar ICH associated with moderate/severe CAA using CT-based diagnostic criteria without APOE genotype

Cross tabulations of the index test results against the reference standard using the simplified Edinburgh (CT-only) CAA-associated lobar ICH diagnostic criteria

Diagnostic criteria (index test)	Reference standard		
Subarachnoid haemorrhage	Moderate/severe C		
_	Positive	Negative	Total
Positive	32	11	43
Negative	4	15	19
Total	36	26	62
Diagnostic criteria (index test)	Reference standard		
Subarachnoid haemorrhage and finger-	Moderate/severe CAA at post mortem		
like projections	Positive	Negative	Total
Positive	14	0	14
Negative	22	26	48
Total	36	26	62

Diagnostic test accuracy statistics for the simplified Edinburgh (CT-only) CAA-associated lobar ICH diagnostic criteria without APOE genotype

	Diagnostic criteria				
	Subarachnoid haemorrhage		Subarachnoid haemorrhage and finger-like projections		
Sensitivity	89	(73-96)	39	(24-56)	
Specificity	58	(37-76)	100	(84-100)	
Positive likelihood ratio	2.1	$(1 \cdot 3 - 3 \cdot 3)$	Inf	(NaN-∞)	
Negative likelihood ratio	0.2	(0.1-0.5)	0.6	(0.5 - 0.8)	
Positive predictive value	74	(59-86)	100	(73-100)	
Negative predictive value	79	(54-93)	54	(39-68)	
Youden's Index	0.47		0.39		

Data are percentage or ratio (95% confidence interval). NaN = not a number – calculation cannot be performed because one of the values includes a zero.

BBN_7268	BBN_2561	BBN_14393	BBN_19602	BBN_24323
BBN_2519	BBN001.26127	BBN_19993	BBN_19601	BBN_24343
BBN_2514	BBN_2563	BBN_9507	BBN_19599	BBN_24528
BBN_15254	BBN_2570	BBN001.26492	BBN_19600	BBN_25059
BBN_2554	BBN_2573	BBN_7276	BBN_19598	BBN_24670
BBN_2524	BBN_15813	BBN_9504	BBN_19364	BBN_24531
BBN001.26092	BBN_4173	BBN_9502	BBN_19596	BBN_25060
BBN_2583	BBN_20599	BBN_9506	BBN_22228	BBN_25057
BBN_2526	BBN_2578	BBN_15215	BBN_20994	BBN_25058
BBN_3776	BBN_2582	BBN20615	BBN_20611	BBN001.26493
BBN_2535	BBN_20602	BBN_15815	BBN_20603	BBN001.26394
BBN_3769	BBN_3763	BBN_24305	BBN_22224	BBN001.26491
BBN_2527	BBN_3764	BBN_15224	BBN_24302	BBN001.26490
BBN_2539	BBN_3766	BBN_20992	BBN_22227	BBN001.26496
BBN_2543	BBN_3777	BBN001.26307	BBN_22223	BBN001.26499
BBN_2574	BBN_3775	BBN_15812	BBN_22226	BBN001.26719
BBN_2545	BBN_19994	BBN_15814	BBN_22626	BBN001.26722
BBN_2544	BBN_3781	BBN_15811	BBN_22627	BBN001.28404
BBN_2546	BBN_3782	BBN_19605	BBN_23394	BBN001.28405
BBN_19597	BBN_7627	BBN_19606	BBN_24303	BBN001.28408
BBN_2548	BBN_3787	BBN_19604	BBN_24304	BBN001.28411
BBN_2549	BBN_4167	BBN_19603	BBN_24306	BBN001.28416

Unique MRC Brain Brank Network (BBN) numbers of included participants

Reference List

1. Newman GC. Clarification of abc/2 rule for ICH volume. *Stroke* 2007; **38**(3): 862.

2. van Swieten JC, Hijdra A, Koudstaal PJ, van Gijn J. Grading white matter lesions on CT and MRI: a simple scale. *J Neurol Neurosurg Psychiatry* 1990; **53**(12): 1080-3.

3. Sato S, Delcourt C, Heeley E, et al. Significance of Cerebral Small-Vessel Disease in Acute Intracerebral Hemorrhage. *Stroke* 2016; **47**(3): 701-7.

4. Charidimou A, Schmitt A, Wilson D, et al. The Cerebral Haemorrhage Anatomical RaTing inStrument (CHARTS): Development and assessment of reliability. *J Neurol Sci* 2017; **372**: 178-83.

 Samarasekera N, Lerpiniere C, Fonville AF, et al. Consent for Brain Tissue Donation after Intracerebral Haemorrhage: A Community-Based Study. *PLoS One* 2015; **10**(8): e0135043.

6. Samarasekera N, Al-Shahi SR, Huitinga I, et al. Brain banking for neurological disorders. *Lancet Neurol* 2013; **12**(11): 1096-105.