Supplementary Information

Filling the Gaps in the Kirromycin Biosynthesis: Deciphering the Role of Genes Involved in Ethylmalonyl-CoA Supply and Tailoring Reactions

Helene L. Robertsen^{a,1}, Ewa M. Musiol-Kroll^{a,1,2,3}, Ling Ding¹, Kristina J. Laiple², Torben Hofeditz⁴, Wolfgang Wohlleben^{2,3}, Sang Yup Lee^{1,5}, Stephanie Grond⁴, and Tilmann Weber¹

^aEqual contribution

¹Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs. Lyngby, Denmark

²Eberhard-Karls-Universität Tübingen, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Microbiology/Biotechnology, Auf der Morgenstelle 28, 72076 Tübingen, Germany

³German Centre for Infection Research (DZIF), Partner site Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany

⁴Eberhard-Karls-Universität Tübingen, Institut für Organische Chemie, Auf der Morgenstelle 18, 72076 Tübingen, Germany

⁵Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea

Table of Contents

Table S1: Strains and plasmids in this study3
Table S2: Primers used in this study6
Table S3: HPLC-ESI-HRMS data for kirromycin and derivatives9
Table S4: ¹ H NMR spectra and assignments10
Figure S1-I – S1-II: UV-VIS profiles of Δ <i>kirHIV</i> and Δ <i>kirHV</i> mutants14
Figure S2-I – S2-V: MS/MS spectra of kirromycin and derivatives15
Figure S3-I – S3-VI: HPLC-ESI-UV-Vis profiles of the wild type (WT), Δ <i>kir</i> mutants, and complemented mutants
Figure S4-IA/B – S4-IIA/B: ¹ H NMR and ¹³ C NMR data and assignment for 30-
deoxy-kirromycin (3), 5,6-dihydro-kirromycin (4), and 30-hydroxy-5,6-dehydro-
1-N-demethyl-16-deoxy-kirrothricin (5)21
Figure S5-I – S5-III: 2D-NMR of 30-deoxy-kirromycin (3), 5,6-dihydro-
kirromycin (4), and 30-hydroxy-5,6-dehydro-1- <i>N</i> -demethyl-16-deoxy-
kirrothricin (5)
Figure S6-I – S6-II: Verification of Δ <i>kir</i> mutants by control PCRs35
Figure S7-I – S7-III: Putative enzymatic reactions catalysed by tailoring enzymes
KirHVI, KirOI, and KirOII36
Supplementary references

Source	Description/Genotype	Reference						
E. coli strains								
<i>E. coli</i> DH5-α	fhuA2, $\Delta(argF-lacZ)U169$, phoA, glnV44, Φ 80, $\Delta(lacZ)M15$, gyrA96, recA1, relA1, endA1, thi-1, hsdR17	New England Biolabs						
<i>E. coli</i> ET12567 (pUZ8002)	<i>dam</i> 13::Tn9(ChlR), <i>dcm</i> -6, <i>hsd</i> M, <i>hsd</i> R, <i>rec</i> F143, <i>zjj</i> -201::Tn10, <i>gal</i> K2, <i>gal</i> T22, <i>ara</i> 14, <i>lac</i> Y1, <i>xyl</i> -5, <i>leu</i> B6, <i>thi</i> -1, <i>ton</i> A31, <i>rps</i> L136, <i>his</i> G4, <i>tsx</i> -78, <i>mtl</i> I, <i>gln</i> V44. pUZ8002(KanR)	1						
	Streptomyces strains							
<i>S. collinus</i> Tü 365	Wild type Streptomyces collinus Tü 365	2						
$\Delta kirM$	S. collinus Tü 365 deletion mutant in kirM	This study						
∆kirHVI	S. collinus Tü 365 deletion mutant in kirHVI	This study						
∆kirOI	S. collinus gene replacement mutant in which kirOI is replaced by the thiostrepton resistance cassette with the $ermE^*$ promoter downstream. ThioR	This study						
∆kirOII	S. collinus gene replacement mutant in which kirOII is replaced by the thiostrepton resistance cassette with the $ermE^*$ promoter downstream. ThioR	This study						
$\Delta kirHIV$	S. collinus Tü 365 deletion mutant in kirHIV	This study						
$\Delta kirHV$	S. collinus Tü 365 deletion mutant in kirHV	This study						
$\Delta kirN$	S. collinus Tü 365 deletion mutant in kirN	This study						
∆ <i>kirOI-</i> pGM1190	$\Delta kirOI$ complemented with replicative plasmid pGM1190- <i>kirOI</i> . ApraR, ThioR	This study						
∆kirM-pRM4	$\Delta kirM$ complemented with integrative plasmid pRM4- kirM. ApraR	This study						
∆ <i>kirHVI</i> -pRM4	<i>AkirHVI</i> complemented with integrative plasmid pRM4- <i>kirHVI</i> . ApraR	This study						
∆ <i>kirOII</i> -pRM4	AkirOII complemented with integrative plasmid pRM4- kirOII. ApraR, ThioR	This study						
$\Delta kirN$ -pRM4_1	AkirN complemented with integrative plasmid pRM4- kirHVI. ApraR	This study						
$\Delta kirN$ -pRM4_2	$\Delta kirN$ complemented with integrative plasmid pRM4- kirN+HVI. ApraR	This study						
	Cosmids							
1C24	pOJ436 cosmid vector with a fragment of the genome of kirromycin producer <i>Streptomyces collinus</i> Tü 365	3						
2K05	pOJ436 cosmid vector with a fragment of the genome of kirromycin producer <i>Streptomyces collinus</i> Tü 365	3						
	Plasmids							
pJet1.2/blunt	<i>rep</i> (pMB1), <i>bla</i> (AmpR), <i>eco</i> 47IR, PlacUV5, T7 RNA polymerase promoter. Part of the CloneJET TM PCR Cloning Kit used for high efficiency cloning of PCR products	Thermo Fisher Scientific Inc.						
pDrive	T7 RNA polymerase promoter, LacZ α , SP6 RNA polymerase promoter, AmpR, KanR, pUC origin, phage f1 origin of replication. For construction of $\Delta kirOI$ and $\Delta kirOII$ gene inactivation plasmids	Qiagen						
pGUSA21	Promoter probe vector, pSETGUS with deleted KpnI fragment containing TipA promoter. <i>gusA</i> , Δint , $\Delta attB$, MCS from pUC21. Used for gene inactivation	4						

Table S1: Strains and plasmids in this study

Source	Description/Genotype	Reference
pGM1190	pGM190 derivative in which the kanamycin resistance cassette is exchanged with the apramycin resistance gene aac3(3)IV. TipA promoter. ApraR, ThioR. Used for complementation of the $\Delta kirOI$ mutant	G. Muth (personal communication)
pRM4	pSET152 <i>ermEp</i> derivative with an artificial RBS, Φ C31 integration vector, <i>ermE</i> * promoter. ApraR. Used for complementation of the <i>kir</i> mutants	5
pA18mob	pK18mob derivative in which <i>aph</i> II is replaced with the apramycin resistance cassette. <i>ori</i> T, <i>lacZa</i> . ApraR. Used for construction of gene replacement mutants of <i>kirOI</i> and <i>kirOII</i> .	3
pSLE61	pUC19 derivative. <i>lacZa</i> , <i>ori</i> I, pSG5 replicon. AmpR, ThioR. For amplification of thiostrepton resistance cassette	6
pCRISPR-Cas9	Derivative of pGM1190 with Cas9 under the control of TipA promoter	7
pCRISPR- Cas9_USER- ⊿kirM	USER-compatible destination vector, which is a derivative of pGM1190 with Cas9 under the control of TipA promoter. Cloned with <i>ermE*</i> promoter between sgRNA and 1 kb flanking regions right and left of <i>kirM</i> inserted in the USER cassette. ApraR	7,8
pCRISPR- Cas9_USER- ⊿kirHIV	USER-compatible destination vector, which is a derivative of pGM1190 with Cas9 under the control of TipA promoter. Cloned with <i>ermE</i> * promoter between sgRNA and 1 kb flanking regions right and left of <i>kirHIV</i> inserted in the USER cassette. ApraR	7,8
pCRISPR- Cas9_USER- ⊿kirHV	USER-compatible destination vector, which is a derivative of pGM1190 with Cas9 under the control of TipA promoter. Cloned with <i>ermE</i> * promoter between sgRNA and 1 kb flanking regions right and left of <i>kirHV</i> inserted in the USER cassette. ApraR	7.8
pCRISPR- Cas9_USER- ⊿kirN	USER-compatible destination vector, which is a derivative of pGM1190 with Cas9 under the control of TipA promoter. Cloned with <i>ermE</i> * promoter between sgRNA and 1 kb flanking regions right and left of <i>kirN</i> inserted in the USER cassette. ApraR	7.8
pHR1	pGUSA21 deletion plasmid of <i>kirM</i> cloned with <i>ermE</i> * promoter between 1 kb flanking regions of the gene. 2.1 kb construct cloned from pCRISPR-Cas9_USER- <i>kirM</i> . ApraR	This study
pHR2	pGUSA21 deletion plasmid of <i>kirHVI</i> cloned with <i>ermE</i> * promoter between 1 kb flanking regions of the gene. ApraR	This study
pHR3	pGUSA21 deletion plasmid of <i>kirHIV</i> cloned with <i>ermE</i> * promoter between 1 kb flanking regions of the gene. 2.1 kb construct cloned from pCRISPR-Cas9 USER- <i>kirHIV</i> . ApraR	This study
pHR4	pGUSA21 deletion plasmid of <i>kirHV</i> cloned with <i>ermE</i> * promoter between 1 kb flanking regions of the gene. 2.1 kb construct cloned from pCRISPR-Cas9_USER- <i>kirHV</i> . ApraR	This study
pHR5	pGUSA21 deletion plasmid of <i>kirN</i> cloned with <i>ermE</i> * promoter between 1 kb flanking regions of the gene. 2.1 kb construct cloned from pCRISPR-Cas9 USER- <i>kirN</i> . ApraR	This study
pTL-kirOI	1.2 kb flanking regions left and right of <i>kirOI</i> cloned in pA18mob. ApraR	This study
pTL-kirOI-thio	pTL-kirOI cloned with thiostrepton resistance cassette	This study

Source	Description/Genotype	Reference
	inserted in XbaI site. ApraR, ThioR	
pDW- <i>kirOII</i>	2 kb flanking regions left and right of <i>kirOII</i> cloned in pA18mob. ApraR	This study
pDW- <i>kirOII</i> - thio	pDW- <i>kirOII</i> cloned with thiostrepton resistance cassette inserted in the XbaI site. ApraR, ThioR	This study
pJet1.2-kirM	pJet1.2/blunt with kirM cloned in the MCS. AmpR	This study
pJet1.2-kirHVI	pJet1.2/blunt with kirHVI cloned in the MCS. AmpR	This study
pJet1.2-kirOI	pJet1.2/blunt with kirOI cloned in the MCS. AmpR	This study
pJet1.2-kirOII	pJet1.2/blunt with kirOII cloned in the MCS. AmpR	This study
pJet1.2-kirN	pJet1.2/blunt with kirN cloned in the MCS. AmpR	This study
pJet1.2- <i>kirN+HVI</i>	pJet1.2/blunt with <i>kirN+HVI</i> cloned in the MCS. AmpR	This study
pGM1190- kirOI	pGM1190 with <i>kirOI</i> cloned in HindIII + EcoRI site	This study
pRM4-kirM	pRM4 with <i>kirM</i> cloned in NdeI + HindIII site	This study
pRM4-kirHVI	pRM4 with <i>kirHVI</i> cloned in NdeI + HindIII site	This study
pRM4-kirOII	pRM4 with kirOII cloned in NheI + HindIII site	This study
pRM4-kirN	pRM4 with of <i>kirN</i> cloned in NdeI + HindIII site	This study
pRM4- <i>kirN+HVI</i>	pRM4 with <i>kirN+kirHVI</i> cloned in NdeI + HindIII site	This study

ID	Primer name	PCR program		
	kirM, kirN, kirHI	V, and <i>kirHV</i> inactivation mutants		
KP1	kirM_pGUS_left_FW	CTGCAGACGCGTCGACGTCAAGC GACGAGGAGCTGGCG	1. 98°C, 0:30 min 2. 98°C, 0:10 min 3. 73°C, 0:30 min	
KP2	kirM_pGUS_left_RV	ATTACCCTGTTATCCCTAGTTAGT ACGCGGGCCCCAGG	4. 72°C, 1:00 min 5. 72°C, 5:00 min (Steps 2-4 × 34)	
KP3	kirN_pGUS_left_FW	GGAGCTCGAATTCGAAGCTTCTG CAGACGCGTCGACGTCATATGCG ACCCCGACCAGGA	1. 98°C, 0:30 min 2. 98°C, 0:10 min 3. 75°C, 0:30 min	
KP4	kirN_pGUS_right_RV	GCGGGAAGCAGTGATAAGCATT ACCCTGTTATCCCTAGTTCTAGA ATCTCCGACGACGCGT	4. 72°C, 1:00 min 5. 72°C, 5:00 min (Steps 2-4 × 34)	
KP5	kirHIV_pGUS_left_FW	GCAGACGCGTCGACGTCACTGCT CAAGTACTTCGACTCGAC	1. 98°C, 0:30 min 2. 98°C, 0:10 min 3. 70°C, 0:30 min	
KP6	kirHIV_pGUS_right_RV	ATTACCCTGTTATCCCTAGTTTGA CCAGCGCCAGTTGTG	4. 72°C, 1:00 min 5. 72°C, 5:00 min (Steps 2-4 × 34)	
KP7	kirHV_pGUS_left_FW	CTGCAGACGCGTCGACGTCAGCT CAGCTTCGCCGC	1. 98°C, 0:30 min 2. 98°C, 0:10 min 3. 73°C, 0:30 min 4. 72°C, 1:00 min 5. 72°C, 5:00 min (Steps 2-4 × 34)	
KP8	kirHV_pGUS_right_RV	ATTACCCTGTTATCCCTAGTTGA CGATGTCGGGATCCTCCC		
	kirHV	<i>I</i> inactivation mutant		
KP9	kirHVI_pGUS_left_FW	GACGCGTCGACGTCACCGGAGTC GTGCTG	1. 98°C, 0:30 min 2. 98°C, 0:10 min 3. 72°C, 0:30 min	
KP10	kirHVI_pGUS_left_RV	GTCAAGATCGACCGCTTGTTTCC CTTCCCTG	4. 72°C, 0:30 min 5. 72°C, 5:00 min (Steps 2-4 × 34)	
KP11	kirHVI_pGUS_ermE_FW	CTACAGGGAAGGGAAACAAGCG GTCGATCTTGACG	1. 98°C, 0:30 min 2. 98°C, 0:10 min 3. 74°C, 0:10 min	
KP12	kirHVI_pGUS_ermE_RV	CGACGGGCGGCTCGCCGTCGATC CTACCAA	5. 74°C, 0.10 min 4. 72°C, 1:00 min 5. 72°C, 5:00 min (Steps 2-4 × 34)	
KP13	kirHVI_pGUS_right_FW	GGTAGGATCGACGGCGAGCCGC CCGTCG	1. 98°C, 0:30 min 2. 98°C, 0:10 min 3. 75°C, 0:30 min	
KP14	kirHVI_pGUS_right_RV	ATTACCCTGTTATCCCTAGTTGG ACGCGACCAGGCCGC	4. 72°C, 0:30 min 5. 72°C, 5:00 min (Steps 2-4 × 34)	

Table S2: Primers used in this study

ID	Primer name	PCR program							
kirOI and kirOII inactivation mutants									
KP15	11dOxy5	AACTGCAGTCAACATCACCTACG ACC							
KP16	11dOxy3	AATCTAGACTCGTCGTAGCCGGT G							
KP17	1rdOxy5	AATCTAGAGTCGGCCAGCAACTG G	1. 94°C, 2:00 min 2. 94°C, 1:15 min 3. 60°C, 1:30 min						
KP18	1rdOxy3	AAGAATTCGAACACGTCGATGTG CG	4. 72°C, 1:30 min 5. 72°C, 5:00 min (Stans 2.4 × 20)						
KP19	thio-up	ACTCTAGATCACTGACGAATCGA GGTCGAGGA	(Steps 2-4 × 30)						
KP20	thio-low	AATCTAGAGGCGAATACTTCATA TGCGGGGAT							
KP21	leftOIIeco5	GAATTCGTGCCAGGAGGTGATCC	1.04°C 2:00 min						
KP22	leftOIIxba3	TCTAGACTCGACGTCCGTCCAAT C	2. 94°C, 1:15 min 3. 60°C, 1:30 min						
KP23	rightOIIxba5	TCTAGAGGCCCGCGCTTCCTGAA AG	4. 72°C, 2:00 min 5. 72°C, 5:00 min (Steps 2.4 × 30)						
KP24	rightOIIhind3	AAGCTTCAGCGCGAACTGCGTCG	(Steps 2-4 × 30)						
	Com	plementation plasmids							
KP27	kirN_NdeI_FW	AAACATATGCAAGACATCATCGA CGCCG							
KP28	kirN_HindIII_RV	AAAAAGCTTTCATTTGTTTCCCTT CCCTGTAGG							
KP29	kirM_NdeI_FW	AAACATATGAGCCAACCCGATGT GATGACC							
KP30	kirM_HindIII_RV	AAAAAGCTTTCAGACTCGGACGG CGAC	1 0000 0 20						
KP31	kirHVI_NdeI_FW	AAACATATGACCGACGAAGACC TCGTCACG	2. 98°C, 0:30 min 2. 98°C, 0:10 min 3. 60°C, 0:30 min						
KP32	kirHVI_HindIII_RV	AAAAAGCTTTCAACCGGCGCGCT CGG	4. 72°C, * 5. 72°C, 5:00 min (Stops 2.4 × 34)						
КР33	kirOI_ HindIII_pGM1190_FW	AAAAAGCTTGTGTCCGAGACCGT TCGTCCCG	(Steps 2-4 × 34)						
KP34	kirOI_ EcoRI_pGM1190_RV	AAAGAATTCTCACCATGTCACCG GCAGCTCG							
KP35	kirOII_NheI_FW	AAAGCTAGCGTGACCGGAACATT CGATTGGACG							
KP36	kirOII_HindIII_RV	AAAAAGCTTTCACACGAGCTGGA CGGGCAG							
	Contro	ol PCRs and sequencing							
KP37	kirLEFT_ pGUS_seq_FW	GCTCGAATTCGAAGCTTCTGCAG	1. 95°C, 3:00 min 2. 95°C, 0:30 min 3. 61°C, 0:30 min						
KP38	kirRIGHT_ pGUS_seq_RV	GATAAGCATTACCCTGTTATCCC TAG	4. 72°C, 2:15 min 5. 72°C, 5:00 min (Steps 2-4 × 40)						
KP39	apra-up	AGCTTCTCAACCTTGG	1. 94°C, 2:00 min 2. 94°C, 1:00 min 3. 50°C, 1:00 min						
KP40	apra-low	TCCGCCAAGGCAAAGC	4. 72°C, 1:00 min 5. 72°C, 5:00 min (Steps 2-4 × 30)						

ID	Primer name	Sequence (5' - 3')	PCR program
KP41	oxy1	GCAAAGGAGAGCGTTGTGTC	
KP42	oxy2	TGGTCTCCGTTCACCATGTC	1. 94°C, 2:00 min 2. 94°C, 1:00 min
KP43	kirOII_check_FW	GCGATTGGGGGATCTTGGTGA	3. 60°C, 1:00 min 4. 72°C, 1:10 min 5. 72°C, 5:00 min
KP44	kirOII_check_RV	ATGGAAACGGTGGTCACACG	(Steps $2-4 \times 30$)
KP45	kirM_int-500bp_FW	CCACCCTGTCCGGTCGCGG	
KP46	kirM_int-500bp_RV	GCATCGTCCGCAGCCGCTG	
KP47	kirN_int-500bp_FW	GTGTTCGCGTGGAACCCCGG	
KP48	kirN_int-500bp_RV	GGGATCCTCCCCACCCGTG	
KP49	kirHIV_int-500bp_FW	CCTGGTGGAGGCCGACAACG	
KP50	kirHIV_int-500bp_RV	CGCCTCGGCGAGTTCGGCG	1 0505 2 00
KP51	kirHV_int-500bp_FW	GCATGAACTCCGTGCCCCAGG	1. 95°C, 3:00 min 2. 95°C, 0:30 min 3. 64°C, 0:30 min
KP52	kirHV_int-500bp_RV	GCCGCCCGGTCAGTGCACG	4. 72°C, 2:30 min 5. 72°C, 5:00 min
KP53	kirHVI_int-500bp_FW	TGGAGGAGTTCCTGGACCCCG	$(\text{Steps } 2-4 \times 40)$
KP54	kirHVI_int-500bp_RV	CGCCGTGATACAGACCGCCG	
KP55	kirOI_int-500bp_FW	CGAGGAAGGCGGACCCACCG	
KP56	kirOI_int-500bp_RV	GCGTCTCCCTCGGTGAAGTGGTG	
KP57	kirOII_int-500bp_FW	GACGGACCTCGTCGCCGGG	
KP58	kirOII_int-500bp_RV	GAGCTGGATCTGGCCGTCCTTG	
KP59	pJet_check_FW	CGACTCACTATAGGGAGAGCGG C	
KP60	pJet_check_RV	AAGAACATCGATTTTCCATGGCA G	1 0505 2 00
KP61	pGM1190_seq_FW	CACGCGGAACGTCCGGG	1. 95°C, 3:00 min 2. 95°C, 0:30 min 3. 60°C, 0:30 min
KP62	pGM1190_seq_RV	CCGCTGAAACTGTTGAAAGTTGT TTAGC	4. 72°C, ** 5. 72°C, 5:00 min
KP63	pRM4_seq_FW	CAGTCACGACGTTGTAAAACGAC GG	(Steps 2-4 × 40)
KP64	pRM4_seq_RV	GGCACCGCGATGCTGTTGTG	

* 0:15 min for *kirHV*. 0:30 min for *kirM/kirHIV/kirHVI*. 0:45 min for *kirN/kirOI/kirOII*. ** 1:00 min for *kirM/kirHVI*. 1:30 min for *kirN/kirOI/kirOII*.

Compound	RT (min)	m/z for [M-H⁻]	Δm (ppm)	Chemical Formula	MS/MS fragment (m/z [M-H ⁻])	MS/MS fragment (m/z [M+H ⁺])
Kirromycin (1)*	12.2	795.4110	-2.6	$C_{43}H_{60}N_2O_{12}$	499.2451	501.2578
20- <i>O</i> -demethyl-kirromycin (2 , <i>\Delta kirM</i>)	11.2	781.3953	0	$C_{42}H_{58}N_2O_{12}$	485.2292	487.2292
30-deoxy-kirromycin (3 , Δ <i>kirHVI</i>)	12.3	779.4177	2.3	C43H60N2O11	499.2457	501.2586
5,6-dihydro-kirromycin (4, Δ<i>kirOI</i>)	13.6	797.4286	1.6	$C_{43}H_{62}N_2O_{12}$	501.2634	503.2768
30-hydroxy-5,6-dehydro-1- <i>N</i> - demethyl-16-deoxy- kirrothricin (5 , Δ <i>kirOII</i>)	13.5	763.4213	-2.7	$C_{43}H_{60}N_2O_{10}$	467.2548	469.2698

Table S3: HPLC-ESI-HRMS data for kirromycin and derivatives

* $\Delta kirN(kirHVI$ -complemented), $\Delta kirHIV$, and $\Delta kirHV$ had similar chromatograms and MS profiles to those of the wild type kirromycin (1), albeit production was lowered in $\Delta kirN(kirHVI$ -complemented).

Table S4: ¹H NMR spectra and assignments

¹H nuclear magnetic resonance (NMR) (**A**) and ¹³C NMR data (**B**) for 30-deoxykirromycin (**3**, kirromycin- $\Delta kirHVI$), 5,6-dihydro-kirromycin (**4**, kirromycin- $\Delta kirOI$), and 30-hydroxy-5,6-dehydro-1-*N*-demethyl-16-deoxy-kirrothricin (**5**, kirromycin- $\Delta kirOII$) in CD₃OD at resonance frequency ¹⁾600 resp. 150.8 MHz or ²⁾700 resp. 176.1 MHz. The chemical shifts, obtained from NMR spectroscopy analysis, are represented by Δ ppm

	30-deoxy-kirromycin		5,6-dihydro-kirromycin		30-hydroxy-5,6-dehydro-1-N-demethyl-16-	
Position	$\delta_{\rm H}$ [ppm] (Integral, Type, J in Hz) ²	δ _C [ppm]	$\delta_{\rm H}$ [ppm] (Integral, Type, J in Hz) ¹	δ _C [ppm]	$\delta_{\rm H}$ [ppm] (Integral, Type, J in Hz) ²⁾	δ _C [ppm]
1		-	-	-	-	-
2		164.5	-	n.d.	-	164.5
3	-	112.5	-	79.5 ⁰⁰	-	112.72 112.64
4	-	169.4	-	169.8	-	169.18, 169.01
5	6.11, 1H, s, br	102.1	2.54, 1H, dd, $J = 7.0$ (br)	37.3 (br) [#]	6.12, 1H, d, <i>J</i> = 7.4	102.0
6	7.39, 1H, br	137.8	3.42, 1H, m, $J = 7.0$ (br)	37.9	7.40, 1H, d, <i>J</i> = 7.4	137.8
7	-	198.9	-	n.d.	-	198.55, 198.63
8	-	141.4	-	138.800	-	142.9
9	6.94, 1H, br	142.5	6.20, m	134.300	6.97, 1H, ddd, <i>J</i> = 11.4, 5.3, 1.2	143.3
10	6.69, 1H, b, dd, <i>J</i> = 12.5, 12.5	129.4	$6.56, m^{00}$	129.3	6.73, 1H, dd, <i>J</i> = 11.4, 14.7	129.5
11	6.07, 1H, dd, <i>J</i> = 15.1, 7.2	137.0	6.56, m ⁰⁰	137.200	6.67, 1H, d, <i>J</i> = 14.7, 10.7	142.3
12	6.45, 1H, dd, <i>J</i> = 15.0, 11.0	133.6	6.40, 1H, <i>J</i> = 11.5, 15.0	133.9 (br)	6.61, 1H, dd, <i>J</i> = 14.7, 10.7	142.5
13	6.52, 1H, m (with 24)	136.1	5.99, m	135.1 (br)	6.46, 1H, dd, <i>J</i> = 10.5, 5.9 6.44, 1H, dd, <i>J</i> = 10.6, 5.7	138.7 134.0
14	4.31, 1H, m	81.6	4.25, 1H, dd, <i>J</i> = 12.5	81.8	6.37, 0.6 H, dd, <i>J</i> = 14.7, 10.5	132.1
15	4.32, 1H, m	75.0	4.28, 1H, dd, <i>J</i> = 12.5	75.0	5.90, 0.4 H, dt, $J = 14.9$, 7.4; 6.26, 0.6H dd, $J = 14.8$, 10.4 (also 6.21, dd, $J = 11.3$, 11.3, 5.67, m,; 6.78, m)	136.02 133.50 (131.1, 132.2, 133.5)
16	4.19, 1H, dd, <i>J</i> = 4.4	74.0	4.17, 1H, dd, <i>J</i> = 4.4	74.0	2.25, m 2.40, m 2.43, m	40.0, 40.7, 34.8

	30-deoxy-kirromycin		5,6-dihydro-kirromycin		30-hydroxy-5,6-dehydro-1-N-demethyl-16-	
	(3, from $\Delta kirHVI$)		($\underline{4}$, from $\Delta kirOI$)		deoxy-kirrothricin (<u>5</u> , from Δ <i>kirOII</i>)	
Position	$\delta_{\rm H}$ [ppm] (Integral, Type, J in Hz) ²⁾	δ _C [ppm]	δH [ppm] (Integral, Type, J in Hz)1)	δ _C [ppm]	$\delta_{\rm H}$ [ppm] (Integral, Type, J in Hz) ²⁾	$\delta_{\rm C}$ [ppm]
17	3.71, 1H, dd, 7.3, 4.1	85.0	3.68, 1H, dd, <i>J</i> = 4.0, 7.5	84.9	4.06, 1H, m	70.9
18	-	-	-	-	-	-
19	2.20, 1H, m	36.8	2.16, 1H, ddq, <i>J</i> = 2.0, 7.0	36.8	1.69, 1H, m	40.8
20	3.34, 1H, d, 9.2	91.9	3.32, s	91.9	3.46, 1H, d, <i>J</i> = 10.1	90.0
21	-	136.1	-	136.0	-	136.7
22	5.69, 1H, dd, $J = 15.0, 6.0$	130.8	5.96, 1H, d (br), <i>J</i> = 10	130.9	5.99, 1H, d, <i>J</i> = 10.5	130.4
23	6.56, 1H, dd, <i>J</i> = 15.2, 11.0	128.0	6.49, 1H, m, <i>J</i> = 11.0, 16.0	128.3	6.51, 1H, dd, <i>J</i> = 15.2, 11.0	128.3
24	6.53, 1H, dd, <i>J</i> = 15.2, 11.0	128.2	5.67, 1H, m, <i>J</i> = 6.0, 16.0	131.0	5.66, 1H, m (with 35)	130.6
25a	3.90, 1H, dd, <i>J</i> = 15.8, 5.8	42.0	3.86, 1H, dd, <i>J</i> = 6.5, 15.0	42.0	3.89, 1H, dd, <i>J</i> = 15.8, 5.5	42.1
25b	3.95, 1H, dd, <i>J</i> = 15.8, 5.9		3.93, 1H, dd, <i>J</i> = 6.5, 15.0	42.0	3.95, 1H, dd, <i>J</i> = 15.8, 6.7	42.1
26-N	-	-	-	-	-	-
27	-	176.9	-	177.9	-	177.9
28	2.39, 1H, dd, <i>J</i> = 11.1, 4.2	58.3	2.82, 1H, dd, <i>J</i> = 4.0, 11.0	52.5	2.84, 1H, dd, <i>J</i> = 11.0, 4.5	52.5
29	-	99.5	-	101.0	-	101.0
30	1.95, 1H, dd, <i>J</i> = 12.6, 4.6 1.48, 1H, dd, <i>J</i> = 12.6, 12.5	38.3	3.65, 1H, d, <i>J</i> = 4.0	71.4	3.68, 1H, d, <i>J</i> = 3.6	71.4
31	3.74, 1H, d, <i>J</i> = 12.5, 4.6	72.6	3.57, 1H, d, <i>J</i> = 4.0	74.0	3.60, 1H, d, <i>J</i> = 3.6	74.0
32	-	40.3	-	40.0	-	39.9
33	4.17, 1H, d, <i>J</i> = 6.0	77.7	4.21, 1H, d, <i>J</i> = 6.0	77.3	4.24, 1H, t, <i>J</i> = 5.8	77.3
34-0	-	-	-	-		
35	5.64, 1H, m (with 24)	130.3	5.62, 1H, dd, <i>J</i> = 6.0, 15.0	130.5	5.66, 1H, m (with 24)	130.6
36	6.55, 1H, m (with 24)	127.9	6.54, m	127.7	6.58, 1H, dd, <i>J</i> = 14.8, 11.8	127.7
37	6.01, 1H, ddd, <i>J</i> = 10.8, 10.8,	130.4	5.99, m	130.6	6.01, 1H, ddd, <i>J</i> = 10.8, 10.8, 1.5	130.5

	30-deoxy-kirromycin (3 , from Δ <i>kirHVI</i>)		5,6-dihydro-kirromycin (4, from $\Delta kirOI$)		30-hydroxy-5,6-dehydro-1-N-demethyl-16- deoxy-kirrothricin (5, from Δ <i>kirOII</i>)	
Position	$\delta_{\rm H}$ [ppm] (Integral, Type, J in Hz) ²⁾	δ _C [ppm]	$\delta_{\rm H}$ [ppm] (Integral, Type, J in Hz) ¹⁾	δ _C [ppm]	$\delta_{\rm H}$ [ppm] (Integral, Type, J in Hz) ²⁾	δ _C [ppm]
	1.0					
38	5.49, 1H, dq, <i>J</i> = 11.0, 6.9	126.5	5.44, 1H, dq, $J = 7.0, 11.0$	126.4	5.49, 1H, dq, $J = 11.0, 7.0$	126.4
39	1.77, 3H, dd, <i>J</i> = 7.1, 1.5	13.7	1.73, 3H, dd, <i>J</i> = 2.0, 7.0	13.7	1.77, 3H, dm, <i>J</i> = 7.0	13.7
40	2.01, 3H,	11.7	1.95, s (br)	14.4 (br)	2.00, 2.04, 3H, d, <i>J</i> = 0.9	11.61, 11.68
41	0.84, 3H, d, J = 6.8	13.9	0.81, 1H, d, <i>J</i> = 7.0	13.9	0.69, 3H, d, <i>J</i> = 7.0	9.49, 9.57
42	3.18, 3H, s	56.2	3.15, 3H, s (sh)	56.2	3.17, 3H, s	56.32
43	1.69, 3H, s	11.2	1.66, 3H, s (sh)	11.2	1.63, 3H, s	11.0 (sh)
44	1.73, 2H, m	21.6	1.70, m	21.1	1.73, 2H, m	21.1
45	0.95, 3H, t, <i>J</i> = 7.3	12.4	0.92, 3H, t, <i>J</i> = 7.5	12.3	0.95, 3H, t, <i>J</i> = 7.4	12.3
46	0.77, 3H, s	12.4	0.89, 3H, s ⁰⁰	15.9	0.92, 3H, s	15.9
47	0.94, 3H, s	23.0	0.89, 3H, s ⁰⁰	24.6	0.92, 3H, s	24.6

*: ¹³C shift determined by HSQC or HMBC. [#]: assigned due to HSQC correlations. ⁰⁰: not unambiguously assigned due to tautomerization,

missing 2D correlations, or overlaying signals. n.d.: not detected. n.a.: not assigned.

Figure S1-I – S1-II: UV-VIS profiles of $\Delta kirHIV$ and $\Delta kirHV$ mutants

The $\Delta kirHIV$ and $\Delta kirHV$ mutants were grown in parallel with *Streptomyces collinus* Tü 365 (wild type) in kirromycin production medium and extracted with ethyl acetate. The extracts were dried, dissolved in methanol, and analysed using HPLC-ESI-HRMS. The recorded UV profiles of $\Delta kirHIV$ (I) and $\Delta kirHV$ (II) (black chromatograms) were similar to those of the wild type (red chromatograms). These results indicate that the two genes *kirHIV* and *kirHV* are not directly involved in the biosynthesis of kirromycin. In the case of $\Delta kirHV$ (II), we suspect that the lower intensity of the peak at 12.3 min (compared to the wild type) could be explained from almost complete conversion of the pathway intermediate into kirromycin.

Figure S2-I – S2-V: MS/MS spectra of kirromycin and derivatives

MS/MS spectra for (I) kirromycin (1), (II) 20-*O*-demethyl-kirromycin (2), (III) 30deoxy-kirromycin (3), (IV) 5,6-dihydro-kirromycin (4), and (V) 30-hydroxy-5,6dehydro-1-*N*-demethyl-16-deoxy-kirrothricin (5). Recorded in negative mode (ESI-) with higher-energy collisional dissociation (HCD) of 25 eV.

(I)

(III)

(IV)

(V)

Figure S3-I – S3-VI: HPLC-ESI-UV-Vis profiles of the wild type (WT), Δkir mutants, and complemented mutants

UV-Vis profiles of *Streptomyces collinus* Tü 365 (WT) compared to mutants (I) $\Delta kirM$, (II) $\Delta kirHVI$, (III) $\Delta kirOI$, and, (IV) $\Delta kirOII$, along with their respective complementations. The $\Delta kirN$ mutant and its single (*kirHVI*) and double (*kirN*+*HVI*) complementations are shown in (V) and (VI), respectively.

(I)

(II)

(III)

(IV)

(V)

Figure S4-I – S4-III: ¹H NMR and ¹³C NMR data and assignment for 30-deoxy-kirromycin (3), 5,6-dihydro-kirromycin (4), and 30-hydroxy-5,6-dehydro-1-*N*-demethyl-16-deoxy-kirrothricin (5)

(A) ¹H NMR and (B) ¹³C NMR of (I) 30-deoxy-kirromycin (3), (II) 5,6-dihydrokirromycin (4), and (III) 30-hydroxy-5,6-dehydro-1-*N*-demethyl-16-deoxykirrothricin (5) (CD₃OD, 298 K). Resonance frequency ¹⁾ 600 resp. 150.8 MHz, ²⁾700 resp. 176.1 MHz.

(IA) ¹H NMR spectrum of 3

(IB) ¹³C NMR spectrum of 3

(IIA) ¹H NMR spectrum of 4

(IIB) ¹³C NMR spectrum of 4

(IIIA) ¹H NMR spectrum of 5

(IIIB) ¹³C NMR spectrum of 5

Figure S5-I – S5-III: 2D-NMR of 30-deoxy-kirromycin (3), 5,6dihydro-kirromycin (4), and 30-hydroxy-5,6-dehydro-1-*N*-demethyl-16-deoxy-kirrothricin (5)

(I) 30-deoxy-kirromycin (3)

Homonuclear Correlation Spectroscopy (COSY) underlined the partial structure for the 30-deoxygenated pyran ring in 30-deoxy-kirromycin (**3**) (**IA** and **ID**), which was isolated from the $\Delta kirHVI$ mutant. It lacked the C-30-hydroxy group as had been found previously for the heneicomycin analogue⁹. The signal for H-30_a (δ 1.48) showed strong cross correlation with the H-30_b (δ 1.95), and both exhibited further correlations with H-31 (δ 3.74). (**IB**) The Heteronuclear Single Quantum Correlation (HSQC) gave evidence to the CH₂-connectivity for both H-30_a and H-30_b connection attached to one carbon atom (C-30, (d_C = 38.3). (**IC**) The Heteronuclear Multiple Bond Correlation (HMBC) spectrum showed correlations between H-30_a (δ 1.48), H-30_b (δ 1.95) and C-29 (δ 99.5) and corroborated the 30-deoxy ring in **3**.

Formula S5-I Selected COSY (double dashed arrowed), TOCSY (dashed line), and HMBC (single arrowed) correlations for 30-deoxy-kirromycin (3).

(IA) H-H-correlation (COSY) spectrum of 30-deoxy-kirromycin (3)

(IC) Multiple bond CH-correlation (HMBC) spec. of 30-deoxy-kirromycin (3)

(ID) Key correlations highlighted for 30-deoxy-kirromycin (3)

(II) 5,6-dihydro-kirromycin (4)

(IIA) In addition to the one-dimensional ¹H NMR spectra, the COSY spectrum gave evidence for the two additional methylene groups 5-H₂ (δ 2.54, t, broad) and 6-H₂ (δ 3.42, t, broad) with strong correlation signals (IIA and IID) for the 5,6-dihydro-kirromycin (4), isolated from the $\Delta kirOI$ mutant. (IIB) The HSQC gave evidence for the C-H connectivity. (IIC) The HMBC spectrum showed significant correlations of the intact kirromycin triene conjugated double bonds, e.g. 22-H (δ 5.96) with C-19 ($\delta_{\rm C}$ 91.9) and C-43 ($\delta_{\rm C}$ 11.2) and C-23 ($\delta_{\rm C}$ 128.3) and, in addition, the correlation of 33-H (δ 4.21) with C-36 ($\delta_{\rm C}$ 127.7).

Formula S5-II Full assignment of ¹H and ¹³C NMR data as example and selected COSY (double dashed arrowed) and HMBC (single arrowed) correlations for 5,6-dihydro-kirromycin (4).

(IIA) H-H-correlation (COSY) spectrum of 5,6-dihydro-kirromycin (4)

(IIB) CH-correlation (HSQC) spectrum of 5,6-dihydro-kirromycin (4)

(IIC) Multiple bond CH-correlation (HMBC) spec. of 5,6-dihydro-kirromycin (4)

(IID) Key correlations highlighted for 5,6-dihydro-kirromycin (4)

(III) 30-hydroxy-5,6-dehydro-1-N-demethyl-16-deoxy-kirrothricin (5)

COSY and Total Correlated Spectroscopy (TOCSY) spectra established the partial structure for the disrupted furan part (**IIIA**) in the 30-hydroxy-5,6-dehydro-1-*N*-demethyl-16-deoxy-kirrothricin (**5**) derivative isolated from the $\Delta kirOII$ mutant. H-17 (δ 4.06) exhibited correlations with both H-19 (δ 1.69) and H-16 (δ 2.40, 2.43, δ 2.25). H-16 exhibited further correlations to an olefinic proton H-15 (δ 5.90, 6.26), which confirmed the location of the extra double bond. (**II**) The HSQC gave evidence to the C-H connectivity. (**III**) The HMBC spectrum showed correlations between H-17 (δ 4.06), CH₃-41, C-16 (δ 40.0) and C-20 (δ 90.0), and corroborated the final structure of **5**. The new kirrothricin-like tetraene fragment was readily assigned from the HMBC-correlations of the CH-groups of C-9 to C-15 (see Formula **S5-III**). The red shifted UV-Vis spectrum for **5** could be explained by the elongation of the double bond chain.

Formula S5-III Selected COSY (double dashed arrowed), TOCSY (dashed line), and HMBC (single arrowed) correlations for 30-hydroxy-5,6-dehydro-1-*N*-demethyl-16-deoxy-kirrothricin (**5**).

(IIIA) H-H-correlation (COSY) spectrum of 30-hydroxy-5,6-dehydro-1-*N*-demethyl-16-deoxy-kirrothricin (5)

(IIIB) CH-correlation (HSQC) spectrum of 30-hydroxy-5,6-dehydro-1-*N*-demethyl-16-deoxy-kirrothricin (5)

(IIID) Key correlations highlighted for 30-hydroxy-5,6-dehydro-1-*N*-demethyl-16-deoxy-kirrothricin (5)

HMBC-NMR experiment (CD₃OD, 700 MHz) showing key correlation of the new 16-CH₂-group ($\delta_{\rm H}$ = 2.40, 2.43 ppm) with C-13, C-16, C-17 within the kirrothricin-type carbon chain of 30-hydroxy-5,6-dehydro-1-*N*-demethyl-16-deoxy-kirrothricin (5).

Figure S6-I – S6-II: Verification of Δkir mutants by control PCRs

Control PCRs on genomic DNA (gDNA) of $\Delta kirM$, $\Delta kirHVI$, $\Delta kirOI$, $\Delta kirOII$, $\Delta kirHIV$, $\Delta kirHV$, and $\Delta kirN$ were carried out to confirm successful double crossover (II). The use of primers (KP43 – KP56) targeting an internal 500 bp region of each gene in question (I) allowed for verification of correct mutants by the absence of bands (gene replaced by *ermE** promoter or thiostrepton resistance cassette). *Streptomyces collinus* Tü 365 (positive) (1) and water (negative) (2) controls were included for each primer pair. GeneRulerTM 1 kb DNA ladder (Fisher Scientific) (L) was used as marker.

Figure S7-I – S7-III: Putative enzymatic reactions catalysed by tailoring enzymes KirHVI, KirOI, and KirOII

Genetic inactivation studies and NMR analysis enabled the prediction of the putative enzymatic reactions catalysed by the phytanoyl-CoA dioxygenase KirHVI (encoded by *kirHVI*) (I) and the two P450-dependent hydroxylases KirOI and KirOII (encoded by *kirOI* (II) and *kirOII* (III)).

(I)

Based on its similarity to the hydroxylase Fum3p involved in fumonisin B biosynthesis¹⁰, KirHVI is postulated to induce α -ketoglutarate (α -KG)/Fe(II)-dependent hydroxylation at the C-30 position in the sugar-like moiety in kirromycin.

(II)

The cytochrome P450-dependent hydroxylase KirOI catalyses hydroxylation of either C-5 or C-6 in the δ -lactam ring of the kirromycin biosynthetic intermediate (i). The hydroxylated product from the $\Delta kirOI$ mutant was not be detected in either the culture broth or the solvent extract. The intermediate can then undergo dehydration, which might be facilitated by a yet uncharacterised enzyme or an in *trans*-acting dehydrogenase (DH), to form the double bond between C-5 and C-6 (ii). The product ii bears the stable pyridone ring with tautomeric equilibrium and aromatic character, presumably responsible for the stability of this dehydrated product.

(III)

Our data suggests KirOII to be involved in formation of the tetrahydrofuran (THF) ring in the centre of the kirromycin molecule.

In case of kirromycin biosynthesis, the PKS-derived precursor molecule of kirromycin could undergo dual CH₂-hydroxylation at C-14 and C-16, possibly catalysed by the cytochrome P450 monooxygenase KirOII. The hypothesis is strengthened from the sequence comparison of KirOII to AurH (31 % identity and 49 % similarity). The cytochrome P450 monooxygenase AurH has been found to be involved in formation of the THF ring in the antifungal compound aureothin produced by *Streptomyces thioluteus*^{11,12} through the introduction of two C-O bonds. In a similar fashion, KirOII might catalyse the following step, including a classical ring-closing dehydration reaction under formation of the THF ring moiety in kirromycin. This conversion is favoured in kirromycin because of increased nucleophilicity of the C-17-hydroxyl group as a result of the hydrogen bonding in a cyclic 6-membered ring including the C-20 carbonyl group. From the $\Delta kirOII$ mutant, the tetraene product, named 30-hydroxy-5,6-dehydro-1-*N*-demethyl-16-deoxy-kirrothricin (**5**), is isolated from the culture broth due to chemically favoured dehydration to the stable extended conjugated double bond system between C-6 and C-15.

While this is a plausible enzymatic reaction, the scheme currently lacks an additional enzyme responsible for catalysing the reduction of C=O to C-OH at the C-20 position in kirromycin. Such an enzyme remains to be identified and characterized.

Supplementary references

- 1. MacNeil, D. J. *et al.* Analysis of *Streptomyces avermitilis* genes required for avermectin biosynthesis utilizing a novel integration vector. *Gene* **111**, 61–68 (1992).
- Wolf, H. & Zähner, H. Stoffwechselprodukte von Mikroorganismen. Arch. Mikrobiol. 83, 147– 154 (1972).
- 3. Weber, T. *et al.* Molecular Analysis of the Kirromycin Biosynthetic Gene Cluster Revealed β -Alanine as Precursor of the Pyridone Moiety. *Chem. Biol.* **15**, 175–188 (2008).
- Myronovskyi, M., Welle, E., Fedorenko, V. & Luzhetskyy, A. Beta-glucuronidase as a sensitive and versatile reporter in actinomycetes. *Appl. Environ. Microbiol.* 77, 5370–5383 (2011).
- Menges, R., Muth, G., Wohlleben, W. & Stegmann, E. The ABC transporter Tba of *Amycolatopsis balhimycina* is required for efficient export of the glycopeptide antibiotic balhimycin. *Appl. Microbiol. Biotechnol.* 77, 125–134 (2007).
- Muth, G., Wohlleben, W. & Puhler, A. The minimal replicon of the *Streptomyces ghanaensis* plasmid pSG5 identified by subcloning and Tn5 mutagenesis. *Mol. Gen. Genet.* 211, 424–429 (1988).
- Tong, Y., Charusanti, P., Zhang, L., Weber, T. & Lee, S. Y. CRISPR-Cas9 Based Engineering of Actinomycetal Genomes. *ACS Synth. Biol.* 4, 1020–1029 (2015).
- Tong, Y., Robertsen, H. L., Blin, K., Weber, T. & Lee, S. Y. in *Methods in Molecular Biology* 1671, 163–184 (2018).
- Frost, B. M., Valiant, M. E. & Dulaney, E. L. Antibacterial Activity of Heneicomycin. J. Antibiot. 32, 626–629 (1979).
- Ding, Y., Bojja, R. S. & Du, L. Fum3p, a 2-Ketoglutarate-Dependent Dioxygenase Required for C-5 Hydroxylation of Fumonisins in *Fusarium verticillioides*. *Appl. Environ. Microbiol.* 70, 1931–1934 (2004).
- He, J. & Hertweck, C. Iteration as Programmed Event during Polyketide Assembly; Molecular Analysis of the Aureothin Biosynthesis Gene Cluster. *Chem. Biol.* 10, 1225–1232 (2003).
- Richter, M. E. A., Traitcheva, N., Knüpfer, U. & Hertweck, C. Sequential Asymmetric Polyketide Heterocyclization Catalyzed by a Single Cytochrome P450 Monooxygenase (AurH). *Angew. Chemie* 120, 9004–9007 (2008).