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Figure 1: The action potentials waveforms are excluded from model fitting but are used to
derive voltage reset rules. (a-d) illustrate examples of the spike cutting and reset rule calculation from
two example neurons (a, b are from the Htr3a 474637203 neuron; c,d are from the Ctgf 512322162 neuron)
from two different transgenic lines. (a, ¢) All spikes from the noise 1 stimuli (Figure 2 of the main article)
are aligned to spike initiation. Here, different colors represent different spikes of one neuron (not different
transgenic lines). Dots represent spike initiation and termination found by minimizing the residuals from a
linear regression between pre- and post-spike voltage in a window 1 to 10 ms after spike initiation (b, d).
In the (GLIF>, GLIF,, and GLIF5 models, voltage reset is calculated by inserting the model voltage when
it reaches threshold into the equation defined by the line (Equations 5 of the main text, and 4, 9, 12 in
Supplementary Methods). (e) and (f) show distributions for slope, intercepts, and the spike cut length for
all neurons. Normalized histograms of the data are shown in the side panels. All neurons with an intercept
< 30 mV were globally excluded from the data set. (f) is a replicate of the figure shown in the main article
in Figure 3b.
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Figure 2: Resistance, Capacitance and amplitudes of after-spike currents are fit via linear
regression. (a) Two examples of subthreshold voltage epochs fit via linear regression. Top traces are from
the example cells shown in all figure examples (Top: Htr3a 474637203, Bottom: Ctgf 512322162). Injected
current trace shown in black, voltage of biological neuron recorded from repeated current injections are in
blue, voltage of model neuron red. Values of (b) resistance and capacitance and (c) the membrane time
constant 7 = RC and capacitance of all neurons fit to subthreshold data without the simultaneous fitting
of after-spike currents. (d) Comparison of resistance values obtained by fitting subthreshold data without
after-spike currents and supra-threshold data with the simultaneous fitting of after-spike currents. (e) Total
charge deposited by after-spike currents. In scatter plots and corresponding distributions, shades of blue
represent excitatory transgenic lines and red denote inhibitory transgenic lines. The thick black histograms
represent data from all transgenic lines together, the thick red histograms represent data from inhibitory
transgenic lines and the thick blue histogram represents data from excitatory transgenic lines. Stars denote
example neurons as described in the main article. Thg full list of colors corresponding to specific transgenic
lines can be found in Figure 2 of the main article. Any neuron containing a spike in the subthreshold noise
epoch of the training set was globally eliminated from the data set. (c) and (e) are shown in main article in
Figure 3c and 3d.
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Figure 3: The spiking component and voltage component of the threshold are incorporated into
higher level models. The spiking component of the threshold is defined by an exponential function fit to
the time between spikes and the voltage at spike initiation of the triple short square data set. Exponential
fitting of (a) Htr3a 474637203 and (b) Ctgf 512322162. Spiking in response to current pulses (left, with colors
representing different sweeps) and exponential fit (right). Black dots denote spike initiation. (c) shows the
fit amplitude, a, incorporated by the reset rule, ds;, and the decay constant, b, of all neurons with triple
square pulse data. All neurons with an 0 < a < 20mV or a 1/b > 0.1 s are excluded. (d) In the GLIF;
model the threshold is influenced by the voltage of the neuron. Parameters from equation 12 are plotted.
GLIFs models where, a,, < —50, or, b, < 0.1, are excluded. (¢) and (d) are shown in main article, Figure
3e and 3f.
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Figure 4: Relationship between aspects of spiking and model performance. In the main article,
we report that models fit inhibitory neural data better than excitatory neural data. We then report that
spike width and the number of spikes are important factors for predicting model performance whereas, spike
reproducibility is not (as accessed by a multiple linear regression). Here we plot the data used in the multiple
linear regression. (a) Plots the reciprocal of the average (average because the stimulus is repeated) number of
spikes in each training (noise 1) data set versus the performance (assessed via the explained variance ratio).
We used the reciprocal value because the non-reciprocal plot produces a quadratic-like output (b) and the
multiple linear regression requires linear relationships to be interpretable. (c) Spike cut length (as defined
in the ”Parameter fitting and distributions” section of the Supplementary Methods and Supplementary

Figure 1) versus the model performance of GLIF3. (d) Spike cut length fit standard error versus the model
performance of GLIF3.
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Figure 5: Parameters of the MLIN objective function were extracted from the data. A distribution
of voltages is created from the tailing end of the largest amplitude subthreshold square pulse available (top
panel). This distribution is then fit by a symmetrically decaying exponential (Supplementary Methods
equation 34) function denoted as expsymm in the plot legends. The width of the non-spiking bins is chosen
via a fit of the autocorrelation.
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Figure 6: Post-hoc Optimization of 6., improves explained variance. Explained variance summary
for GLIF models for all 645 neurons (black), all 283 inhibitory neurons (red) and all 362 excitatory neurons
(blue) for models with measured as opposed to post-hoc optimized 6.
values are lower than after post-hoc optimization shown in Supplementary Figure 8. Box plots display
median, and quartiles. Whiskers reach to 5% and 95% quantiles. Individual data points lie outside whiskers.
Brackets above plot denote significant difference between distributions assessed via a Wilcoxon sign ranked
test. P-values were corrected for the multiple comparison problem via the Benjamini-Hochberg procedure
including all statistical tests with all transgenic lines (family size = 190). A single asterisk (*) represents a

p-value < 0.05, a double asterisk (**) represents a p-value < 0.01.
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Figure 7: Resting potential and instantaneous threshold for biologically measured values and
post-hoc optimized models. In (a) absolute threshold is shown, in (b) threshold is in reference to the
resting membrane potential for the biologically measured threshold from the short square stimulus (Figure
2 in the main article). This figure is also shown as Figure 3a in the main article. (c¢) and (d) show the
similarity between threshold values before and after post-hoc optimization for absolute threshold (¢) and
relative threshold (d). (e), (f), (g), and (h) compare the biologically measured relative threshold versus the
relative threshold obtained by optimizing the 6, of (e) GLIFy, (f) GLIFs, (g), GLIF,, and (h) GLIF5.
Black lines represents unity. Shades of blue represent excitatory, transgenic lines, shades of red represent
inhibitory lines. The full list of colors corresponding to specific transgenic lines can be found in Figure 2 of
the main article. Normalized histograms of the data are shown in the side panels. The thick black histogram
represents data from all transgenic lines, the thick blue line represents all data from excitatory and the thick
red represents inhibitory lines. Stars denote example neurons shown throughout the manuscript.
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Figure 8: Different mechanisms improve model performance for inhibitory and excitatory neu-
rons. Explained variance summary for GLIF models for all 645 neurons (black), all 283 inhibitory neurons
(red) and all 362 excitatory neurons (blue). Box plots display medians, and quartiles. Whiskers reach to
5% and 95% quantiles. Individual data points lie outside whiskers. Brackets above plot denote significant
difference between distributions assessed via a Wilcoxon sign ranked test. P-values were corrected for the
multiple comparison problem via the Benjamini-Hochberg procedure including all statistical tests with all
transgenic lines (family size = 190). A single asterisk (*) represents a p-value < 0.05, a double asterisk (**)

represents a p-value < 0.01. Distribution values are available in Table 3 of the main article.
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Figure 9: Explained variance summary for excitatory GLIF models of different levels using
threshold infinity obtained via MLIN optimization.
Whiskers reach to 5% and 95% quantiles.
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statistical tests with all transgenic lines (family size = 190). A single asterisk (*) represents a p-value <
0.05, a double asterisk (**) represents a p-value < 0.01. Distribution values are available in Table 3 of the

GLIF,

GLIF;

Brackets above



()

6000

4000 +

2000}

—2000¢

—4000¢

—6000¢

—8000+

—10000+

—12000

(b)

30000

20000}

10000

—10000+

—20000+

—30000

Figure 11: Akaike Information Criterion (AIC) on ’training data’ follows the same trend as
explained variance ratio on ’hold out’ data. Difference between AIC for GLIF; and other GLIF
models is shown. Numbers on x-axis correspond to the GLIF model compared to GLIF;. a) Difference

in AIC of model ability to reproduce spike times. b) Difference in AIC of model ability to reproduce

oml-=--T]me

ceoml LI} - - lums seee

commi L1} =~ = ~ian sese-

sonml LT} ~ -~ bumon e |

L ]
L ]
L ]
2 3 4 5
GLIF level
T [ [
L ]
.
. ] ]
i ¢ | |
. ' 1 1
' J ] ]
E 1 1
1 1
' E] ] 3
; $ }
1
.
L ] [ ]
2 3 4 5
GLIF level

subthreshold voltage behavior as defined in Supplementary Material Figure 15.

13




Features Features, no spike-shape parameters

Cluster 1+ @ o @ o o @ o e o Cluster 14 o @ ... ° .
Cluster 2o o o Cluster 2+ o e e @®@o@o e e @
Cluster 3o 0 000 O0® e o0 Cluster 31 e o °
Cluster 4| o @ Iy . Iy - ) Cluster 4 o e o0 00 3
Cluster 54 o @ o0 ° . ° Cluster 5o ° . Q0 0000 0o
Cluster 6 o . ° CEON NoX X g:us:er;i; i : e@e0e ; °
luster 7- ° . o
Cluster 7+ o o o . °
Cluster 8 o 000 oo + * Clster | @@ 0 - @ O o o o 1 b
Cluster ° Cluster -1 @ @ Q) @ @o - 3 . °®
uster . ° .
Cluster 10{ @ @ o0 @ o
Cluster 10 O oe-@oee 0@ Cluster 11{ 0 @ . oo
Cluster 1177 0 11 o e Cluster 12{ o o o ©@eooceoceeo@®
Cluster 12-{ o . e0 o e e ° Cluster 13{ o . Q@ o e
Cluster 134 o @ o o0 00 o000 Q@ Cluster 14] o | Oe ° oe e
Cluster 14~ o + { NORL IR ] Cluster 15{ o @ o000 oo o0
Cluster 15+ @ . o @ o « e 0 Cluster 164 o e @000 e
Cluster 1640 O @ @ o o e+ o0 Cluster 174-@ ° ° o+ 0@
Cluster 1740 @ © o @ o o . Cluster 18{ . o 00 ocee@
Cluster 18 o e o0 0000000 Cluster 191 @ o O @ o Qe o e o o @
T I I
2550634 S 833°2°25 8383 25S8 s L8353 5 28
Tz g0 Ef3en ez £z g0 f3gnhegz?o®
=z o R z o ol
1 T T
£ £
5 5 5 5
3 @ @ @
GLIF1 GLIF2
Cluster 1{ o @ @ o ......o...' Cluster @ o @ 00 ° Q0 0@o °
Cluster2{ @ o c00 @O 0@ o
® 0@@cc0ce-00
Cluster 3- @ e 0O o o
Cusers0@o 0 @0 @ 00 00e® Cuser3y o @+ 00 +Q@QO00O®e o

cmmr&..o.-.u.-oooo-.

Cluster 41 @@ Qe @ oo -0
@000 o0ceo0o
Cluster7{ o @ o o c@o@00@00® Custer 5@ @0 @ - 0@ 0o o 00 e 0QD
S EL B 2T EYYTNRLLTT D SELB2TEYYNTNRLLTT D
235034 58382235523 2355034 58382238235
£ Z E;‘-’Soi:ﬂ:ﬂﬂ!mzo iz E%U‘Soi:ﬂ:ﬂﬁmz
T = T =
£ £ E
5 5 5 &
@ @ 2]
GLIF3 GLIF4
Cluster 1H @ @ © o e@ Oe e Custer H@ ¢ O @ © @ @ . o e e °
Cluster 21°0 o@oe - o ¢ Custer2| © @ ° eQ Oe -
Cluster 3 . o o @® o o0
© ° Cluster 31 @ ... ® o o .
CluslerAf..Oo .‘. . ® e+ 00
Cluster4| @ o o @ e 0 0 @O
cusers 1@ @ o e 0oe@ o o+ o °
Cluster6] o+ @ '...O..O. Cluster 51 o @ © Qo o0 oo )
Cluster 74 o @ © ° [CJOX XeX X X<} Cluster 6 < o . e @ - @0 0@ ©
Cluster8{ © @ ... oo . Cluster7{ @ . { SOR BON B s
Cluster 9+ @ . o o @ o e e 0
® © Cluster 8{ . o0 o0 @O@e@ - o
Cluster 10| o @000 e@o o
Cluster 1@ ¢ ()@ « O @@ ¢ o o - + o o
Cluster 11 ..O. - 0@0 . o o o ®
Cluster 12 @ © o @-9000 Cluster10{@ @ o 0 @ ¢ 0o @o o @®0@
Cluster 13- @ e @ © o 0@ O Cluster 114 o e o @ o o o o o o .
T EeF o E NN T T EeFoT ENY T ND L TG
gESES 2SR gESEs L EYYg o888
£ S o E 30K £ S o £ 38FF 5235
Iz “'%0502&& Iz mgogoz‘l‘!:ﬂm\rz
T = T T
£E £E
3 @ R
Comparison between model/feature clusters and Cre line partitioning Comparison between model- and feature-based clustering
o~ -
- < Adjusted VOI F3
Adjusted Rand Index
o
o N 0
2 L&
S
o -
. L3 . e
e / § e 7
5
: % 3 @
S &4 § g Le
3 o 3 S
g = T
< 4 L g 2 < _
< = =
W Adjusted VOI 2
o Ls
° B Adjusted Rand Index =t
o Adjusted VOI,
Random Feature set
° Adjusted Rand Index °
> | o Lo 4 Lo
° Random Feature set S
T T T T T T 14 T T T T T
= ~ o = og 2 - ~ o = o9
T & 2 hid 28 8 b N 2 s 2g
=i S S p} e 2 3 3 = = 3]
o o o o oa T o o o o oW
ERY fid ER
5.—5 gé
[y iy
#parameters 5 7 7 9 10 14

Adjusted Rand Index



Figure 12: Clustering of cells using the affinity propagation method and the gap statistic to
determine the optimal number of clusters. The six panels show the segregation of clusters by transgenic
line (labeled at the bottom of each panel) for each of the parameter sets used to cluster the cells. The bottom
two panels show the Adjusted Variation of Information and Adjusted Rand Index scores for the clustering
based on GLIF model and electrophysiological parameters, similar to Figure 6 in the main article.
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set of 14 features) and the GLIF parameter-based clustering of cells using the iterative binary
splitting method. Each entry in each matrix represents the number of cells belonging to a specific feature
cluster and GLIF cluster (Figure 6 of the main article), and indicated by the row and column labels. Zero
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Figure 14: Affinity propagation clustering obtained from using GLIF model parameters plus
spike-shape-related feature parameters. The toprfour panels show cluster versus Cre line composition,
similar to Figure 7 of the main text. The bottom two panels show the Adjusted Variation of Information
Metric and the Adjusted Rand Index for the GLIF model-derived clusters with and without the spike-shape
parameters.
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Figure 15: Model levels which more accurately predict subthreshold voltage do not necessarily
better predict spike times. In a) overall, there is a correlation between the ability of models reproduce
subthreshold voltage and reproduce spike times. Here, the percent explained variance (as shown in Table 3
and Figure 5 in the main article, and Supplementary Figure 8) is plotted against a measure of the difference
in subthreshold voltage of the model and the neural voltage waveform. The ”subthreshold voltage difference
measure” is calculated by taking the residual sum of squares (RSS) between the data and neural model
voltage normalized by the number of sampled time points considered, n. This is then normalized by the
variance of the voltage of the neural data i.e. (sum[(Vdata — Vmodet)?]/n)/var(vdata). Note that the smaller
the value on the y-axes, the better the model is able to reproduce the subthreshold voltage. Because, the
spike times of the model and the neural data are not perfectly aligned, the difference in subthreshold voltage
was measured in the ”forced-spike” paradigm as is done during the optimization procedure in Supplementary
Methods section ”Post-Hoc Optimization”. Linear regression was performed on the GLIF levels separately
and together. Slope, intercept, r, and p-values indicating the level of significance testing the hypothesis that
the slope is not equal to zero are in the legend. Squares indicate median values for the GLIF levels. b)
Median values pictured in a). The ability of the model to reproduce spike times does not translate into
better fits of subthreshold voltage or the number of degrees of freedom of the model. Models with voltage
reset rules fit directly from the voltage waveform (Supplementary Figure 1 better fit subthreshold behavior
than GLIF} and GLIF3 but more poorly recreate spiking behavior.
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Figure 16: Relationships between model performance and number of parameters and ability to
differentiate Cre lines. Y-axes on all plots show the ability of the parameters used to differentiate the
different transgenic lines using the binary splitting and affinity propagation algorithms as measured by the
adjusted rand index and adjusted variation of information as described in the text and all clustering figures.
Solid lines accentuate the progression of GLIF model%omplexity. SS, abbreviates spike shape features. a)
and b) show the median % explained variance metric as described in the text and is shown in Table 3 and
Figure 5 of the main article, and Supplementary Figure 8. ¢) and d) show the medians ”subthreshold voltage
difference measure” described in Supplementary Figure 15. e) and f) show the number of parameters used
during clustering.



Comparison to Cre lines Comparison to clustering by features

W Adjusted VOI W Adjusted VOI | o
B Adjusted Rand Index B Adjusted Rand Index b
Lo
w | e o
- o -
(S
o
wn
F o= © L o
IS > |
o 8 e - ° 3
g o | 2 8 2
- @
s} 2 o) 2
> & > L e £
3 L= B 3 ° 3
17} Sz s < 4 2
= S 3 S
T 5 T =
< 2 < 2
LQA o
o
wn
- 2 ©w
o o
0
=
o
o o
S - o S - o
T T T T T T T T T T T T T T T T T T T
— o~ o ~ oo 1] + O + O + O + © ~ o~ 3l < oo + © + @O + @O + ©
C L L Lo28 f pEQEREIE LoL Lo f oS8 g8 8 PE s
P P P P gc 2 S Sc Sc =< = = = = gc =c =c =c =c
O] O] [C] O S T Hun Fn Fn Fn O] ] [O] O] oo Jun Hun HFu Fon
5P 8§ 0Q 0F 0F 09 5P of 0Ff o0f 0F
- X X X X T2 £ 2 x i
[olroR a a a a (ol a o a Q.
w e » » » %) [ » »n 0 %)

Figure 17: Variability of clustering similarity using bootstrapping methods. For each set of param-
eters (x-axes), 100 data subsets comprising a random selection of 80% of the cells were clustered using the
iterative binary splitting method. For each bootstrapped data subset, the Adjusted VOI and Adjusted Rand
Index were calculated, as described in the text. Circles represent the median values, and bars represent the
5th and 95th percentile values.
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Specimen 1D 1 2 3 4 5
Pvalb
515305346  0.935 0.984 0.926 0.984 0.986
481127173  0.945 0.895 0.971 0.971 0.968
477490421  0.976 0.958 0.983 0.987 0.985
484742372  0.929 0.871 0.960 0.965 0.963
Rorb
320639930 0.708 0.674 0.656 0.718 0.732
473020156  0.639 0.708 0.702 0.718 0.727
502887600  0.645 0.597  0.556  0.559 0.577
500857324  0.590 0.627 0.582 0.631 0.755
313861677  0.672 0.688 0.432 0.562 0.544
485837504  0.620 0.657 0.548 0.706 0.680
467003163  0.706 0.622 0.876 0.873 0.873
480169178  0.657 0.775 0.772  0.767 0.806
478498617  0.559 0.652 0.673 0.663 0.682
502574847  0.747 0.717  0.770 0.776  0.778
480171386  0.695 0.723 0.575 0.516 0.597
501951290 0.739 0.662 0.480 0.597 0.605
480643417  0.767 0.772 0.759  0.747 0.767
480087928  0.658 0.677 0.490 0.469 0.462
Ntsrl
485938494  0.796 0.524 0.898 0.880 0.925
488426904  0.755 0.572  0.882  0.901 0.902
485339983  0.726  0.650 0.692  0.755 0.801
485905411  0.612 0.545 0.772 0.776  0.778
490263438  0.816 0.622 0.876 0.929 0.910
322297406  0.631 0.543 0.646 0.682 0.649
Scnnla-Tg3
476557750  0.646 0.626  0.692 0.740 0.742
486893033  0.601 0.646 0.537 0.717 0.594
476263004  0.710 0.609 0.889 0.849 0.879
323838579  0.778 0.731 0.843 0.852 0.852
476269122  0.620 0.631  0.540 0.657 0.627
513832252  0.547 0.699 0.523 0.406 0.576
Ndnf
579611597 0.834 0.756 0.875 0.884 0.885
527869035 0.865 0.840 0.912 0.916 0.916
530235049  0.811 0.798 0.917 0.908 0.907

Specimen ID 1 2 3 4 5
Nrbal
502193385 0.733 0.714 0.551 0.689 0.708
318733871 0.638 0.665 0.582 0.735 0.739
502245101 0.741 0.785 0.593 0.772 0.789
489731121 0.691 0.655 0.601 0.764 0.766
321893798 0.503 0.627 0.458 0.304 0.423
Vip
524876305 0.667 0.697 0.751 0.762 0.778
Cux2
487358945 0.689 0.530 0.646 0.712 0.749
486239338 0.619 0.724 0.617 0.697 0.699
486198953 0.692 0.624 0.748 0.765 0.765
486146717  0.670 0.673 0.707 0.757 0.748
486108147  0.694 0.690 0.604 0.693 0.690
Htr3a
488686369 0.688 0.653 0.877 0.884 0.886
475622793 0.633 0.565 0.920 0.919 0.918
519517188 0.749 0.682 0.878 0.833 0.849
482516216 0.727 0.742 0.841 0.833 0.851
487158599 0.750 0.653 0.893 0.826 0.856
475586130  0.685 0.663 0.806 0.776 0.796
473909767  0.625 0.589 0.762 0.736  0.781
Sst
473593847  0.804 0.735 0.832 0.779 0.790
322197295 0.417 0.415 0.422 0.494 0.491
476686112 0.756 0.754 0.730 0.684 0.760
328015342 0.697 0.694 0.718 0.765 0.771
502382506 0.816 0.799 0.814 0.815 0.828
322229594  0.719 0.729 0.631 0.691 0.703
475057898 0.890 0.897 0.820 0.867 0.859
328031983 0.898 0.891 0.895 0.901 0.903
Rbp4
485577686 0.685 0.641 0.711 0.759 0.757
471131311 0.766 0.707 0.714 0.758 0.775
508911693 0.563 0.648 0.549 0.644 0.667
490612844  0.683 0.597 0.683 0.709 0.719
485835016 0.637 0.548 0.645 0.686 0.710
485880739 0.664 0.584 0.544 0.700 0.629

Table 1: Neurons which have all 5 GLIF models and all model parameters are within 5 and 95
percentiles within each transgenic line. Columns 1 though 5 denote the explained variance of models

1 through 5. The best explained variance within the set is emboldened.
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Supplementary Methods
Model Definitions

The five different GLIF models are described below, in order of increasing level of complexity, with their
evolution equations and reset rules. For all the models, C' represents the membrane capacitance, R, is the
membrane resistance, Fy, is the resting potential and I.(¢) is an external current injected into the cell. ¢4
and t_ represent the time just after and before a spike respectively.

Leaky Integrate-And-Fire (GLIF})

The traditional Leaky Integrate-And-Fire (LIF) neuron is a hybrid system characterized by an evolution
equation for the membrane potential V(t). We refer to this model as GLIF}, and it is the starting point for
further GLIF models.

V()= 5 (16 - 5 V(D) - EL) (1)

When the membrane potential becomes larger than a threshold, V(t) > O, (which in this case is just the
instantaneous threshold, ©,), a reset rule is evoked which sets the membrane voltage to a reset voltage, V.

V(t) < V; (2)

Leaky Integrate-And-Fire with biologically defined reset rules (GLIFy)

GLIF5 has an evolution equation for two state variables, the membrane potential V' (t) and a spike-dependent
threshold component O,(t) which is updated by spikes and decays back to zero with a time constant (1/b;).

Vi) = 5 (10 - 5 (V) - ) (3

O5(t) = —bsO,(t)

along with a reset rule for both voltage and the spike-dependent threshold if the membrane potential becomes
larger than a threshold V(¢) > O, + O4(¥)

V(ty) < Ep+ fo x (V(t-) — EL) =6V (4)
Os(ty) « O4(t_) + 004

The update to the spike-dependent component of the threshold is additive, with 0, added after every spike.
The update to the membrane potential has a multiplicative coefficient, f,, and an additive constant, §V/

Leaky Integrate-And-Fire with after-spike currents (GLIF3)

In GLIF models, the rapid membrane potential fluctuation due to the fast voltage-activated (i.e. sodium
and potassium) ion currents during a spike, is considered separately from the slow, subthreshold region of
the membrane potential and is incorporated into the reset rules. However, ion currents activated by a spike
could have effects over longer time scales. After the stereotypical, sharp membrane potential transitions
during an action potential are eliminated, the longer term effects are modeled as additional currents I; with
pre-defined time constants (1/k;),

L) = —kLi(t); j=1,..,N

S(1@+ 350 -

Rasc

V'(t)

(V(t)- Er)) (5)
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Here Rasc is used to explicitly point out that the resistance is fit along with the after-spike currents. The
update rule, which applies if V(¢) > O, is given by:

Ii(ty) < fj x Li(t-) + 01;
Vity) « Vi (6)

with the currents updated using a multiplicative constant f; = exp (—k;0t) (because after-spike currents
decay through the spike cut length) and an additive constant, §1;.
Leaky Integrate-And-Fire with biologically defined reset rules and after-spike currents (GLIF})

Combining the biological reset rules model, GLIF5, with the after-spike current model, GLIF3, described
above gives a model defined by:

Ij/(t) = —kjlj(t); j = 1, ,N

@; (t) = —bs0; (t)

The update rule, which applies if V(¢) > O,(t) + O,

I(ty) & f; x 1;(t2) + 61,
V(ty) < Ep+ fo x (V(t_) — E) — 6V (9)
@s(t+) — es(t—) + 00,
(10)

Leaky Integrate-And-Fire with biologically defined reset rules, after-spike currents, and a
voltage dependent threshold (GLIF5)

For the GLIF5 model, the state variables are the membrane potential, V(¢) (as in all GLIF models), a
threshold component which is evoked when there is a spike, ©; (as introduced in GLIF3), a set of after-spike
currents I;(t) (as introduced in GLIF3), and a new additional threshold parameter that is dependent of the
membrane potential (0,). It is assumed that these state variables evolve in a linear manner between spikes:

L) = —kLi(t); j=1,..,N

(V(t) - EL) (11)

G)/s(t) = —bsO,(t)
@i;(t) av(V(t) - EL) - bv@v(t)

Where 1/b, is the time constant of the voltage-dependent component of the threshold and, a can be inter-
preted as a ’leak-conductance’ for the voltage-dependent component of the threshold.
If V(t) > ©,(t) + O5(t) + O, a spike is generated and the state variables are updated:
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Ii(ts) < fi x Lj(t-) + 61

V(t+)<_EL+fv (V(t-) — Er) = oV (12)
Os(ty) « O4(t-) + dO,

Ou(t+) + O,(t-)

For all state variables, Xj(t), the value immediately after the spike, X (¢+) was related to the value imme-
diately before the spike, X (¢_), via a set of update parameters: fj represented the fraction of the prespike
value of X} which is maintained after the spike and 0 X} represents the values updated by a spike.

Parameter fitting and distributions

Model parameters are extracted from the electrophysiology data as described below. Python code for all
algorithms can be found in the Allen Software Development Kit (SDK) on the Allen Cell Types Database
website. All code was executed using Python 2.7. In Figures 7,1, 2, and 3 we show slices of the parameter
space obtained via fitting.

Parameter descriptions

Spike initiation time and threshold [ts, Op;o/: Spikes are typically detected by the following procedure. The
upstroke of a spike is defined as the portion of the action potential wave form between the instant at which
the rise in potential for a given time exceeds 20 mV/ms and the peak of the action potential. For each
neuron, the average value of the maximum dV/dt during the upstrokes of all action potentials is calculated.
The time of spike initiation and threshold is then defined by the time and voltage at which dV/dt reaches
5% of the average maximum dV/dt during an upstroke.

For stimuli that involve a short, intense current pulse stimulation, the passive rise in voltage
preceding a spike can exceed the standard 20 mV/ms initial detection value, leading to inaccurate spike
time identification. In those cases, the maximum dV/dt is measured during the current pulse, and the
spike detection value is adjusted to be 10% higher than that. In addition, the threshold identification value
(typically 5% of the average maximum dV/dt) is also adjusted to ensure that it is at least 20% higher than
the dV/dt at the end of the stimulus pulse.

Spike cut length and voltage reset [6t, Vi ]: GLIF models aim to reproduce the timing of the spikes via
sub-threshold data (not the voltage waveform dictated by the highly non-linear ion fluctuations during
the action potential). Therefore, the action potential waveforms are removed from the voltage trace. Here
we use a principled way to estimate the duration of the spike that is removed and the reset voltage in
models where biological reset rules are implemented (GLIFy, GLIF,, and GLIF5). Action potentials in
a neuron have stereotyped shapes with a sharp rise, followed by a hyperpolarized refractory period and a
return to a voltage that is most often lower than the voltage before the spike (voltage reset). As shown
in Supplementary Figure 1, we align all of the action potentials of the training noise data (noise 1) to
the spike initiation and ask at what time within a window of 1 to 10 ms after spike initiation does the
post spike voltage best predict the voltage at spike initiation given a linear dependence. i.e. a line is
fit between the voltages at spike initiation (prespike voltages) and the voltages at each time point after
spike initiation (postspike voltages). The fit which minimizes the residuals is chosen to define the time
at which the spike ends. In all models, the duration of the spike is removed from the voltage traces.
For the GLIF,, GLIF;, and GLIF5 models, the postspike voltage is reset via the best fit linear model
V(t+) = Er + fu x (V(t—) — EL) + §V, (main article equation 5, supplementary equations 4, 9, and 12)
where V(t—) is the voltage of the model before the spike, §V is the voltage intercept, f, is the slope of the
fit, and V' (t+) is the voltage of the model after the spike.
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Instantaneous threshold [©]: All models (neurons) spike when the voltage crosses threshold. An estimate
of the instantaneous threshold, ©,, is the voltage at spike initiation of the lowest amplitude supra-threshold
short square (Figure 2 of the main text). Threshold is a critical parameter affecting the general excitability
of the cell. The relationship between voltage and stimulus likely becomes non-linear near threshold. Because
small errors in the O, measurement will greatly influence spiking behavior O, is tuned during the post-hoc
optimization of every model such that the likelihood of the observed spike train in the training stimulus is
maximized.

Resting potential [Er]: The resting potential was defined as the mean resting potential of the noise 1 sweeps
calculated by averaging the pre-stimulus membrane potential.

Resistance [R], Capacitance[C], and after-spike currents [I;(t)]: Because the GLIF model is linear, many of
the parameters can be fit via linear regression on subthreshold data similar to the methods in [2]. Initially,
R and C are calculated via a linear regression of the subthreshold noise in the first epoch of noise stimulation
within the three-epoch noise sweeps (this stimulus does not elicit any spikes) as observed in Figure 2d.
The neurons which elicited spikes during the subthreshold stimulation were eliminated from subsequent fits.
Please see section 12 for example calculations. These values of resistance are used for models that do not
include after-spike currents (GLIFy, GLIF3).

For the GLIF model levels where after-spike currents are included (GLIF3, GLIF,, GLIFs), after-
spike currents and resistance are fit via a linear regression on the periods between the spikes in the supra-
threshold noise data. During this calculation, the capacitance and resting potential are forced to the previ-
ously calculated values. We choose to force capacitance while continuing to fit resistance because capacitance
is a consistent property of the membrane which does not change based on the state of a neuron. However, the
resistance of membrane will depend on the state of a neuron and will most likely differ with the activation
of ion currents whose subthreshold affects are modeled here with after-spike currents.

After-spike currents are modeled using exponential decaying basis functions with an amplitude and
a time scale (the dynamics of the exponential functions are described in equation 7). The time scales
and amplitudes are obtained by providing two from a set of five basis currents with varied time scales
(1/k;) ([3-33, 10, 33.3, 100, 333.33] ms) to a generalized linear model (GLM). The GLM (implemented via
Python’s statsmodels.api.GLM) is used to calculate the amplitudes corresponding to each basis current and
the resistance by regressing the sum of the derivative of the voltage and the external current divided by the
capacitance (% + 1—5) against the basis currents and the leak term. C' and Ej, are calculated as mentioned
in the above text. The GLM is run with all combinations of two of the five possible time scales leading
to a choice among (°Cy = 10) pairs of basis currents. The optimal pair of basis currents that yield the
maximum log-likelihood value are chosen. The total charge, Q, deposited by one after-spike current in the
neuron per spike is 61 /k;. Since total charge is a biologically relevant parameter and it is easier to perform
clustering on continuous values, we often use the total charge (Table 2 of the main article) instead of the
individual parameters, 61;, and, k; (where k; are discrete values and the best two out of 5 possible values are
chosen; see above), represented in equations 3 and 7 of the main article and supplementary equations 5, 6,
7,9, 11 and 12, Figure 3 of the main article and Supplementary Figure 2, and Supplementary Tables 2 and 4.

Spike initiated component of the threshold [O4]: The evolution of the threshold of GLIF,, GLIFy, and
GLIF5 contains a spiking component of the threshold, ©4 . This contribution to the threshold represents
the effect spiking has on the threshold of the neuron due to the inactivation of a voltage-dependent sodium
current. This inactivation can be interpreted as a rise in the threshold of the neuron, and the movement
from the inactive to a closed state can be modeled as a linear dynamical process. The change in threshold
is fit with an exponential, and the values of its amplitude and time constant are calculated from the triple
short square sweep set data as seen in Figure 3. For each pulse in the triple short square data that produces
a spike, the voltage at spike initiation (the threshold) is calculated. The mean of the threshold of the first
spike of each individual triple short square stimulus was taken to be the reference threshold. For all spikes
that are not first spikes in each individual triple stimulus, the time since the last spike is calculated (referred
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to as an ISI) along with the threshold relative to the reference threshold. An exponential is then fit to the
ISI versus threshold data. The exponential is forced to decay to the reference threshold.

Subthreshold voltage dependent component of the threshold [0,]: GLIF5 contains both a spiking compo-
nent of the threshold, ©;, (see above) and a subthreshold voltage component of the threshold, ©,. The
subthreshold voltage component represents the effect of subthreshold membrane potential on the threshold
(e.g., voltage dependence of sodium current reactivation). The voltage component of the threshold evolves
according to ©/ (t) in equation 4 of the main text and supplementary equation 11. In order to fit a, and b,,
the sum of the squared error between the voltage component of the threshold of the biological neuron ©,;,
and the voltage component of the threshold of the model ©,, is minimized. ©,;, is found by subtracting the
spike component of the threshold, O, from the actual value of the voltage at the time of spike initiation,
Opio (Ovbio = Opio — O5). Although one could simulate the voltage component of the threshold using Euler’s
method, the analytical solution (for derivation please see Supplementary Methods section ” Analytical solu-
tion for the dynamics of the voltage component of the threshold”) was used to speed up the minimization
process. Minimization was preformed using a Nelder-Mead simplex algorithm (fmin in the Python scipy
optimization tool box: scipy.optimize.fmin).

Using linear regression to solve for variables using a noisy stimulus

One way to fit the resistance, R, capacitance, C, and resting potential, F, is to use linear regression on the
voltage, V', in response to a noisy stimulus, I. The standard leaky integrate and fire model for the dynamics
of a neuron is: o V)
— Ly,
7 I +1 (13)
This equation can be rearranged so that it fits into the form y = X3 + ¢ where y is the dependent variable,
X is the independent variable and § are the parameters being fit. For implementation this means that the
parameters being fit should be associated with the matrix on the (rhs) of the equation, while the dependent
variable and the known parameters should be on the left hand side (lhs) of the equation. After the equation
has been arranged in the proper form, a standard least squares algorithm such as np.linalg.lstsq in python
can be used.
For example let us say we want to fit £y and R in Equation 13. Equation 13 can be rearranged as follows:
v . -V + Ep I
&~ RC ' C
AV =V Ep 1

‘At  RC  RC ' C
“ViANt Ep At I, At
+ +

Vi =Vi = =75 RC C
VAt E. At I, At
Vier =~ Vit —pa +

_£)+ELAt+ItAt
RC RC C
Here, At is the amount of time between V; and V;y1 (time step) where ¢ is the timestep index which runs

from t =1 to t =T where T is the total number of time steps in the data.
In vector form, Equation 14 is:

(14)

Vé V1 1 Il
I I R - W o 7. e Y
T ' RC ' RC ' C
VT VT,1 1 ITfl

Fitting R, C, and E, results in the following equation:
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v, vi 10 [(-4)

Vs Voo 1 I
= Ep At
RC
4% V-1 1 Inoa %
The solution is a vector out with components,
At
tl]=11—-— =—
out[1] < RC)
Ep At
2 =
out|[2] RO
At
S — 1
out[3] - (15)
Solving this system of equations yields:
At
= ].
© out[3] (16)
- At - At —out[3]
R = = = 17
C(out[1] — 1) rﬁ[ﬁﬂ (out[l] —1)  (out[l] —1) i)
At
RC R R
E; = 21 — | = 2 = 2 1
L = out[?] ( -~ ) out[2] ( o out| ]<out[3]) (18)

Now let’s say that we do not want to fit the capacitance during the regression. In this case the term
containing the I vector will be shifted to the left hand side of the equation:

Va I Vi 1
VFS B 12 g B ‘/2 . ﬁ N 1 EL At
c ’ RC ' RC
Vr Ity Vr_1 1
In matrix form:
Vo— L% Vi o1
Vi - LSt o1 [(1-£)
: ' Ep At
Vr — IT—I% Ve 1 rC
Solving this system of equations yields:
— At
R=——— 19
C(out[1] — 1) (19)
Ep = <]ZC;> out[2] (20)

Above, we solved this problem by separating AV into the voltages before and after the time step At, i.e.
Vit1 — Vi. This problem can also be solved by calculating % directly from the data.
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Analytical solution for the dynamics of the voltage component of the threshold

The voltage component of the threshold evolves according to the following dynamics:

ag
i
where 6 is the voltage component of the threshold, V is the voltage of the neuron, F, is the resting potential,
f~, and a and b are constants which will be fit to the data.
For completeness, below we will outline the analytical solution to equation (21).

a(V(t) = Er) = b(0(t) — 0sc) (21)

The solution to a differential equation with the form:

b+ p(0)e = a0 (22
is 1
x(t) = u(t)/u(t)q(t)dt +K (23)

where K is the standard integration constant and
u(t) = el PO (24)
Equation (21) can be rearranged into this form:

% +b0=a(V(t)— EL) + b (25)

From equations (22), (24) and (25),

U(t) — ef bdt _ 6bt

q(t) = a(V(t) — Er) + b (26)
Therefore:
1
0(t) = / a(V(t) — Br) + blso]dt + K
1
= [ae?'V (t) — ae® Ep, + bOe]dt + K (27)

Similarly, it can be shown that for a constant current I with V(¢ = 0) = V, and g = &, the analytical
solution for V(t) is,

V) = Ve % + (”;EL> (1 — e~tale) (28)

I+gEL
g

Plugging in V(t) in equation (27) and defining 8 = gives:

0(t) = = /[ae”t(Voe‘%g + B(1 — e9/%)) — ae" Ep, + bhooe®dt + K
&
1 y
= =7 [ lae"Voe™ < +ac”B(1 — e7'/) — ae” By + bhoce™]dt + K

1

= bt /[avoe(b_%)t + afBe’ — aﬁe(b_%)t —ae”Ep + bﬂooebt]dt + K (29)
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Setting o = (b — £)

L 1aVo o 0B 4y aB o aEL 4 boo
o0(t) ebt[a + e ¢ 7 + + K
aVo _e; af  aBf _e¢, aEp K
o Bl Ty et
aVo aB] _s; aB aEL K
— | _ 42 @ _amL Ly
{a oz] % p Ut
a 94 a
=—(Vo—Be e +W+E(B—EL)+9<>O (30)
at t =0, 6(t) = 6y. Therefore:
a
90—*(%_6)+K+E(/B_EL)+900 (31)

K:Ho—%(Vo—ﬁ) (8- EL) — 0ue (32)

_a
b
Plugging in K in the last line of equation (30):

(1) = 2= et 5 o [fo = (Vo)

a a
« b

a I+gErL\ _gy
:H<%_g>e c

(B=E1) = b + 5= Er) +0  (o0)

1 a I+ gEL al+gEL
e S B G =T N
I+ gFE
+Z<+gg L—EL>+000 (33)

Post-Hoc Optimization

An additional non-linear optimization step was performed to optimize the instantaneous threshold, 0., using
a Nelder-Mead simplex algorithm (Python scipy module scipy.optimize.fmin). The instantaneous threshold
is an essential parameter governing the excitability of the neuron. As the current/voltage dependence for
the neuron becomes highly nonlinear near the threshold, and we rely on linear models. To better fit the
excitability of the models we search for the value of the instantaneous threshold which best predicts the
spike train during the test stimulus. Comparing Figures 6 and 8 of the Supplementary Material illustrates
the importance of the post-hoc optimization on explained variance.

Forced-spike Model Paradigm

During optimization, each spike should be fit without erroneous after-spike current history affecting the
fitting of the subsequent spikes. The model voltage, threshold, and after-spike amplitudes are forced to reset
at the time the biological neuron spikes. The reset rules are denoted in the GLIF model section above. When
a model is run in its normal forward-running manner, the prespike values of the voltage, V'(¢_), threshold,
©(t-), and after-spike currents, I;(t_), are the values of the model at the point where the model voltage
crosses the model threshold. In the forced spike paradigm, to ensure that the voltage of the model is reset
below the threshold of the model, the prespike voltage was set equal to the prespike threshold, V(t_) = O(¢_)
at the time of the neuron spike. Note that this reset only affects GLIFy, GLIFy, GLIF5, where the prespike
voltage affects the postspike voltage (Equation 5 of the main article and Supplementary Equations 4, 9, and
12).
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Objective Function: Maximum Likelihood Based on Internal Noise (MLIN)

Similar to a series of previous studies [3, 4, 5, 2], the likelihood that the observed spike train was obtained
by the model was maximized by minimizing the negative log-likelihood. However, the exact method of
constructing the likelihood was different in that the noise is not tuned but rather uses a direct estimate of a
biological neurons internal noise (Maximum Likelihood based on Internal Noise).

Because these GLIF models are deterministic, estimating the likelihood required adding a source of noise
external to the model. Rather than searching for the parameters of this noise, a parametric description of
the internal noise of each neuron is used (Supplementary Figure 5). As this internal noise could depend
on the membrane potential, and the most relevant potential is near threshold, the variation in membrane
potential during the steady state period of the largest subthreshold square pulse response is characterized.

The probability density of the neuron being at a potential, v, away from its mean is fit with an exponentially
decaying function (Supplementary Figure 5):

p(v) = geeap(~ ) (34)

This variation was considered to be additive to the membrane potential of the deterministic neuron. This
allowed the computation of the probability that a neuron with the given noise would produce a spike if the
deterministic model had a difference between threshold and membrane potential:

AV () =0() — V(t) = O5(t) + O,(t) + O — V (¥) (35)
Pspike(t) = /::(t)p(v)dv = /::(t) %exp(—%)dv =1-c(AV(t)) (36)

where ¢ represents the cumulative distribution of the intrinsic noise, (Supplementary Figure 5, center panel).

The likelihood of the model producing a set of spikes at the times the biological neuron produces them is:

DPspikes = H pspike(t) (37)

tets

However, the model neuron must both produce spikes when the biological neuron does, and not produce
spikes when the biological neuron does not.

The likelihood of a model neuron not producing spikes is not independent for two nearby time points, as
the intrinsic noise has a nontrivial autocorrelation. To estimate the likelihood of the model neuron not
producing spikes at the times the biological neuron does not produce spikes, one sample for the internal
noise is drawn for each time period of the autocorrelation, and following this time scale a new independent
sample is drawn. As such, the inter-spike intervals are binned with bin sizes equal to the autocorrelation
(typical autocorrelation time scales are much smaller than the inter-spike intervals). The grid times start
from a spike time and advance by the autocorrelation time scale, ending at a predefined short time (5 ms)
before the next spike. To estimate the likelihood of a neuron not producing a spike within a bin, the minimal
difference between threshold and membrane potential within the bin is chosen which generates the grid
differences:

Pnospikes = H C(A‘/grid) (38)

tEtgrid
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The log likelihood of the entire spike train being exactly reproduced is given by:

LLIN = log (pspikes X pnospikes) - Z IOg(]. - C(AV(t))) + Z log(C(AV;]”d)) (39)

tet, t€tgria

Simplex Method

The instantaneous threshold, O, is optimized to maximize LLIN in Equation 39 using a simplex
algorithm (Nelder-Mead). During this procedure O is itself is not optimized, instead, a multiplicative
factor (coefficient) is optimized.

To minimize the chance that the optimization routine did not get stuck in a low gradient region, the overall
optimization is rerun three times. Each time the overall optimization is rerun, the coefficients are randomly
perturbed between an interval of £0.3 of their last found optimized value. Within each of the overall reruns,
the stability of the convergence is confirmed by reinitializing the algorithm (i.e. re-inflating the simplex)
three times at the optimal position in parameter space with a small random perturbation within an interval
of + 0.01 and then re-running the simplex.

Because the voltage dynamics are governed by a first-order linear differential equation, the voltage dynamics
are forward simulated over a single time step using an exact Euler time stepping method. The time step is
chosen to be 0.2 ms. The current that forces the dynamics is averaged across the time step.

Changes in instantaneous threshold 6.,, with optimization

Figure 7 shows how 0., changes with optimization. An estimate of 6. is calculated by measuring the
voltage at which a neuron reaches threshold during a 3 ms current pulse. This value is optimized. It is
difficult to know exactly why 6., changes in a stereotyped manner, nonetheless, here we speculate.

In general, optimization raises the value of 0., for GLIF} through GLIF, and then lowers it in GLIF;
(Supplementary Figure 7 panels ¢ through h). GLIF; though GLIF, do not have a voltage dependent
threshold, thus, it is likely that 0, is raised to compensate for the lack of voltage dependent threshold that
exists in normal neurons. GLIF5 incorporates the voltage dependent threshold; however, there is still not
a non-linearity near threshold such as is implemented in the AdEx model [6]. Thus, 6 is probably pulled
down to compensate.

Evaluation of Model Spike Times

After all parameters of the model were optimized, the time-evolution of the models was determined using
an exact Euler method. The spike times of the model were evaluated against the spike times of the neuron
using the ’explained temporal variance’ metric described below (Figure 4 of the main text). This metric
describes how well the temporal dynamics of the spiking response is captured by the model for a particular
level of temporal granularity, At.

A spike train is represented as a time series of binary numbers. All numbers in a spike train are zero unless
a spike occurs: a spike was denoted with a one. Any spike train can be converted into a single peristimulus
time histogram, st PST H, by convolving a spike train with a Gaussian with a standard deviation equal to At.

In cases with many repeats of the same stimulus, a peristimulus time histogram (PSTH) could be calculated

by taking the mean of the stPSTH at each instant in time. If there were n stimulus repeats and st PSTH;
is denoted with index ¢ with ¢ = 1, 2...n, then the PSTH is given by,
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" stPSTH;
n

PSTH =
i=1
The variance in spiking output of neurons is described by the variance of the PSTH. The explained variance
(EV) between any two PSTHs (multiple or single spike train) is:

var(PSTH,) + var(PSTHy) — var(PSTH, — PSTH>)
var(PSTH,) + var(PSTH>)

The explained temporal variance by the mean across-trials PSTHp of the biological neuron, EVp is the
upper limit on how well the model can perform:

EV(PSTH,, PSTH,) =

1 n
EVp =~ EV(stPSTH;, PSTHp) (40)
n
i=1
where st PST H; denotes the ith single trial repeat data PSTH and n denotes the total number of stimulus
repeats.

Since the models here were deterministic, the explained variance of the data with the model, EVpy, is cal-
culated by taking the mean of the explained variance between every data st PST H; and the model PST H ;.

1 n
EVpy = — Y EV(stPSTH;, PSTHy) (41)
n
i=1
The ratio of the explained variance of the model to the data, EVpys, versus the explained variance within

the data, EVp:

EV,
E‘/ratio = E‘?;Vf . (42)

is 0 if the data and the model are independent, and is 1 if the model perfectly predicts the mean of the data.

The EV,a1io at a resolution of At = 10 ms (standard deviation of the Gaussian kernel used to convolve
the binarized spike times), converted to a percentage is used as the explained variance metric throughout
the manuscript (Figure 5 and Table 3 of the main article and Supplementary Figures 6, 8, 9, 10 and
Supplementary Table 1). Explained variance is illustrated in Figure 4 of the main article, for the two
exemplary neurons reported.

Performance of individual transgenic lines

The explained variance of individual transgenic lines are shown in Supplementary Figures 9 and 10.

Akaike Information Criterion (AIC)

The ’gold standard’ method of model selection is to test the model on ’hold out’ data as was done throughout
the manuscript. Here we supplement the assessment of model performance on ’hold out’ data with the
calculation of the Akaike Information Criterion (AIC) on the training data. AIC was computed as:

AIC = 2k + nlog(RSS/n) (43)

where k is the number of variables (1 though 5) at each level, n is the number of independent observations
and, RSS is the residual sum of squares. We calculate the RSS between the model spike train convolved
with a Gaussian with a standard deviation 0 = 10 ms and the average convolved spike train of the data. n,
should be independent samples; here, we use the standard deviation of the Gaussian used for convolution
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to calculate an appropriate value for n, n = T'/o, where T is the total time of a sweep.

In general, the absolute value of the AIC is not important for model selection. Instead, the difference in AIC
between two models (Supplementary Figure 11) is often considered:

AIC; — AICy = 2(k)1 — ]{52) + nlog(RS’Sl/RSSg) (44)

Clustering
Iterative hierarchical clustering

In order to cluster cells by model parameters or extracted electrophysiological features, we used an iterative
binary splitting method using standard hierarchical clustering methods, as follows:

1. Select parameters to cluster on (See Table 2 in the main article).

2. For each parameter, calculate the skew of the distribution and the skew of the distribution of log-
transformed values. If the skew of the latter is lower, then use the log-transformed values for that
specific parameter.

3. Z-score all parameters (some of which have been log-transformed) and hierarchically cluster cells with
Ward’s method, using 1 - Pearson’s R value as the distance metric.

4. Split cells into two clusters, as defined by the top branch split of the dendrogram from the hierarchical
clustering.

5. Train a support vector machine classifier (using a radial kernel) on cell cluster identity using half of the
cells, and apply this classifier to generate predicted cell cluster identities for the remaining untrained
cells (half of the data), and calculate the total fraction of mis-classified cells in the test set. Repeat
this step 100 times, randomly selecting the cells in the training and test sets each time, and identify
the maximum mis-classified fraction.

6. If the maximum mis-classified fraction is less than 20 percent, repeat steps 3-5 on each of the two
subpopulations, otherwise assign the entire population of cells to a terminal cluster

7. End clustering once all cells are assigned to a terminal cluster that cannot be split further.

Given that the cells are iteratively segregated into a binary tree, the final set of clusters chosen for a given
set of parameters can be coherently assembled into a single tree, with each intermediate node being assigned
the minimum fraction of correctly predicted cells (using repeated runs of the SVM as described above), as
illustrated in the corresponding figure.

We include the confusion matrices between GLIF parameter-based clusters and the electrophysiological
feature-based clusters (using the iterative binary splitting algorithm) in Figure 13 of the Supplementary
Material based on all 14 parameters.

Affinity propagation

We also applied a second method - affinity propagation - to cluster the cells. Affinity propagation relies
on iterative assignment and refinement of clusters using a message-passing algorithm [7]. Briefly, every cell
is assigned a responsibility and an availability score with respect to other cells; the former represents how
well a given cell serves as an exemplar with respect to every other cell, while the latter represents how
well a given cell would be approximated by every other cell as its exemplar. These scores are updated
iteratively by passing around both sets of scores until convergence is reached; see [7] for more details. The
final number of clusters obtained is nonlinearly dependent on the initial assignment of diagonal values in the
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similarity matrix, so we used the gap statistic [8] to determine the final number of clusters for each data set.
The clustering results using affinity propagation are shown in Figure 12. The affinity propagation and gap
statistic algorithms were run using the apcluster and clusGap packages in R, respectively.

Comparing clusterings

We used two metrics to compare clusterings (all clusterings to Cre line segregation, and all GLIF clusterings
to feature-based clustering). The first metric is the Adjusted Rand Index (ARI), which represents the
similarity of two partitionings as compared to chance. By definition, an ARI value of 1 indicates perfect
agreement and a value of 0 indicates agreement due to chance. The ARI was calculated using the mclust
package in R. The second metric is the Adjusted Variation of information (AVOI), which includes a slight
modification to the Variation of Information (VOI) metric. The Variation of Information is an extension of
mutual information to address the similarity of two parititionings of the same space, and roughly measures
the predictability of one clustering based on another. However, the basic VOI measure is sensitive to the
total number of clusters, so we report the AVOI, which is the difference between the VOI due to chance
(by randomly shuffling the labels of the clusterings 100 times) and the standard VOI of the clusterings
being compared. The upper bound for the AVOI is the natural long of the number of cells considered,
In(645) = 6.47.

Exclusion Criteria

Here, since we are interested in the models of transgenic lines, we include only cre positive cells and and
neurons from transgenic lines that have more than five modelable neurons. Models and neurons were also
eliminated if they had inconsistent or insufficient stimuli presented, failed to fit training data, or contained
parameters that are biologically unrealistic.

General exclusion criteria are listed below:

1. The training subthreshold noise epochs (used for fitting resistance via linear regression) contained a
spike (first epochs in the moise 1’ stimulus in Figure 2a of the main article).

2. Models with an intercept greater than 30 mV resulting from the linear regression performed during
the spike cut width calculation (Supplementary Figure 1).

3. Neurons with an instantaneous threshold, O, below -60 mV before post-hoc optimization (Supple-
mentary Figure 7).

4. Models that contain a resistance greater than 1000 MQ (Supplementary Figure 2).
5. Neurons which had an inconsistent current amplitude played over noise sweeps.
6. Models which fail to complete the post-hoc optimization without error.

7. The entire model family of a neuron in which one model fails to optimize on training data to an
explained variance ratio of at least 20%.

Additional neurons were eliminated from models containing reset rules based on the following criteria:

1. Models which had an amplitude of the spike component of threshold, d5, that was larger than 20 mV
(Supplementary Figure 3).

2. Models which had an amplitude of the spike component of threshold, ds that was less than zero
(Supplementary Figure 3)

3. Models which had a 1/bs that was greater than 100 mS~! (Supplementary Figure 3).
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Finally models with the following voltage dependent threshold are excluded:
1. Models which had a, less than -50 s~! (Supplementary Figure 3).
2. Models which had a b, is less than 0.1 s~ (Supplementary Figure 3).

This leaves a total of 645 neurons that have a GLIF}, and GLIF3 model, 254 neurons that have a GLIF>
and a GLIF, model, and 253 neurons that have a GLIFs model (Table 2 of the main article). Note the
large decrease in models for GLIF,, GLIF,; and GLIF5 is not due to exclusions. Instead, for reasons
unrelated to this study, the triple short square stimulus (Stimulus section in the Methods of the main article,
Figure 2 of the main article and Supplementary Figure 3) necessary for these model levels was not played
to approximately half of the neurons.
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