
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
The authors describe several classes of generalized leaky integrate-and-fire models of increasing 
complexity, and fit these models to the Allen Institute cell types dataset (celltypes.brain-map.org/) 
with the aim of reducing the dimensionality of these cells into a few biologically interpretable 
parameters. They subsequently use these fit parameters to cluster the data and compare the resulting 
clusters to alternative clusters based on electrophysiological features.  
 
There is interesting information in this study (extensions of generalized integrate and fire models, 
applications to the Allen institute data), but it was hard for me to discern the main fundamental 
contribution. In general this contribution should be described more directly. Specifically, the aim of 
this paper does not seem the description of the Allen cell-type data per se, while the use of 
generalized leaky integrate and fire to reduce dimensionality has already been described in Pozzorini 
(2015). In this context, it seems that the major (i.e. non-incremental) novelty here is the clustering of 
the data based on the model parameters. But in this case it would benefit if the authors expanded on 
the description and validation of this aspect of the study in much greater detail. I discuss this and 
other comments below.  
 
It seems that the main advantage of the present framework is that the characteristic parameters of 
cells in each cluster may intuitively describe the activity of cells in the cluster. However, the parameter 
space is quite large and so it becomes hard to eyeball the characteristic property of each cluster, 
based on these parameters at a glance. The authors seem to justify the use of such a large number of 
parameters based on the number of clusters produced by the algorithm, arguing that a large number 
of parameters is required to have a larger number of clusters. But, these considerations are based on 
one specific clustering algorithm and are not so convincing. The output of the number of clusters for 
an algorithm is a difficult problem without a clear solution: here, the authors base it on the likelihood 
associated with the data being derived from two multivariate gaussians versus a single multivariate 
gaussian, without actually providing evidence that the assumption of gaussianity is warranted (and an 
eyeball of some of the parameter distributions provided by the authors shows strong evidence of non-
gaussianity).  
 
More generally, there are many clustering algorithms based on independent assumptions for the 
number of clusters and so it is difficult to conclude that the number of clusters based on the authors' 
present analysis is definitive. Arguably the objective here should be to find the clustering closest to a 
clustering based on electrophysiological features, rather than a clustering with the largest number of 
clusters. It does not seem that a distance between clusterings was computed, but this is crucial if the 
authors wish to show that their clustering is indeed similar to other types of dimensionality reduction. 
Statements such as "among the excitatory-neuron-dominated clusters, there is more similarity among 
the electrophysiological features, but some relevant differences can be observed." are not in 
themselves sufficient.  
 
In this context, here are some recommendations:  
1) I suggest that the authors provide more evidence for the size and composition of their clusters, 
using complementary algorithms if necessary. Just to give an example from the recent literature, 
affinity propagation has been used to successfully cluster neurons based on morphology (Costa et al. 
Neuron. 2016 Jul 20;91(2):293-311. doi: 10.1016/j.neuron.2016.06.012) and could also be relevant 
for the present data.  
2) The number of clusters is not so interesting per se, cf. the similarity of the clusters to clusters 
based on electrophysiological features. It would be interesting to see whether if clustering based on 



more complicated models reveals a consistent increase in such similarity.  
3) Given the above, can the authors find a smaller subset of parameters, which while not necessarily 
explaining as much variance of individual neurons, provides the most reliable clustering of the models 
into underlying neuronal subtypes? The advantage of a smaller subset parameters is increased ease in 
interpretability and robustness.  
 
Other comments:  
 
* What is the motivation for the specific generalizations of the models chosen by the authors. For 
instance, Izhikevich (2004) provided a comprehensive list of interesting neuronal properties. The 
authors have chosen to incorporate some of these properties, but the specific choice has not really 
been motivated. In addition, not all possible choices of model combinations have been explored (it is 
possible to consider other types of models such as GLIF2 which couple membrane potential to the 
threshold but include none of the other model generalizations). The present generalizations are thus 
presented and motivated in a somewhat ad hoc fashion. Furthermore, it seems that no formal model 
selection was performed (the variance is bound to increase with the complexity of the model, but the 
complexity vs fit tradeoff has not been formally quantified).  
 
* The description of Theta_inf is confusing, despite the fact that this parameter seems to be one of the 
most important to the observed fit. For example, the formal definitions of the models in section 2.1 do 
not actually include Theta_inf anywhere, but at the same the authors include Theta_inf into the 
threshold criterion without describing what this parameter exactly represents. If this parameter is 
indeed a constant, what is its biological interpretation? Could another potentially ad hoc parameter 
have been used instead of Theta_inf to improve the fit? The reason for post-hoc optimization of this 
parameter should be in the main text rather than SI. Furthermore the importance of the statement 
"although Theta_inf did change between the fitting and posthoc optimization step, on average the 
value remains consistent" is unclear because the individual values clearly changed given the improved 
fits.  
 
* The authors actually remove quite a lot of neurons not suitable for fitting to their more complex 
models (a reduction from >700 for GLIF1 to <300 for some of the more complex models). How useful 
can these models be if only a minority of the neurons can be meaningfully fit?  
 
* Could the authors comment on why the inhibitory cf. excitatory neurons were fit consistently 
better?  
 
* How much are the more complex models hampered by lack of fit? For instance, GLIF2 performance 
is actually reduced cf. GLIF1, presumably because the parameter fit is worse. What is the main 
determinant of the poor fit in this case, Theta_inf? This should be discussed in more detail.  
 
* Figure 5. It would make more sense to group each type of neuron separately (excitatory, inhibitory, 
and all neurons). The effect sizes of the models within this groups are more important than the p 
values and these effect sizes will be easier to ascertain through such a grouping.  
 
* The presentation in general is very sloppy. For example, I picked up the following text mistakes 
during my review, and there could be others: eletrophysiological, neurons’s , during during, 
Supplimentary, synthesizeing, distict, and and an, Columns 1 though 5, cells and and neurons, can be 
rearranges as follows, Can an be seen. (for Brain Science, 2016) is used as the last name of an 
author, capital and lower theta are used interchangeably in equations, etc. I urge authors to 
thoroughly clean of the presentation of the manuscript.  
 



Reviewer #2 (Remarks to the Author):  
 
The authors fit a neuron model with varying complexity to a large database of electrophysiological 
recordings and assess whether adding complexity to the model improves its ability to reproduce spike 
trains in response to noisy input and attempt to cluster the neurons into classes that overlap with the 
different cell lines based on the parameters of the model. They conclude that added complexity 
improves performance and model parameters provide a better classification compared to features 
extracted directly from voltage traces.  
 
While I appreciate the approach to assess the utility of a neuron model with the impressive database 
of the Allen Institute, I do not see that this study constitutes a substantial addition to the literature. 
My main concern is on methodological issues. The two main results are not supported in a statistical 
proper way. The improvements of the model performance is assessed using a number of pair 
comparisions with no apparent correction for alpha error inflation (a Kruskal-Wallis test would be 
appropriate here). From visual inspection of the boxplots in Figures 5, it is clear that the different 
models do not notably differ in performance, so even if there are any statstically significant 
differences, they are of no practical significance. Similarly, the improvement in clustering the cell lines 
using the model parameters is claimed to be better compared to clustering based on the voltage trace 
features, but no quantitative support of this claim is given beyond a superficial examination of Figure 
6.  
 
A second concern is on the significance and novelty of the results. Comparisons of model performance 
have been performed before (e.g. Jolivet et al. 2008) and the same is true for clustering approaches 
to neuron classfication (e.g. Ardid et al. 2015), so I don't see the exact contribution of this 
manuscript.  
 
A possible way the authors could go may be a comparison of established neuron models (e.g. in 
comparison with the GLIF variants) in a statistically sound way (and using more appropriate ways of 
comparing them, e.g. Bayesian model selection, which incorporates penalties for model complexity). 
Their rich database of electrophysiological recordings certainly provides a unique resource for such a 
useful endeavor.  
 
 
 
Reviewer #3 (Remarks to the Author):  
 
The models and approach presented in this paper are a valuable resource. The study is conceptually 
not that different from prior GLIF model development studies, but its use of a very extensive dataset 
dataset sets it apart in implementation. The major result is that GLIF models perform well, and that  
their parameter space clusters similarly to that of the phsyiological data.  
 
Major comments.  
1. I feel this is more of a resource study than a research article. As a resource, this is in line with the 
other valuable resources of the Allen Institute. It has brought together a vast amount of data with 
careful model fitting and testing in a range of GLIF detail.  
 
I'm not sure there is yet a strong case that having biologically accurate firing patterns in integrate-
and-fire models makes a huge difference to network computation. Nevertheless, I expect that the 
reported models will find wide use. The analysis on how much is gained by different levels of GLIF 
model will also be useful.  



 
2. I don't gain much physiological or computational insight from this study. There is the intriguing 
point that these models converge during parameter fits, in contrast to the observation that detailed 
ones have multiple solutions (Prinz and Marder). But I feel that is mostly a reflection of these models  
rather effectively mapping physiological traces to parameters.  
 
Minor points:  
Figure 1 conveys rather complicated and extensive information, and the figure is overwhelmed by its 
very long legend. It isn't even referenced in the text. Possibly the authors may to consider having a 
regular introductory section in the main text that refers to the figure?  
 
I was looking to see the experimentally observed spiking pattern in panel (b). It is all very well for the 
GLIFs to converge to a certain spiking pattern, but how close is this to the real thing? This comparison 
shows up later in Figure 4,9.  
 
Page 3, 4 lines from bottom: typo: "eletrophysiological"  
Figure 6 legend: "all optimized model parameters 8"  
Figure 6: There is no panel d, though it is referred to in the legend.  
Figure 11 legend "Can an be seen"  



Dear Reviewers, 
We thank you for taking the time to provide valuable feedback on our manuscript. A summary 
of the changes we have made in the revised manuscript are below: 

A) We have rewritten the text for clarity, readability, and to closer adhere to the 
standards of Nature Communications. 
B) We provide clarification on: 

I) our contribution to the field. 
II) why we chose our specific models. 

C) We have updated our statistic including: 
I) We correct for alpha error inflation using the Benjamini-Hochberg correction.  
II) We have included Mann Whitney U tests on the distribution of differences 
between different GLIF levels to show that the improvement or decrement 
between GLIF levels is different for excitatory and inhibitory neurons.  

D) We have removed the gaussian mixture model from our hierarchical clustering 
method (thus removing any issue with non-gaussian parameter distributions). 
E) We have included an additional clustering method (affinity propagation) to 
substantiate our clustering results. 
F) We have included a similarity metric (the adjusted rand index) to quantify the 
similarities between GLIF clusters, feature clusters and transgenic lines.  
G) We have updated our data set. 
 

In our revised manuscript we are clearer about our exact contribution and novel discoveries. 
Details of these contributions and how they fit into the field are available in the main text.  
Briefly, we show: 

A) GLIF clusters can differentiate transgenic lines better than subthreshold 
electrophysiological features.  This is the first work that has shown the ability of any 
generalization on the leaky integrate and fire model to classify different cell types 
associated with transgenic lines. 
B) Different phenomenological mechanisms are needed to recreate the firing patterns 
of  excitatory and inhibitory neurons. 
C)  The ability of GLIF parameters to differentiate between different transgenic lines 
follows the same trend as the ability of neurons to reproduce spiking behavior.  Thus we 
suspect optimizing simple models to recreate spiking behavior identifies relevant 
parameters for cell type identification. 
D) Quantify the ability of different phenomenological generalizations fit from the data to 
both recreate spike times and differentiate transgenic lines.  This provides an idea of the 
scale of improvement  generalizations on the traditional LIF model yield and will be 
helpful to those creating network models, often which incorporate the use of traditional 
LIF models.   
E) Show that inhibitory neurons are easier to fit than excitatory neurons and provided 
evidence that this is because inhibitory neurons are more stereotypical. 



F) Although it may seem intuitive that increasing model complexity by including 
mechanisms fit to aspects of the voltage waveform would improve spike time 
reproducibility, this is not always the case. 

 
Please note that our data set has changed in this version of the manuscript.  This is because the 
Allen Institute has extensive quality control (QC) criteria neurons must pass to be made publicly 
available.   Many of the neurons we used in the first version of the manuscript were not yet 
publicly released and ended up failing a QC step that takes place after electrophysiology (for 
example at the imaging step).  Also, additional neurons have been recorded which have passed 
all QC criteria.  All data in this manuscript is either already available or will be available in the 
Allen Institute October data release.  All analysis code will also be made available. 
 
We have answered your specific questions inline below. We greatly appreciate your time and 
consideration and look forward to your assessment of our revised manuscript. 
Sincerely, 
Teeter, et al. 
 
Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
The authors describe several classes of generalized leaky integrate-and-fire models of increasing 
complexity, and fit these models to the Allen Institute cell types dataset (celltypes.brain-
map.org/) with the aim of reducing the dimensionality of these cells into a few biologically 
interpretable parameters. They subsequently use these fit parameters to cluster the data and 
compare the resulting clusters to alternative clusters based on electrophysiological features. 
 
There is interesting information in this study (extensions of generalized integrate and fire 
models, applications to the Allen institute data), but it was hard for me to discern the main 
fundamental contribution. In general this contribution should be described more directly. 
Specifically, the aim of this paper does not seem the description of the Allen cell-type data per 
se, while the use of generalized leaky integrate and fire to reduce dimensionality has already 
been described in Pozzorini (2015). In this context, it seems that the major (i.e. non-incremental) 
novelty here is the clustering of the data based on the model parameters. But in this case it 
would benefit if the authors expanded on the description and validation of this aspect of the 
study in much greater detail. I discuss this and other comments below. 
 

The aim of this manuscript is to both describe the GLIF portion of the Allen Cell Type 
Database and demonstrate the scientific discoveries we have made with the models. 
The Pozzorini et al. (2015) paper showed that fitting GIF models could be automated to 
fit biological data.  Here we show that GLIF parameters can differentiate transgenic lines 
using unsupervised learning.  To our knowledge, this is a novel contribution to the field.  



Mensi et al. (2012) showed the potential of GLIF parameters to differentiate cell types.  
They showed the GIF parameters of three, layer 5 neuron types (GABAergic fast spiking, 
GABAergic regular spiking, and excitatory) could be differentiated using PCA and a linear 
classifier.  They were definitely on the right track: here we show the potential of 
unsupervised learning on GLIF parameters to differentiate transgenic lines on hundreds 
of cells.  We show that a limited set of GLIF parameters can differentiate transgenic lines 
better than subthreshold electrophysiological features.          
                                                                      

It seems that the main advantage of the present framework is that the characteristic 
parameters of cells in each cluster may intuitively describe the activity of cells in the cluster. 
However, the parameter space is quite large and so it becomes hard to eyeball the characteristic 
property of each cluster, based on these parameters at a glance.  

We believe that one of the major contributions of our manuscript is that we show GLIF 
parameters can differentiate transgenic lines better than subthreshold 
electrophysiological features.  This has not been previously shown.    

 
The authors seem to justify the use of such a large number of parameters based on the number 
of clusters produced by the algorithm, arguing that a large number of parameters is required to 
have a larger number of clusters. But, these considerations are based on one specific clustering 
algorithm and are not so convincing. The output of the number of clusters for an algorithm is a 
difficult problem without a clear solution: here, the authors base it on the likelihood associated 
with the data being derived from two multivariate gaussians versus a single multivariate 
gaussian, without actually providing evidence that the assumption of gaussianity is warranted 
(and an eyeball of some of the parameter distributions provided by the authors shows strong 
evidence of non-gaussianity). 

This is an excellent point – we originally used a combination of a multivariate Gaussian 
likelihood method (sigClust) and a support vector machine as a check. Given that the 
distributions of some of the parameters are indeed highly non-Gaussian, we removed 
the multivariate Gaussian likelihood criterion, and use only the support vector machine 
as a check to establish the reliability of each binary split. The requirements for the SVM 
are stringent: we use half the cells for training, and require that the test set (the 
remaining half) be assigned with >80% accuracy for each of the two classes.  Originally, 
we did use the mulitivariate gaussian likelihood and then verified it with an support 
vector machine as a check.   
In addition, we include the affinity propagation clustering method to substantiate our 
claims. 

 
More generally, there are many clustering algorithms based on independent assumptions for 
the number of clusters and so it is difficult to conclude that the number of clusters based on the 
authors' present analysis is definitive. Arguably the objective here should be to find the 
clustering closest to a clustering based on electrophysiological features, rather than a clustering 
with the largest number of clusters. It does not seem that a distance between clusterings was 



computed, but this is crucial if the authors wish to show that their clustering is indeed similar to 
other types of dimensionality reduction. Statements such as "among the excitatory-neuron-
dominated clusters, there is more similarity among the electrophysiological features, but some 
relevant differences can be observed." are not in themselves sufficient. 
 

It was not our intention to use number of clusters as our metric of good clustering 
although it did appear that way.  We wanted to assess the ability of GLIF parameters to 
differentiate between transgenic lines.  Since there were 14 transgenic lines in the first 
study (there are 16 in this version), we expected around 14 clusters assuming the 
different transgenic lines have distinct electropysiological phenotypes, and even more 
clusters if the GLIF models could distinguish subclasses of electropyhsiological 
phenotypes within transgenic lines.  We were struggling to find a way to describe our 
clustering results which we have now quantified with the Adjusted Rand Index in this 
revised manuscript. 
Our objective was not necessarily to find the clustering closest to a clustering based on 
ephys features as there is not a set of ephys features that are 'ground truth' in 
clustering.  However, we would expect a relationship between GLIF parameters clusters 
and ephys feature clusters.  In our previous manuscript draft, we tried to convey that 
relationship with confusion matrices.  In this version, will still provide the confusion 
matrices, but also quantify this relationship with the Adjusted Rand Index. 

 
In this context, here are some recommendations: 
1) I suggest that the authors provide more evidence for the size and composition of their 
clusters, using complementary algorithms if necessary. Just to give an example from the recent 
literature, affinity propagation has been used to successfully cluster neurons based on 
morphology (Costa et al. Neuron. 2016 Jul 20;91(2):293-311. doi: 
10.1016/j.neuron.2016.06.012) and could also be relevant for the present data. 

We have included the suggested affinity propagation clustering method to substantiate 
our results.   

2) The number of clusters is not so interesting per se, cf. the similarity of the clusters to clusters 
based on electrophysiological features. It would be interesting to see whether if clustering based 
on more complicated models reveals a consistent increase in such similarity. 

We now include the Adjusted Rand Index as a measure of similarity between different 
clustering paradigms.  As you will see in the revised manuscript, more complexity does 
not necessarily mean better performance (in clustering or spike time reproduction).  
However, the model's ability to differentiate different cre-lines follows the same trend 
as their ability to reproduce spike trains!  

3) Given the above, can the authors find a smaller subset of parameters, which while not 
necessarily explaining as much variance of individual neurons, provides the most reliable 
clustering of the models into underlying neuronal subtypes? The advantage of a smaller subset 
parameters is increased ease in interpretability and robustness. 



We did not specifically look for a minimal set of parameters.  However, we do quantify 
the ability of GLIF model parameters to differentiate different cre lines and show that it 
follows the same trend same trend as their ability to reproduce spike trains.    

 
Other comments: 
 
What is the motivation for the specific generalizations of the models chosen by the authors. For 
instance, Izhikevich (2004) provided a comprehensive list of interesting neuronal properties. The 
authors have chosen to incorporate some of these properties, but the specific choice has not 
really been motivated. In addition, not all possible choices of model combinations have been 
explored (it is possible to consider other types of models such as GLIF2 which couple membrane 
potential to the threshold but include none of the other model generalizations). The present 
generalizations are thus presented and motivated in a somewhat ad hoc fashion.  

We can understand how our overall choice of mechanisms and model choice could have 
been somewhat mysterious in our original submission.  We have edited the text to make 
it clearer.   We chose to limit our investigation to generalizations of the LIF model which 
can be expressed as linear dependencies in the reset rules ( R ), or linear dependencies 
in the dynamics which are membrane potential independent (after-spike currents) or 
membrane potential-dependent (voltage-dependent threshold).  

Furthermore, it seems that no formal model selection was performed (the variance is bound to 
increase with the complexity of the model, but the complexity vs fit tradeoff has not been 
formally quantified).  

For model selection we used the 'gold standard' in the field: the capacity of the model 
to predict responses on a "hold out" testing dataset, which was not used at all in the 
model construction.  It should be noted that a more complex model does not necessarily 
result in improved spike time performance. 
We have added an additional calculation of the Akaike Information Criterion (AIC) 
calculated on the training data set (which would usually be done in situations where 
there is no 'hold out' data) which shows the same trends we see in the explained 
variance ratio. 

The description of Theta_inf is confusing, despite the fact that this parameter seems to be one 
of the most important to the observed fit. For example, the formal definitions of the models in 
section 2.1 do not actually include Theta_inf anywhere, but at the same the authors include 
Theta_inf into the threshold criterion without describing what this parameter exactly 
represents. If this parameter is indeed a constant, what is its biological interpretation? Could 
another potentially ad hoc parameter have been used instead of Theta_inf to improve the fit? 
The reason for post-hoc optimization of this parameter should be in the main text rather than SI. 
Furthermore the importance of the statement "although Theta_inf did change between the 
fitting and posthoc optimization step, on average the value remains consistent" is unclear 
because the individual values clearly changed given the improved fits. 

We apologize for the confusion here.  Theta_inf was, in fact, in the description in the 
equations in section 2.1.  It is one component of the threshold of the neuron.  Theta_inf 



is the threshold of a neuron at rest.  Thus, theta_inf is the threshold uninfluenced by 
spike or voltage-induced changes.  We have added more explanation about why we 
optimize Theta_inf in the main text. 
We could have chosen to optimize other parameters; however, we chose to optimize 
this parameter for several reasons.  First, it describes the basic excitability of the cell 
and, thus, could be likely to compensate for imperfections in the model.  It is also 
measured from a much smaller data set (this threshold is measured from a 
suprathreshold short square: a 3 ms pulse of current) than the rest of the rest of the 
parameters.  R, C, after-spike currents are measured from a linear regression on the 
training noise set, voltage reset rules are measured from all the spikes in the noise 
training set, etc.  In addition, the short square pulse is given at the start of the entire 
ephys pipeline protocol which includes many more stimuli than are used in this study.  
So, it could be that the properties of a neuron change slightly during the recording and 
thus the measured threshold value is different when the noise stimulus is played.  
Overall it is likely a very important parameter and one that we had the least confidence 
in via our methods.   
It is likely that if one chose to optimize more parameters that even better results could 
be found.  However, adding more parameters makes the optimization process much 
longer and prone to overfitting. 
  

The authors actually remove quite a lot of neurons not suitable for fitting to their more complex 
models (a reduction from >700 for GLIF1 to <300 for some of the more complex models). How 
useful can these models be if only a minority of the neurons can be meaningfully fit? 

 
The massive reduction of models with GLIF2, 4, and 5 models is not because they cannot 
be meaningfully fit, it is only because the specific 'triple short square' stimulus protocol 
that characterizes how the neuron inactivates right after a spike (threshold rises via the 
spike component of the threshold theta_s) was not presented to the neuron.  The 
electrophysiological pipeline at the Allen Institute has many stimuli provided to the 
neurons for different experimental programs.  They cannot squeeze all the stimuli 
desired for different programs in one experimental protocol thus we only have the 
'triple short square' stimulus for a much smaller number of neurons.   

 
Could the authors comment on why the inhibitory cf. excitatory neurons were fit consistently 
better? 
  

In our revised manuscript we address this question.  We show that it is likely that 
inhibitory neurons are more stereotypical than excitatory neurons and thus easier to fit.  
Using a multiple linear regression we show that the spike cut length, and a measure of 
spike shape reproducibility are statistically significant in predicting spike time 
performance, whereas, the number of spikes is not. 



How much are the more complex models hampered by lack of fit? For instance, GLIF2 
performance is actually reduced cf. GLIF1, presumably because the parameter fit is worse. What 
is the main determinant of the poor fit in this case, Theta_inf? This should be discussed in more 
detail. 

 
 The fact that GLIF2 performs worse is interesting.  It shows that adding complexity by 
including mechanisms fit from the neural voltage waveform does not necessarily 
increase the spike time performance.   This is not because a non-optimal value of 
theta_inf was found: the performance of GLIF2 does still increase after theta_inf 
optimization.  
Several aspects could contribute to the reason GLIF2 performs worse.  As now stated in 
the Disscusion of our manuscript, "the after-spike currents and the reset rules are fit 
simultaneously on data which does not isolate their effects. This simultaneous fit could 
explain why the addition of reset rules to a model without the after-spike currents 
(GLIF1 -> GLIF2) hurt the fitting of spike times, while the addition of the same rules 
along with after-spike currents (GLIF3 -> GLIF4) improves the fit.  Why the addition of 
after-spike currents in the absence of reset rules (GLIF1 -> GLIF3) is helpful while the 
reset rules alone (GLIF1 -> GLIF2) hurt performance is not clear, but potentially could be 
caused by the difference in time scales of their effects: the reset rules exert their 
influence very close to the time of the spike whereas the after-spike currents decay over 
longer time scales.  

 
Figure 5. It would make more sense to group each type of neuron separately (excitatory, 
inhibitory, and all neurons). The effect sizes of the models within this groups are more important 
than the p values and these effect sizes will be easier to ascertain through such a grouping. 

 
In the original manuscript, we did group inhibitory and excitatory cells separately.  In the 
current manuscript we replace Figure 5 with a figure that shows the ability of individual 
cre lines to reproduce spike times along with inhibitory, excitatory and all neurons.  We 
supply all values in Table 2.  This Figure and Table shows how different mechanisms are 
important for excitatory and inhibitory neurons and how some cre lines are more 
difficult to fit than others.    

 
The presentation in general is very sloppy. For example, I picked up the following text mistakes 
during my review, and there could be others: electrophysiological, neurons’s , during during, 
Supplimentary, synthesizeing, distict, and and an, Columns 1 though 5, cells and and neurons, 
can be rearranges as follows, Can an be seen. (for Brain Science, 2016) is used as the last name 
of an author, capital and lower theta are used interchangeably in equations, etc. I urge authors 
to thoroughly clean of the presentation of the manuscript. 

 
We have rewritten the manuscript for clarity and readability. 

 



Reviewer #2 (Remarks to the Author): 
 
The authors fit a neuron model with varying complexity to a large database of 
electrophysiological recordings and assess whether adding complexity to the model improves its 
ability to reproduce spike trains in response to noisy input and attempt to cluster the neurons 
into classes that overlap with the different cell lines based on the parameters of the model. They 
conclude that added complexity improves performance and model parameters provide a better 
classification compared to features extracted directly from voltage traces. 
 
While I appreciate the approach to assess the utility of a neuron model with the impressive 
database of the Allen Institute, I do not see that this study constitutes a substantial addition to 
the literature.   
 

We hope our revised manuscript has convinced you of our addition to the literature.  
We have listed our contributions to the literature in our introductory letter. In 
particular, we implement GLIF modeling methods on a large set of data and find the 
new scientific result that model parameters can differentiate transgenic lines.  This is 
completely novel.  Furthermore, we show that the ability of GLIF parameters to 
differentiate transgenic lines follows the same trend as their ability to reproduce spike 
times suggesting that creating simple models that recreate spike times is an effective 
method to reduce the high dimensional electophysiological space in order to 
differentiate cell types without the need for a-prori defined features.   
 

My main concern is on methodological issues. The two main results are not supported in a 
statistical proper way. The improvements of the model performance is assessed using a number 
of pair comparisons with no apparent correction for alpha error inflation (a Kruskal-Wallis test 
would be appropriate here). From visual inspection of the boxplots in Figures 5, it is clear that 
the different models do not notably differ in performance, so even if there are any statistically 
significant differences, they are of no practical significance. 
 

We have revised our statistics to include an alpha error correction.  We start with a 
Friedman test (as opposed to a Kruskal-Wallis test because our data is pairwise) which 
shows global differences exist between the different GLIF models' capacity to recreate 
the spike times of hold-out data. We follow with a Wilcoxen pairwise rank-sum test with 
a multiple comparison correction using the Benjamini-Hochberg procedure.   The p-
values were so low to begin with that this correction procedure did not change our 
ability to reject the null hypothesis:  there are statistical differences between the 
different GLIF levels for inhibitory and excitatory cells.  We are not sure how to respond 
concerning whether these differences are 'notable' or not; they are certainly, 
statistically significant.  We thought it was interesting how much phenomenological 
mechanisms did or did not improve the ability of models to recreate the spiking 
behavior of neurons and differentiate transgenic lines. 



 
Similarly, the improvement in clustering the cell lines using the model parameters is claimed to 
be better compared to clustering based on the voltage trace features, but no quantitative 
support of this claim is given beyond a superficial examination of Figure 6.  
 

In this version we have included the Adjusted Rand Index to quantify the similarity of 
different clustering paradigms.   In addition, we have included another clustering 
method (affinity propagation) to substantiate our clustering results.  

 
A second concern is on the significance and novelty of the results. Comparisons of model 
performance have been performed before (e.g. Jolivet et al. 2008) and the same is true for 
clustering approaches to neuron classification (e.g. Ardid et al. 2015), so I don't see the exact 
contribution of this manuscript.  
 

We believe our study will be highly significant to the field.  We characterize a large set of 
neurons under comparable conditions using GLIF models in order to draw broad 
conclusions concerning their applicability.  Jolivet et al 2008 and the INCF have hosted 
single neuron fitting competitions and compared fitting methods with a limited dataset.  
Here we focus on applying a set of methods on a large database of responses, producing 
a resource of models for the community, characterizing the differences in models for 
different cell types, and exploring how adding phenomenological complexity increases 
the performance of the traditional LIF model at reproducing spike times and the 
capacity to classify cell types.  We were specifically interested in this model for the 
reasons listed in our revised manuscript (they are simple, linear in their dynamical 
equations and thus optimized relatively quickly, the mechanisms added are 
phenomenologically relevant, and LIF based neurons are widely used in the field and 
therefore this study will have maximal impact).  We think this manuscript will be of 
specific interest because so much of the field uses traditional LIF models in network 
models despite the better fit models produced via the neuron fitting competitions and 
other studies.   This study will give intuition concerning just how much improvement in 
spike time reproduction and the ability to differentiate different cell lines is gained by 
adding phenomenological complexity. 
In addition, we present the completely novel result that GLIF model parameters can 
differentiate between different transgenic lines without the need for a priori defined 
electrophysiological features.   
 
With respect to the classification of Ardid et al, 2015, we think this is a beautiful paper 
with a related, but very different focus. They use features of electrophysiological traces 
of classification, here we use parameters of models: we do not choose features. They 
justify their clusters by showing their clusters adhere to classifications thought to 'make 
sense'.  Both our study and their study describe the clusters and how we think they 
relate to classifications that 'make sense'.  However, we compare our classification to 



molecularly defined cell types. We are the first to show the potential of GLIF parameters 
to identify transgenic cell lines.  We show that with our limited parameters (I.e we don’t 
use our full set of parameters) we can do as well as subthreshold electrophysiological 
features, but we do not have to manually select which features are important. 
 

A possible way the authors could go may be a comparison of established neuron models (e.g. in 
comparison with the GLIF variants) in a statistically sound way (and using more appropriate 
ways of comparing them, e.g. Bayesian model selection, which incorporates penalties for model 
complexity). Their rich database of electrophysiological recordings certainly provides a unique 
resource for such a useful endeavor. 
 

There are many models published in the literature that we could have implemented and 
tested on our database.  However, an evaluation of all models was outside the scope of 
this study.  Instead we wanted to use simple models to achieve new scientific results. 
We choose our specific models because they are simple, linear in their dynamical 
equations and thus optimized relatively quickly, the mechanisms added are 
phenomenologically relevant, and LIF based neurons are widely used in the field and 
therefore this study will have maximal impact).  However, in this version of the 
manuscript we do report the spike time performance for the morphologically realistic, 
Hodkin-Huxley based models created at the Allen Institute available in the Allen Cell 
Type Database.   
 
It is our understanding that Bayesian model selection is only necessary when there is no 
'hold out' data to prove there is not overfitting.  Here we test our models on 'hold out' 
data.  Therefore, there is no need to penalize models for having more complexity.  
However, we did add an additional metric available in the Supplementary Material using 
the training data and penalize models for complexity using the Akaike Information 
Criterion (AIC).  It follows the same trend as our results on 'hold out' data.  
 
If the increase in spike performance or ability to differentiate cell lines is not compelling 
to an individual researcher, they can choose to use LIF models with the added comfort 
of knowing exactly how their performance could compare to other models of increasing 
phenomenological complexity.   

  



Reviewer #3 (Remarks to the Author): 
 
The models and approach presented in this paper are a valuable resource. The study is 
conceptually not that different from prior GLIF model development studies, but its use of a very 
extensive dataset data set sets it apart in implementation. The major result is that GLIF models 
perform well, and that  
their parameter space clusters similarly to that of the physiological data. 
 

We are glad this reviewer recognizes the merit of our study.  Indeed we draw on the 
work of many of those before us and show that GLIF models are useful for reproducing 
spike times and that they can differentiate molecular cell types comparable to 
subthreshold electrophysiological features. 
 

Major comments. 
1. I feel this is more of a resource study than a research article. As a resource, this is in line with 
the other valuable resources of the Allen Institute. It has brought together a vast amount of 
data with careful model fitting and testing in a range of GLIF detail. 
 

Indeed, we agree this paper will be a useful resource to the community.  However, we 
do use this resource discover novel scientific results.  Therefore, we would prefer the 
manuscript to be presented as an article but would be happy with whatever type of 
publication the Editor believes is most relevant.  

 
I'm not sure there is yet a strong case that having biologically accurate firing patterns in 
integrate-and-fire models makes a huge difference to network computation. Nevertheless, I 
expect that the reported models will find wide use. The analysis on how much is gained by 
different levels of GLIF model will also be useful. 

 
This study can provide one basis for which to start implementing cell types of varying 
complexity into LIF based network models to assess their computational properties.     

 
2. I don't gain much physiological or computational insight from this study.  There is the 
intriguing point that these models converge during parameter fits, in contrast to the 
observation that detailed ones have multiple solutions (Prinz and Marder). But I feel that is 
mostly a reflection of these models rather effectively mapping physiological traces to 
parameters. 
 

We hope that our revised manuscript gives more physiological and computational 
insight.  As mentioned in our introductory letter, our physiological insights include: 1) 
that different mechanisms are important for reproducing the spiking behavior of 
excitatory and  inhibitory neurons, and 2) that inhibitory neurons are more stereotypical 
than excitatory neurons.  The computational insights we contribute are that 1) model 



parameters can differentiate transgenic lines (This is completely novel), 2) we show that 
the ability of GLIF parameters to differentiate transgenic lines follows the same trend as 
their ability to reproduce spike times suggesting that creating simple models that 
recreate spike times is an effective method to reduce the high dimensional, 
electophysiological space in order to differentiate cell types without the need for a-prori 
defined features, and 3) counter to the intuition of many, increasing model complexity 
by adding phenomenological mechanisms fit directly from the neural voltage waveform, 
does not necessarily improve the ability of models to reproduce neural spike times. 
  

Minor points: 
Figure 1 conveys rather complicated and extensive information, and the figure is overwhelmed 
by its very long legend. It isn't even referenced in the text. Possibly the authors may to consider 
having a regular introductory section in the main text that refers to the figure?  I was looking to 
see the experimentally observed spiking pattern in panel (b).  It is all very well for the GLIFs to 
converge to a certain spiking pattern, but how close is this to the real thing? This comparison 
shows up later in Figure 4,9. 
 

We hope Figure 1 in the revised manuscript is more readable.  We have added the data 
to the figure. 

 
Page 3, 4 lines from bottom: typo: "eletrophysiological" 
Figure 6 legend: "all optimized model parameters 8" 
Figure 6: There is no panel d, though it is referred to in the legend. 
Figure 11 legend "Can an be seen" 
 

We have 'cleaned up' the manuscript. 



Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
In the general the authors have done a great job at addressing my comments on the original version 
of the manuscript. I have several remaining questions and comments on the revised version of the 
manuscript and on the authors' main claims.  
 
Specifically, while the fact that ‘GLIF parameters are more effective at differentiating cell types 
associated with transgenic lines than subthreshold electrophysiological features’ is indeed a potentially 
interesting result, more evidence is needed for this result to be convincing.  
 
First, the adjusted rand index is a common measure of partition similarity but is not without problems, 
and information-theory based metrics (e.g. variation of information) are increasingly used for 
assessing clustering similarity in a more principled way. See 
https://doi.org/10.1016/j.jmva.2006.11.013 and 
http://www.jmlr.org/papers/volume6/daume05a/daume05a.pdf for more discussion.  
 
Second, it is unclear how to interpret the displayed values of the adjusted rand index. For instance, 
while it seems that the clustering based on GLIF1 and GLIF2 is not significant, it is not possible to say 
this with certainty. It would be useful to have a null comparison, such as a permutation test; e.g. 
compute partition similarity on clustering of neurons with shuffled labels.  
 
Third, it would be good to illustrate more directly ‘the surprising ability of the traditional LIF model to 
recreate the spike times of a large set of biological neurons’, e.g. with a scatter between cluster 
similarity and explained variance. I couldn’t find this plot in the manuscript.  
 
Fourth, the authors discuss the reasons why ‘increasing model complexity by adding mechanisms fit 
from the voltage waveform does not necessarily lead to increased performance in spiking behavior’, 
but again more direct evidence would help. Specifically, it would be useful to have a direct illustration 
that the models with increased complexity do in fact reproduce subthreshold physiological features 
with increasing accuracy; e.g. a scatter between variance of subthreshold dynamics, and variance of 
spike times. If GLIF2 and other models perform better than GLIF1 at describing subthreshold features, 
then it becomes reasonable to conclude that such features do not directly translate into better 
prediction of spike times. But if GLIF2 and other models do not perform better than GLIF1 at 
describing subthreshold features, then the picture becomes more complicated and one has to focus on 
fitting inaccuracies in model selection.  
 
Relatedly, it would be useful to illustrate this effect more directly using the AIC. At the moment, the 
authors show the relative AIC of GLIF2, etc. compared to GLIF1. But it would be more straightforward 
to plot the absolute values of the AIC for both cases; i.e. when considering the goodness of the model 
for describing spike time variance; and separately when considering the goodness of the model for 
describing subthreshold membrane variance.  
 
Finally, it is interesting that the spike shape substantially increases the goodness of the clustering of 
cells into biologically relevant groupings. Can the authors discuss the relevance of this effect, and 
consider whether future GLIF models could incorporate a spike shape term, in a piecewise linear 
fashion, to increase the accuracy and completeness of these models even further.  
 
 
 



Reviewer #2 (Remarks to the Author):  
 
The authors have significantly improved the manuscript by using the proper statistical methods and 
quantifying the clustering performance as well as describing their aims and methods more clearly. 
However, my major concern regarding significance and novelity of the results remain. Overall, I agree 
with my fellow reviewer that the whole paper read more like a (valuable) resource study than a 
research article. This impression has not changed in the revised version. I will illustrate this 
impression using the key results the authors summarized in the rebuttal letter:  
 
A) GLIF clusters can differentiate transgenic lines better than subthreshold electrophysiological 
features. 
-> This is not a surprising result, as the GLIF parameters represent both sub- and suprathreshold 
aspects of the voltage trace. The fact that only the most complex GLIF variant robustly generates 
better clustering results may suggest that the number of features used for clustering is the most 
important factor. A comparison between the different GLIF variants and a matched number of 
randomly selected features would be fairer. Finally, the Adjusted Rand Index seems small even for the 
full set of features, casting doubt on the overall usefulness of the clustering.  
 
B) Different phenomenological mechanisms are needed to recreate the firing patterns of excitatory 
and inhibitory neurons.  
-> This may be true, but as one can both see in Figure 5 and 14, the differences are minimal at best. 
This is what I meant with "notable": Differences that are statistically significant may still be so small 
that they are of no practical relevance, especially when using a large data set. Effect size measures 
can be used to quantify the magnitude of the difference - from looking at the figures, I am quite sure 
they are minimal.  
 
C) The ability of GLIF parameters to differentiate between different transgenic lines follows the same 
trend as the ability of neurons to reproduce spiking behavior.  
-> This could be an indication that better fitted models are better in differentiating transgenic lines. It 
may also be a byproduct of the increased number of parameters (see above).  
 
D) Quantify the ability of different phenomenological generalizations fit from the data to both recreate 
spike times and differentiate transgenic lines.  
-> See my objections to result A and B  
 
E) Show that inhibitory neurons are easier to fit than excitatory neurons and provided evidence that 
this is because inhibitory neurons are more stereotypical.  
-> Maybe I missed it, but I did not find the mentioned evidence for more stereotypical inhibitory 
neurons and, more importantly, for the claimed relation to the higher explained variance.  
 
F) Although it may seem intuitive that increasing model complexity by including mechanisms fit to 
aspects of the voltage waveform would improve spike time reproducibility, this is not always the case.  
-> I have not understood under which circumstances there is an improvement, and why.  
 
  



Reviewer #3 (Remarks to the Author):  
 
Generalized Leaky Integrate-And-Fire Models Classify Multiple Neuron Types Teeter et al.  
 
This revision addresses most of the technical points brought up in the previous version. It does not 
substantially change the primary concern, that this study is a resource report rather than having a 
significant research component.  
 
The authors emphasize the finding that "GLIF clusters can differentiate transgenic lines better than 
subthreshold electrophysiological features." They also provide a list of physiological and computational 
insights from the model. Together I don't find these to be compelling arguments for a research 
outcome from this study. I continue to feel that the primary contribution here is as a resource.  



Dear Sachin and Reviewers, 

We appreciate your input and helping us to improve our manuscript. Sachin requested we 
streamline the emphasis on the resource aspects of this study. We have done so by adding text to the 
abstract to describe how these models will contribute to the community. We had already included a 
similar comment in the last paragraph of the Discussion and the Reviewers have suggested the 
manuscript already reads as a Resource.  We have answered the questions of the Reviewers inline 
below and have added Figure 7 to the main text and Supplementary Figures 21 through 23 to address 
these questions. In addition, we show the variability in the binary splitting clustering method via 
bootstrapping (Supplementary Material, Figure 24). We have highlighted all additions and regions of the 
manuscript where edits have been made. 

Thank you, 

Teeter, Et Al. 

 
Reviewers' comments: 

 
Reviewer #1 (Remarks to the Author): 

 
In the general the authors have done a great job at addressing my comments on the original version of 
the manuscript. I have several remaining questions and comments on the revised version of the 
manuscript and on the authors' main claims. 

 
Specifically, while the fact that ‘GLIF parameters are more effective at differentiating cell types 
associated with transgenic lines than subthreshold electrophysiological features’ is indeed a potentially 
interesting result, more evidence is needed for this result to be convincing. 

 
First, the adjusted rand index is a common measure of partition similarity but is not without problems, 
and information-theory based metrics (e.g. variation of information) are increasingly used for assessing 
clustering similarity in a more principled way. See https://doi.org/10.1016/j.jmva.2006.11.013 and 
http://www.jmlr.org/papers/volume6/daume05a/daume05a.pdf for more discussion. 

 
 
 
 

We had originally intended to include both the Adjusted Rand Index (ARI) and Variation 
of Information (VOI). We had rejected the latter because it was clearly sensitive to cluster 
number in our analysis, consistent with what has been reported before in other studies (e.g. in 
Vinh et al. 2010). However, thanks to the reviewer's next comment (below), we used the 
shuffled-label approach to establish a baseline for the VOI, and then used this to calculate the 
adjusted VOI (as reported in literature), which seems to be independent of the number of 
clusters. The ARI of shuffled data, by definition (and confirmation – see figure in response to the 
following comment) is zero, so no further adjustment is needed. We thank the reviewer for 
emphasizing the importance of including an additional metric, as it strengthens the cluster 

http://www.jmlr.org/papers/volume6/daume05a/daume05a.pdf


comparison results to have both ARI and AVOI in agreement. 
 

 
Second, it is unclear how to interpret the displayed values of the adjusted rand index. For instance, while 
it seems that the clustering based on GLIF1 and GLIF2 is not significant, it is not possible to say this with 
certainty. It would be useful to have a null comparison, such as a permutation test; e.g. compute 
partition similarity on clustering of neurons with shuffled labels. 

By definition, the ARI for the null comparison (permutation test) is zero. We confirmed 
this by performing a permutation test (please see left panel in the figure below). This suggests 
that the clustering based on GLIF1 and GLIF2, while resulting in relatively low values for the ARI, 
is better than expected by chance. We calculated the adjusted VOI, which is the VOI measure 
adjusted-for-chance and no longer sensitive to the number of clusters (see response to 
comment above). The adjusted VOI is defined as the shuffled VOI – unshuffled VOI. Note that 
VOI is a distance measure, and therefore, before the adjustment is implemented, a value of 0 
would be perfect similarity and higher numbers would be more similar. Therefore, the shuffled 
correction is higher (more dissimilar) as can be seen in the right panel below. When the 
unshuffled VOI is subtracted from the shuffled VOI, the result is a measure where a value of 0 
shows no difference from chance partitioning (similar to the ARI), and higher values indicate 
better agreement among clusters. The use of shuffled labels to calculate the null value of the 
VOI metric is crucial for its normalization. 

 
 
 

Third, it would be good to illustrate more directly ‘the surprising ability of the traditional LIF model to 
recreate the spike times of a large set of biological neurons’, e.g. with a scatter between cluster similarity 
and explained variance. I couldn’t find this plot in the manuscript. 

The requested scatter plot of cluster similarity (compared to Cre lines) and explained 
variance of the models' ability to reproduce spike times can now be found in Supplementary 



Figure 23 a and b. GLIF1 is better than GLIF2 at reproducing spike times but GLIF2 is better at 
identifying transgenic lines. There is a correlation between the ability of a model to reproduce 
spike times and the ability of a model to cluster Cre lines; however, given the small number of 
data points, it is difficult to claim with statistical certainty. When we perform a linear regression 
on these data points, we obtain large r values (binary splitting: ARI r=0.99, AVOI r=0.81, affinity 
propagation: ARI=0.90, AVOI=0.79). However, the p-values associated with testing whether the 
slope is significantly different from zero are below standard significance criteria for 3 out of 4 of 
the clustering similarity metrics (binary splitting: ARI p=0.14, AVOI p=0.17, affinity propagation: 
p=0.01, AVOI=0.21). In addition, as pointed out by Reviewer 2 below, perhaps the number of 
parameters used during clustering could be a contributing factor to 'clusterability' 
(Supplementary Figure 23 e and f). To avoid drawing strong conclusions, we have softened our 
statement concerning the trend between spike time performance and clustering performance. 
We have deleted the statement in our Introduction stating that we observe a trend between 
spike time performance and clustering performance.  We now only point out that the higher 
level GLIF models do better at clustering and reproducing spike times. 

 
Fourth, the authors discuss the reasons why ‘increasing model complexity by adding mechanisms fit from 
the voltage waveform does not necessarily lead to increased performance in spiking behavior’, but again 
more direct evidence would help. Specifically, it would be useful to have a direct illustration that the 
models with increased complexity do in fact reproduce subthreshold physiological features with 
increasing accuracy; e.g. a scatter between variance of subthreshold dynamics, and variance of spike 
times. If GLIF2 and other models perform better than GLIF1 at describing subthreshold features, then it 
becomes reasonable to conclude that such features do not directly translate into better prediction of 
spike times. But if GLIF2 and other models do not perform better than GLIF1 at describing subthreshold 
features, then the picture becomes more complicated and one has to focus on fitting inaccuracies in 
model selection. 

We have created a new Supplementary Figure 22 to address this question along with 
including a text description in the Results section. When considering all data from all models, 
there is a correlation between the ability of a model to reproduce the subthreshold voltage 
traces of the data and the ability to reproduce its spike times (Figure 22a, black line). However, 
the median ability of a model level to reproduce spike times does not predict the median values 
describing the subthreshold voltage match (Figure 22b). Figure 22b shows that models which 
have spike reset rules fit directly from the data (GLIF2, 4 and 5) better reproduce the 
subthreshold voltage of the neuron data. Although GLIF3 performs better at reproducing spike 
times it does less well at reproducing the subthreshold behavior of neurons. In Supplementary 
Figure 23 c and d, we also show the relationship between the ability of models to reproduce the 
subthreshold behavior of neurons and the ability of their parameters to differentiate cre-lines 

In other words, a model's ability to reproduce subthreshold voltage does not mean it 
will have increased ability to reproduce spike times. 

Relatedly, it would be useful to illustrate this effect more directly using the AIC. At the moment, the 
authors show the relative AIC of GLIF2, etc. compared to GLIF1. But it would be more straightforward to 
plot the absolute values of the AIC for both cases; i.e. when considering the goodness of the model for 



describing spike time variance; and separately when considering the goodness of the model for 
describing subthreshold membrane variance. 

We respectfully disagree with the Reviewer in regard to the absolute values of AIC. AIC is a tool 
used for model comparison (K. Burnham, D. Anderson Model Selection and Multimodel 
Inference Springer, New York (2002)). The interpretation of AIC absolute values is perilous and 
we feel uncomfortable including them here. Often, AIC is a tool for model selection used when 
there is not a "hold out" data set available. We explicitly designed the experiments to include a 
hold-out dataset. We believe that adding absolute AIC values would be more confusing than 
focusing on the hold-out performance. We have added a plot of the relative subthreshold 
voltage AIC to Supplementary Figure 18. 

 
Finally, it is interesting that the spike shape substantially increases the goodness of the clustering of cells 
into biologically relevant groupings. Can the authors discuss the relevance of this effect, and consider 
whether future GLIF models could incorporate a spike shape term, in a piecewise linear fashion, to 
increase the accuracy and completeness of these models even further. 

 
The Reviewer brings up an interesting question. Fitting a model to the action potential 

waveform would require the use of non-linear equations such as in Hodgkin-Huxley type 
models. Unfortunately, this would destroy the benefits of using linear equations during 
optimization. However, one could measure the features of the spike waveform and then use 
them along with GLIF parameters during the clustering (similar to the pairwise fashion you were 
alluding to). To see if including both the GLIF parameters and the measured spike shape 
electrophysiological features would improve the identification of Cre lines, we performed both 
the binary clustering and the affinity propagation on the combined set. The results can be 
viewed in Figure 7 and Supplementary Figures 20 and we have added text in the Results section 
to describe these results. Spike shape helps GLIF1 and GLIF2 differentiate Cre lines. The 
improvement for GLIF3 and GLIF4 is small. This leads us to conclude that subthreshold GLIF4 
parameters carry significant information about both the sub and supra threshold 
electrophysiological features. We include an analysis of clusters with both GLIF 4 and spike 
feature parameters and this results in the most accurate clusters we report. 

 
Reviewer #2 (Remarks to the Author): 

 
The authors have significantly improved the manuscript by using the proper statistical methods and 
quantifying the clustering performance as well as describing their aims and methods more clearly. 
However, my major concern regarding significance and novelity of the results remain. Overall, I agree 
with my fellow reviewer that the whole paper read more like a (valuable) resource study than a research 
article. This impression has not changed in the revised version. I will illustrate this impression using the 
key results the authors summarized in the rebuttal letter: 

 
A) GLIF clusters can differentiate transgenic lines better than subthreshold electrophysiological features. 
-> This is not a surprising result, as the GLIF parameters represent both sub- and suprathreshold aspects 



of the voltage trace. The fact that only the most complex GLIF variant robustly generates better 
clustering results may suggest that the number of features used for clustering is the most important 
factor. A comparison between the different GLIF variants and a matched number of randomly selected 
features would be fairer. Finally, the Adjusted Rand Index seems small even for the full set of features, 
casting doubt on the overall usefulness of the clustering. 

The reviewer raises two excellent points here, and we have included additional 
information in the manuscript to address this. First, we have included the mean cluster 
comparison metrics for random subsets of features, matched to the number of parameters for 
each of the GLIF models. This is shown as lighter colored lines in the clustering figure; whereas 
there is an increase in the metrics from 5 to 7 parameters (GLIF1 has 5 parameters, GLIF2 and 
GLIF3 have 7 each), there is no substantial increase from 7 to 9 (GLIF4 has 9 parameters). This 
suggests that, although the number of parameters may play some role in the improvement of 
clustering with GLIF parameters, it is not wholly responsible for the better clustering obtained 
by the successive GLIF models. 

Second, to address the relatively low values of the Adjusted Rand Index (and a second 
measure introduced in this revision, the Adjusted Variation of Information), we calculated the 
ARI and AVOI for transcriptomically-derived types (from Tasic et al. 2016), using the same subset 
of Cre lines. The resulting values for these clusterings are 0.30 (for the ARI) and 2.96 (for the 
AVOI), which are better than those obtained by the GLIF clusterings, but not overwhelmingly so. 
The main explanation for this is that the transgenic lines themselves label overlapping subsets of 
cells, and are thus not a perfect representation of distinct cell types. However, in the absence of 
direct transcriptome-ephys data obtained from the same sets of cells, the Cre lines are the best 
approximation of the “ground truth”, imperfect as they are. This is mentioned in the text, and 
the ARI and AVOI values for the transcriptomically-derived types are included in order to put the 
values of the ARI and AVOI for the GLIF clustering in context. 

 
 

B) Different phenomenological mechanisms are needed to recreate the firing patterns of excitatory and 
inhibitory neurons. 
-> This may be true, but as one can both see in Figure 5 and 14, the differences are minimal at best. This 
is what I meant with "notable": Differences that are statistically significant may still be so small that they 
are of no practical relevance, especially when using a large data set. Effect size measures can be used to 
quantify the magnitude of the difference - from looking at the figures, I am quite sure they are minimal. 

 
While the effects are minimal, they are statistically significant. We believe it is 

biologically realistic to expect some differences. Different neurons certainly have different ion 
channels and passive characteristics that allow them to have different spiking behavior. It 
makes sense that we would see these differences between inhibitory and excitatory and some 
cre-lines in the phenomenological mechanisms. 

 
C) The ability of GLIF parameters to differentiate between different transgenic lines follows the same 
trend as the ability of neurons to reproduce spiking behavior. 



-> This could be an indication that better fitted models are better in differentiating transgenic lines. It 
may also be a byproduct of the increased number of parameters (see above). 

The Reviewer brings up an interesting point concerning the relationship between the 
number of parameters used in clustering and clustering ability.  In Supplementary Figure 23 e 
and f, we supply the relationship between number of parameters fit and the ability to 
differentiate Cre lines. Overall, there is a relationship between number of parameters and the 
ability of the algorithms to differentiate Cre lines. Although the same number of parameters are 
used in the clustering, GLIF3 parameters appear to be more useful (when spike features are not 
used) at differentiating Cre lines than GLIF2 parameters in binary splitting and affinity 
propagation. 

We have replaced our statement, "The ability of GLIF parameters to differentiate 
between different transgenic lines follows the same trend as the ability of neurons to reproduce 
spiking behavior",  by , "5) Parameters obtained from fitting neurons with GLIF models are 
useful in classifying cell types: higher level GLIF parameters are more effective at differentiating 
cell types associated with transgenic lines than subthreshold electrophysiological features." 

 
D) Quantify the ability of different phenomenological generalizations fit from the data to both 
recreate spike times and differentiate transgenic lines. 
-> See my objections to result A and B 

 
See our response to A and B above. 

 
E) Show that inhibitory neurons are easier to fit than excitatory neurons and provided evidence that this 
is because inhibitory neurons are more stereotypical. 
-> Maybe I missed it, but I did not find the mentioned evidence for more stereotypical inhibitory neurons 
and, more importantly, for the claimed relation to the higher explained variance. 

 
 

This is discussed in the second to the last paragraph in section 2.3 Model Performance (on page 
6). As mentioned in the text, the data are shown Supplementary Material, Figure 10. Briefly, we 
show that spike cut length and spike reproducibility (as measured by the standard error when 
measuring spike cut length) are more indicative of a model's ability to reproduce spike times 
than the number of spikes fired by a neuron. 

 
 

F) Although it may seem intuitive that increasing model complexity by including mechanisms fit to 
aspects of the voltage waveform would improve spike time reproducibility, this is not always the case. 
-> I have not understood under which circumstances there is an improvement, and why. 



In this revision, we included a paragraph (paragraph 3 of the 2.3 Model Performance 
section) in the main text and Figure 22 in the Supplementary Material to address the ability of 
the models to reproduce the subthreshold voltage. These results reiterate that the ability of the 
model to reproduce subthreshold voltage does not necessarily translate into the ability of a 
model to reproduce spike times. We added additional text (paragraph 4 of the Discussion 
section) to more explicitly describe possible reasons that mechanisms fit directly from the data 
do not necessarily lead to increased spike performance. 

 
 

Reviewer #3 (Remarks to the Author): 
 

Generalized Leaky Integrate-And-Fire Models Classify Multiple Neuron Types 
Teeter et al. 

 
This revision addresses most of the technical points brought up in the previous version. It does not 
substantially change the primary concern, that this study is a resource report rather than having a 
significant research component. 
 
The authors emphasize the finding that "GLIF clusters can differentiate transgenic lines better than 
subthreshold electrophysiological features." They also provide a list of physiological and computational 
insights from the model. Together I don't find these to be compelling arguments for a research outcome 
from this study. I continue to feel that the primary contribution here is as a resource. 

We thank the Reviewer for taking the time to consider our manuscript. We are happy 
they believe we have made a valuable resource for the community. 



REVIEWERS' COMMENTS:  
 
Reviewer #1 (Remarks to the Author):  
 
I thank the authors for making additional revisions to the manuscript. In general, most of my 
comments have been satisfactorily addressed and from my perspective the manuscript is essentially 
acceptable for publication.  
 
Despite this, there is still one quirk which makes interpretation of the models somewhat confusing. In 
my previous comments I noted that,  
 
“It would be useful to have a direct illustration that the models with increased complexity do in fact 
reproduce subthreshold physiological features with increasing accuracy. If GLIF2 and other models do 
not perform better than GLIF1 at describing subthreshold features, then the picture becomes more 
complicated and one has to focus on fitting inaccuracies in model selection.”  
 
The authors essentially replied that “a model's ability to reproduce subthreshold voltage does not 
mean it will have increased ability to reproduce spike times” which is fine but does not address one of 
the points I was trying to make. Essentially it seems here that the authors do not show a monotonic 
increase in the goodness of fit (for some metric – either for subthreshold voltage or for spike times) 
that one would expect with a monotonic increase in model complexity. For example, Figure 22b shows 
that GLIF1 performs intermediately to GLIF2 and GLIF3; seemingly a counterintuitive result given that 
it is the simplest model and so should perform the worst. I believe a discussion of this effect is 
warranted in the final version of the paper. 
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points I was trying to make. Essentially it seems here that the authors do not show a monotonic increase 
in the goodness of fit (for some metric – either for subthreshold voltage or for spike times) that one 
would expect with a monotonic increase in model complexity. For example, Figure 22b shows that GLIF1 
performs intermediately to GLIF2 and GLIF3; seemingly a counterintuitive result given that it is the 
simplest model and so should perform the worst. I believe a discussion of this effect is warranted in the 
final version of the paper. 

 

We thank the Reviewer for drawing attention to the difficult concepts in our manuscript. We 
agree, it is interesting that there is not a monotonic increase in subthreshold voltage or in spike 
time reproduction with an increase in model complexity.   In the last version of the manuscript 
we did discuss model complexity and give several potential reasons model complexity does not 
necessarily lead to higher performance in either subthreshold voltage or spike time 
reproduction.  In the updated version of the manuscript, we have underlined the previous text 
referring to this topic.  In addition, we have added additional highlighted text meant to help 
guide the reader. 


	ReviewT
	RebuttalA
	ReviewA
	RebuttalB
	ReviewB
	RebuttalC

