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Figure S1. Global distribution of glaciers based on Randolph glacier imagery
(https://eocimages.gsfc.nasa.gov/images/imagerecords/83000/83918/global glaciers rgi Irg.ipg).




Section 1. Time series Decomposition and TWSA Trend Estimation

The Seasonal Trend decomposition using Loess (STL) was used to decompose TWSA monthly time series
as follows:

Stotal = Slong-term + sseasonal + Sresidual (Sl)

where the original signal (Sttal) is decomposed into long-term, seasonal, and residual components, based
on procedures outlined in previous studies (1, 2). The long-term signal is further decomposed into linear
and non-linear (interannual) components by fitting a trend using least squares linear regression and
attributing the remaining long-term signal to interannual signal. The residuals reflect subseasonal signal
and noise. Therefore, the TWSA trends in this study refer to the linear trends estimated from the long-
term signal after STL analysis.

Previous analysis of GRACE solutions used harmonic analysis to decompose the time series (3). We
compared outputs from STL and harmonic analysis, showing similar outputs from both; however, STL can
isolate long-term trends without additional smoothing (Fig. S1).
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Figure S2. Comparison of TWSA time series decomposition using Seasonal Trend decomposition based on
Lowess (STL) and traditional harmonic analysis for the Euphrates Basin. The upper diagram shows the raw
TWSA monthly time series, the long-term trend, and the interannual fit to the data after removal of the
long-term trend. The interannual fit for the harmonic analysis was based on a 13 month moving average.
The lower diagram shows the seasonal fit and the residual after subtracting the long-term trend, and
seasonal fits from TWSA (equation S1).



Section 2: Sources of GRACE Data

Websites for GRACE data are listed in this section.

2.1 GRACE Data

The CSR mascons GRACE TWS anomalies are described in Save et al. (2016) (4) and the data are available

at http://www.csr.utexas.edu/grace/RLO5 mascons.html. These data are provided at 1 degree resolution
and resampled at 0.5 degrees.

Gridded spherical harmonic (GSH) data for Center for Space Research (CSR-GSHT) were obtained from the
Tellus website: http://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/.

JPL mascons data were obtained from the Tellus website http://grace.jpl.nasa.gov/data/get-
data/jpl_global_mascons/. JPL-M data are release 5 (RLO5) version 2 and are described in recent papers
(5-7). The 3x3 degree data are downscaled to 1x1 degree using the CLM4 model and resampled at 0.5
degrees.



Section 3. Model Descriptions

3.1 Global Hydrological Water Resource Models and Land Surface Models

Recent reviews describe many of the basic features of GHWRMSs and LSMs (8-10). Global hydrological
water resource models (GHWRMs) are mainly based on water balance calculations and account for human
interventions, including water use and reservoir management. The two main GHWRMs evaluated in this
study are PCR-GLOBWB(11) and WGHM(12). Water storage compartments in GHWRMs include snow,
canopy, surface water, soil moisture, and groundwater. Surface water is routed in these models. The land
surface models (LSMs) examined in this study are those included in the Global Land Data Assimilation
System (GLDAS-1): Noah version (v) 2.7 (13)(13)(13)(13)(13)(13)(13)(13), Mosaic (14, 15)(14, 15)(14,
15)(14, 15)(14, 15)(14, 15)(14, 15)(14, 15, 16), Variable Infiltration Capacity, (VIC, 16), and the Common
Land Model, (CLM, 17) and (GLDAS-2.1) Noah v. 3.3, and Catchment Land Surface Model (CLSM v Fortuna
2.5). CLSM in GLDAS-2 replaces Mosaic in GLDAS-1. In addition, newer versions of CLM, now termed the
Community Land Model, CLM-4.0 and CLM-4.5 are included in the comparisons. All of the LSMs include
water storage in canopy, snow, and soil moisture. In addition, CLM4.0 and CLM4.5 includes surface water
and groundwater storage and CLSM-F2.5 includes groundwater storage. LSMs are 1 dimensional and do
not simulate lateral flow. GLDAS LSMs are used to integrate observational data to produce water and
energy balanced, spatially and temporally continuous global fields of land surface states (e.g., soil
moisture storage) and fluxes (e.g., evapotranspiration, runoff), using knowledge of relevant physical
processes as simulated within sophisticated models to ensure self-consistency (18). The model
descriptions are summarized in Table S2. CLSM is also described in Koster et al. (2000) (19).

The spatial resolution of the GHWRMs is 0.5° (55 km at Equator) whereas that for the LSMs is 1° (110 km
at the equator. The model time steps vary from daily for GHWRMs and aggregated to monthly outputs
and 3 hr for LSMs, also aggregated to provide monthly output. GHWRM data are available from early to
late 1950s to 2014 whereas LSM output are available from 1979 to present. Most of the models include
some type of subgrid variability. Subgrid variability in PCR-GLOBWB includes different soil types,
vegetation types (natural vegetation and rainfed and irrigated vegetation, including both short and tall
types) and open water bodies (lakes, reservoirs, floodplains and reservoirs). WGHM includes 16 land cover
types and open water bodies also. The GLDAS LSMs generally include subgrid variability with vegetation
tiles/grid cells but do not include water bodies, such as rivers, reservoirs, and wetlands. The LSMs include
a detailed soil vegetation atmosphere transfer scheme for simulating vegetation but do not include
irrigated crops. The models differ in the number, thickness, and depth of the soil zone (Table S2a). Soils
data for PCR-GLOBWB are derived from FAO Digital Soil Map of the World
(http://www.fao.org/nr/land/soils/digital -soil-map-of-the-world). Soils data used for GLDAS LSMs are
originally derived from the FAO data. GHWRMs simulate irrigation and groundwater whereas most LSMs
do not, with the exception of CLM-4.0 and CLSM-F2.5, which include groundwater. Precipitation forcing
for the versions of the two GHWRM s used in this study is the same and is based on Watch Forcing Data
and Era Interim Reanalysis (20). GLDAS uses different forcing sources for different versions (i.e. GLDAS-1,
GLDAS-2), while the LSMs in each GLDAS version are forced with the same forcing datasets (e.g. Noah and
CLSM in GLDAS-2.1). The GHWRMs do not have a true energy balance built into the model framework but
simulate potential ET using Penman Monteith or Priestley Taylor (Table 2a). In contrast, the LSMs have a
built in detailed energy budget in their models. Runoff is simulated as saturation excess or infiltration
excess flow. The GHWRMs include surface runoff, interflow (PCR-GLOBWB) and groundwater discharge



to streams whereas most LSMs do not include the deeper components, except CLM-4.0 and CLSM-F2.5.
Surface water is routed in the GHWRMs but not in the LSMs. The GHWRMs are mostly based on
application of a daily water budget whereas the LSMs include detailed soil physics and simulate
unsaturated flow based on the Richards’ equation. While PCR-GLOBWB is not calibrated, WGHM s
calibrated against mean annual river discharge at 1319 gauging stations by adjusting one to three
parameters in the upstream cells. None of the LSMs is calibrated. One of the big differences between
GHWRMs and LSMs is modeling of human intervention, including human water use and reservoir
management in GHWRMSs and not in LSMs. The evolution and some unique aspects of the models are
described below.

The original version of WGHM greatly overestimated depletion in the Hai River Basin (-56 km3/yr relative
to GRACE CSR-M -1.2 km3/yr, Fig. 5). Most of the Hai Basin is not calibrated to discharge in WGHM;
therefore, the regionalized uncalibrated value of gamma was used (1.0). To improve the agreement with
the GRACE TWSA trend, gamma was reduced from 1.0 to 0.1 and the resultant TWSA trend changed from
-56 km3/yr to -4.1 km3/yr.

All of the models considered conserve mass. Although the term GLDAS implies data assimilation, no data
assimilation is used in the LSMs included in this study.

3.2 Global Hydrological Water Resource Models

PCR-GLOBWB: PCR-GLOBWSB (21, 22) is a conceptual, process-based water balance model that simulates
the terrestrial hydrologic cycle, excluding Antarctica. For each grid cell (0.5°x0.5° globally) and time step
(daily) it simulates the water storage in two vertically stacked soil layers and an underlying groundwater
layer. The model spin-up period is 1901 — 2014 to minimize the impacts of initial conditions. Simulation of
vegetation considers Leaf area index values at dormancy and at the peak of the growing cycle. Irrigated
areas are based on the MIRCA2000 data set (23) combined with crop factors and growing season lengths
from the global crop water model (GCWM) (24). Water use includes irrigation, industrial, domestic, and
livestock sectors. Industrial and domestic water demands are based on population statistics and
socioeconomic drivers (e.g., GDP and electricity production) from FAOSTAT, the UNEP
(http://www.unep.org), and the World Bank (http://www.worldbank). Livestock water demand is based
on Statistics of livestock densities (FAOSTAT, http://faostat.org/). Non-irrigation water demand (industry,
households, and livestock) includes gross water demand and net water demand. In the case of livestock,
the two demands match, for the other two sectors the difference determines the return flow which is
discharged to the surface water. Non-irrigation water demand varies over time. Trends are prescribed on
an annual basis as a function of population, electricity demand, and GDP per capita. In addition, domestic
water demand exhibits a seasonal variation on the basis of temperature.

Irrigation water demand is computed using the FAO guidelines; irrigation is applied whenever soil
moisture falls below a pre-set level and then the soil column is replenished up to field capacity in the case
of non-paddy irrigation and to a water depth of 5 cm above the surface in the case of paddy irrigation.
The irrigation amount is augmented to account for limited efficiency. By default, PCR-GLOBWB considers
conveyance efficiency only (i.e., the irrigation water demand is increased by 40% to obtain the total
irrigation water demand).

Irrigation water demand is dependent on the crop composition and the irrigated area. The crop
composition does not change over time, paddy comprising wet rice, all other crops being covered by non-
paddy irrigation (based on MIRCA). In these runs the fraction between paddy and non-paddy remains
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fixed but the total irrigated area changes over time per cell based on the FAO reported irrigated area, up
to 2010. Any water applied for irrigation that does not transpire or evaporate is ultimately lost as
additional groundwater discharge (return flow).

Water can be abstracted from three sources, surface water, groundwater (fossil and non-fossil), and
desalinated water. The latter is prescribed, the other two fractions are determined as a function of the
two year running mean, thus keeping track of the prevalence of local resources (25). These fractions
determine on a monthly basis from which source water is abstracted. If for some reason the surface water
amount is insufficient, the model falls back on groundwater to meet the resulting gap. Groundwater is
first subtracted from the renewable groundwater; if renewable groundwater is not present, fossil
groundwater is used. The amount of groundwater that can be extracted is capped by the groundwater
pumping capacity which is based on data from the Intl. Water Management Institute (IWMI) and fossil
groundwater is set initially at a maximum capacity from which water can only be extracted until it is fully
depleted.

Water availability (surface water and groundwater) is pooled over zones of ~1 arc degree that are
truncated by country borders, if applicable. Future plans are to change this to an extraction zone per cell
or to include additional information on water supply (infrastructure). The downside of the current scheme
is that a cell does not always have access to its nearest water resources as they may lie outside its
prescribed abstraction zone. However, the influence of this on 30 arc seconds should be relatively minor.

The dynamic water allocation is not always in line with local preferences or infrastructure. Thus, there is
a possibility to use literature fractions of groundwater use and we rely widely on existing data sets for
cities (26) for irrigation (27). Whenever these data are not fully reliable (i.e., extrapolated data),
preference is given to the dynamic water allocation scheme. This blend of prescribed and dynamic
allocation leads to similarity between WaterGap and PCR-GLOBWB where the quality of the empirical data
is strong but to increased differences and stronger dynamics in PCR-GLOBWB where the quality of the
data is poor;

Surface water availability is defined by storage in channels, lakes, and reservoirs within each cell and
abstraction zone. This storage is modified by reservoir operations in the upstream area. Currently
reservoir outflow is a function of reservoir storage only. Future model development will include
downstream water demand to determine reservoir operations.

= URL: http://www.globalhydrology.nl/models/PCR-GLOBWB-2-0/

WGHM 2.2(a): Water GAP(28) consists of both the WaterGAP Global Hydrological Model (WGHM)(12)
and five water use models for the following sectors: irrigation, livestock, household, manufacturing, and
cooling of thermal power plants. The model spin-up period is 1901 — 2014 to minimize the impacts of
initial conditions. Water use is modeled by computing water withdrawals and consumptive water uses in
each grid cell. Consumptive irrigation water use is computed by the Global Irrigation Model (GIM) as a
function of irrigated area (27, 28(29)(29)(29)(29)(29)(29)(29), 29) and climate in each grid cell. Taking into
account information on the source of water, and making assumptions on irrigation water use efficiencies
and return flows, the sub-model GWSWUSE (Ground Water Surface Water Use) computes net
abstractions from groundwater (NA;) and from surface water (NAs)(30). Regarding crops, only rice and

non-rice crops are distinguished, and crop growth periods are not prescribed but modeled. Water
withdrawals are calculated by dividing consumptive use by a country-specific irrigation water use
efficiency. Livestock water use is calculated as a function of the animal numbers and water requirements
of different livestock types. Grid cell values of domestic and manufacturing water use are based on
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national values that are downscaled to the grid cells using population density. Power plant cooling water
use takes into account the location of more than 60,000 power plants, their cooling type, and their
electricity production.

WGHM computes time series of fast-surface and subsurface runoff, groundwater recharge, and river
discharge, as well as storage variations of water in canopy, snow, surface water, soil, groundwater, lakes,
man-made reservoirs, wetlands and rivers as a function of climate, soil, land cover, relief and observed
river discharge. Location and size of lakes, reservoirs and wetlands are defined by the global lakes and
wetland database (GLWD), with an addition of more than 6000 man-made reservoirs (12). Groundwater
storage is affected by diffuse groundwater recharge via the soil, which is modeled as a function of total
runoff, relief, soil texture, hydrogeology, and the existence of permafrost or glaciers. Focused
groundwater recharge from rivers, lakes, and wetlands is taken into account in WGHM in semi-arid and
arid regions in a simple manner.

Water abstractions are derived from surface water or groundwater during pre-processing. Therefore,
WGHM does not dynamically allocate water. Groundwater use during a model run is not dependent on
surface water availability. WGHM has unlimited groundwater availability and does not distinguish
between renewable and nonrenewable groundwater. For abstractions from surface water, the sequence
is: 1) global lakes, 2) reservoirs, 3) river, and 4) local lakes according to water availability. Water use can
be satisfied up to one year after demand. Irrigation water demand is climate-dependent but non-irrigation
water uses are not climate-dependent. Deficit irrigation (70% of full irrigation demand) is modeled in
semiarid regions with substantial amounts of irrigation as well as ongoing groundwater depletion. Water
demand for irrigation varies annually based on time varying irrigated area from FAO. Non-irrigation water
demand varies over time. Trends are prescribed on an annual basis as a function of population, electricity
demand, and GDP per capita. In addition, domestic water demand varies seasonally on the basis of
temperature. Current research on WGHM includes addition of a gradient-based groundwater model and
a glacier model.

= URL:http://www.uni-Frankfurt.de/fb/fb11/ipg/ag/dl/datensaetze/1 irrigation map/index.html

3.3 Land Surface Models (LSMs)

The LSMs considered in this study include models from the Global Land Data Assimilation System (GLDAS)
version 1 and 2.1 and newer versions of the Community Land Model (version 4.0).

Global Land Data Assimilation System: A Global Land Data Assimilation System (GLDAS) is a global, high-
resolution, offline (uncoupled from the atmosphere) modeling system that incorporates satellite- and
ground-based observations to produce optimal fields of land surface states and fluxes in near-real time

for predicting response of water resources to climate variability (18). GLDAS was developed jointly by
NASA Goddard Space Flight Center (GSFC) and National Oceanic and Atmospheric Administration (NOAA)
National Center for Environmental Prediction (NCEP).

GLDAS makes use of the new generation of ground- and space-based observation systems, which provide
data to constrain the modeled land surface states. Constraints are applied in two ways: (1) by forcing the
LSMs with observation-based meteorological fields, biases in atmospheric model-based forcing can be
reduced, and (2) by employing data assimilation techniques, observations of land surface states can be
used to curb unrealistic model states.
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GLDAS Version 1 products (GLDAS-1) include four LSM outputs from NOAH version 2.7, Mosaic, VIC, and
CLM version 2.0 at 1 degree resolution, extending from 1979 to present. The simulations were derived
with the same forcing datasets, used a common set of land surface characteristics datasets, and were
initialized in the same manner. GLDAS-1 LSMs are forced with different sources over time, including
ECMWEF data from 1979 — 1993; NCAR reanalysis from 1994 — 1999; NOAA/GDAS for 2000 and with the
period since 2001 forced with NOAA/Global Data Assimilation System (GDAS) atmospheric analysis fields
(31), the Air Force Weather Agency’s AGRicultural METeorological modeling system (AGRMET) radiation
fields, and NOAA Climate Prediction Center Merged Analysis of Precipitation (CMAP) fields (32). The spin-
up for GLDAS-1 models (MOSAIC and VIC) is based on initializing with the climatological state for Jan 1,
1979. The climatological state is derived from the average of the 1979 — 1989 run. Previous comparisons
of different initializations and spin-ups found that this approach was optimal (33). GLDAS-1 LSMs simulate
subgrid variability based on 1-13 vegetation tiles per grid cell, using a static, 1-km resolution, land cover
classification from the University of Maryland (UMD) based on the Advanced Very High Resolution Radar
(AVHRR) observations. Vegetation type is linked to albedo and roughness height. GLDAS-1 also ingests a
satellite-based, 1-km resolution climatology of Leaf Area Index (LAI). The soil texture class for respective
models is assigned based on percentages of sand, silt, and clay in a given grid cell, using a global soils
dataset (57) (34).

GLDAS Version 2 products (GLDAS-2) currently include two LSM outputs from Noah version 3.3 and CLSM
version Fortuna 2.5 (CLSM-F2.5), and are forced entirely with the Princeton Global Meteorological Forcing
Dataset (35) from 1948-2010. The spin-up for GLDAS-2 models is based on initializing with the
climatological state for Jan 1, 1948. The climatological state is derived from the average of the last 10
years of the 1948 — 1959 run. Previous comparisons of different initializations and spin-ups found that this
approach was optimal (33).A branch off simulation starts in 2001, forced with GDAS atmospheric analysis
fields, AGRMET radiation fields, and the Global Precipitation Climatology Project (GPCP)(36) (hereafter,
GLDAS-2.1). GLDAS-2.1 addressed unnatural trends and uncertain forcing fields observed in GLDAS-1,
upgraded LSMs version, and included other enhancements related to initialization and surface datasets.
In contrast to GLDAS-1, GLDAS-2 LSMs use respective model default parameters and settings, and
switched to MODIS-based land surface datasets.

URL: http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings

NOAH in GLDAS-1 and GLDAS-2:

The NOAH model (37, 38) has been used operationally in the National Center for Environmental Prediction
models since 1996 and is continually improved. The version of Noah used in GLDAS-1 is 2.7, while that in
GLDAS-2 is 3.3. Inherited from the Oregon State University model, the land surface scheme has an explicit
vegetation canopy, soil hydrology, and soil thermodynamics. The scheme is moderate complexity with
single unified ground/vegetation surface (i.e. one surface temperature). The model includes four soil
layers (2 m deep), single layer snowpack, and frozen soil physics. Both versions of NOAH only include
canopy, snow, and soil moisture storage.

MOSAIC in GLDAS-1: Mosaic (39) LSM was originally developed for the fully coupled system in the General
Circulation Model at NASA/GSFC. A unique aspect of MOSAIC is its treatment of subgrid-scale variability,
dividing each model grid cell into a mosaic of tiles(40) based on the distribution of vegetation types within
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the cell. The vegetation tiling approach was adopted to all GLDAS LSMs where multiple type and/or bare
soil can coexist within a grid if they cover more than 10% of total tiles. Surface flux calculations are similar
to those described by Sellers et al. (41). The model includes a canopy interception reservoir, a single-layer
snowpack, and three soil layers. Many of the model attributes are similar to those of NOAH (Table S2a).

VIC in GLDAS-1: Variable Infiltration Capacity (VIC) was developed by Liang et al. (16) and is continuously
evolving at University of Washington. The infiltration and surface runoff scheme are based on Xianjiang
model (42), in which the conceptual schemes are used to represent the surface runoff and base flow. The
subgrid heterogeneity in land cover, topography, and precipitation are modeled by a mosaic-type
representation. As a macroscale hydrological model, VIC models subgrid variability in the soil moisture
storage capacity and base flow as a nonlinear recession. The version used in GLDAS-1 is 4.0.4 which
includes three soil layers (43) and was simulated in water balance mode with an energy balance and
without the frozen soil algorithm (44). Canopy water storage and lake water storage are not included in
this version of the model. In the water balance mode, the soil surface temperature is assumed to be the
air temperature for the current time step, eliminating the ground heat flux solution and the interactive
processes required to close the surface energy balance.

CLM-2.0 in GLDAS-1: Community Land Model (CLM, (45)) was developed by a collaboration of scientists
with interests in making a general land surface model available for public use at the National Center for
Atmospheric Research (NCAR). CLM2.0 includes superior components from each of three contributing
models: the NCAR LSM (46), the Biosphere-Atmosphere Transfer Scheme, and the LSM of the Institute of
Atmospheric Physics of the Chinese Academy of Sciences (47). CLM2.0 includes canopy, snow, and soil
moisture storage compartments. CLM has added complexity including ten soil layers, multiple snow layers,
and one vegetation layer. The subgrid variability is represented as the plant functional type (PFT) and
bare ground, instead of a land cover class. The Plant Functional Types (PFT) capture the biophysical and
biochemical differences between plants as to their functional characteristics. The version of CLM in
GLDAS-1 is admittedly older, 2.0.

CLM-4.0: Details of the newer versions of CLM are provided in Technical Notes (48, 49). Surface water is
routed using a simplified version of the TOPModel (50) and groundwater storage is modeled using a
simplified unconfined groundwater scheme (51). In this study, CLM4.0 simulations were forced with
atmospheric data for the period 1900 — 2014 from the CRU-NCEP data set (52).

CLSM-F2.5 in GLDAS-2.1

The Catchment Land Surface Model (CLSM (19)) was developed as a new strategy for improved
characterization of subgrid soil moisture variability and its impact on runoff and evaporation generation.
The version of CLSM used in this study is Fortuna 2.5 within GLDAS 2.1. The CLSM uses topographically
derived catchment as the land surface element, instead of a grid in traditional LSMs. Subcatchment
variability of soil moisture is dynamically distributed into fractions of saturated, not saturated, and below
wilting point, each regime controlled by appropriate runoff and evaporation processes. Unlike other LSMs,
CLSM doesn’t have vertical soil layers. The primary soil moisture prognostic variable is the catchment
deficit, defined as the average amount of water that would have to be added to bring the catchment to
saturation. The vertical distribution of equilibrium soil moisture profile is derived from the relations of

Clapp and Hornberger (1978) (53). CLSM does not explicitly model the water table depth but water table
13



depth is estimated by using the TOPMODEL formulation (54) for the topographic index. The energy
balance calculations and canopy interception reservoir formulation are exactly as in the Mosaic model.
Snow is represented with the three-layer snow model (55). In addition to canopy, snow, and soil moisture,
groundwater storage can be estimated from the catchment deficit and the maximum water capacity,
based on the depth to bedrock. Previous studies have increased the bedrock depth uniformly by 2 m to
capture the dynamic range in total water storage (56). CLSM is the land model in the Goddard Earth
Observing System Model Version 5 (GEOS-5) system at NASA/GMAO.
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Section 4.0: Uncertainty in GRACE Data

Approaches used to estimate data uncertainties related to measurement and leakage are similar to those
described in Scanlon et al. (57). These descriptions are repeated in this section.

4.1 Measurement and Leakage Uncertainties

Center for Space Research Mascons

Uncertainties in CSR-M data are based on the residuals after removing the component signals (long-term
trend [including interannual] and seasonal) using STL analysis (equation S1). The root mean square (RMS)
of the residual is used to approximate the measurement uncertainty in CSR-M. We realize that this
approach may overestimate the uncertainty because the residual may still contain sub-seasonal signal.
Because of the high grid resolution of CSR-M (1°) leakage errors were assumed to be negligible and were
neglected.

Jet Propulsion Lab Mascons

Measurement and leakage errors were considered in JPL-M solutions. Measurement errors for each
mascon are prescribed by the diagonal elements of the formal posteriori covariance matrix from the
GRACE data inversion, scaled by a factor 2. The factor 2 is empirical, and is selected to roughly match the
magnitude of the residuals with respect to a fit of a linear and annual component for each mascon
(58). These residuals represent both GRACE measurement noise, as well as real interannual signal; as
such, the factor 2 is assumed to provide a conservative estimate of uncertainty. Measurement errors over
a basin are calculated using an area-weighted root sum of squares of measurement errors for each
mascon element within the basin.

Leakage errors arise because the shape of the hydrological basins does not precisely conform to the
boundaries of the mascon elements. Leakage errors are quantified through a synthetic simulation. We
create a 5-year (2005-2009) monthly time series of hydrology and ocean mass variations at 1° x 1° spatial
resolution by combining the CLM (hydrology) model (59) and the OMCT (60) (ocean) model. This
composite model is then mascon-averaged to emulate the spatial sampling of the JPL mascon solution.
We then apply the CRI filter to the composite model to correct for leakage error across coastlines, and
apply two sets of gain factors: one derived from the CLM model, and the other from the GLDAS land
surface hydrology model (18). We then compute basin averages using both the original composite model
at 1° x 1° spatial resolution, and the model after it has been mascon-averaged, CRI-filtered, and scaled.
The RMS of the monthly differences between the two time series for each basin represents the leakage
error. Because we study the effects of two differing hydrology models in computing the gain factors
(GLDAS and CLM), the final reported leakage error is the average between the two computed RMS values
using each set of gain factors. This method of computing leakage error is similar to what is performed in
a previous study (7); the reader is referred to this article for more information.

The combined measurement and leakage error is calculated by summing the individual errors in
guadrature (RSS, Root Sum of Squares of measurement and leakage errors).

Because of the Kalman filter time correlation used in processing JPL-M, the gravity estimate for all
previous months changes slightly with the processing of each additional month. Each time data for a new
month are released, data for all previous months are updated.
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Gridded Spherical Harmonics (CSR)

In the gridded GRACE SH solutions, uncertainty estimates (cm water) are provided on the Tellus website,
including GRACE measurement errors and leakage errors. Measurement errors are based on the TWSA
residuals after subtracting the long-term trend and annual and interannual signals. This approach may
overestimate the uncertainties because the residuals may contain interannual and subseasonal signals in
addition to noise. Grid cell measurement errors are multiplied by the scaling factors and are highest near
the equator (up to 36 mm) and decrease towards the poles (61). This poleward trend is attributed to
greater satellite ground tracks near the poles. Leakage errors are estimated from the root mean square
(RMS) difference between the unfiltered and filtered (truncated and 300 km Gaussian filter) monthly
mean TWS estimates from the CLM-4.0 model which are then multiplied by the ratio of RMS variability of
the filtered GRACE and CLM4 time series (61):

L _ _ RMSGracE
E} = RMS(ASt — kASE) RS peaor (S2)

where the subscript g is grid cell, superscript L is leakage, ST is true water storage estimated from the
CLM4 model and SF is filtered water storage from GRACE, and k is the scaling factor. The leakage error is
multiplied by the ratio of the RMS of GRACE and the CLM4 model because the amplitude of the GRACE
signal is generally much greater than that of the model. Leakage errors are residual errors after filtering
and rescaling. Both measurement and leakage errors are considered time invariant. The total error in
TWSA for each grid cell is calculated by summing the measurement and leakage errors in quadrature for
each grid cell:

Fror = | (E2) *+(ELY (s3)
Basin Scale Errors

Estimated total errors in a basin are less than the average of grid cell errors because of spatial correlation
(Long et al., 2015). Basin scale errors were calculated following Landerer and Swenson (2012) (61):

Umb(lb) = var/N (54)

Var = YL Y wy w;jCov(x;x;) (S5)

Cov(xixj) = 0;0;exp (;Zi’) (S6)

dij= a%A\/[(long(i) — long(j) cos(lat(i))]? + [lat (i) — lat(j)]? (S7)

where omp is the measurement error of a basin; oy, is the leakage error of a basin; N is number of grid cells
in a basin; subscripts i and j represent two different grid cells in a basin; Var is the measurement or leakage
error variance of mean TWSA of a basin; w is the area weight at each grid cell in the basin and simplified
to 1/N under the assumption of equal contribution from each grid cell to the basin average TWSA; Cov is
the covariance between two grid cells; o is the standard deviation of measurement or leakage error of a
grid cell; di; is the distance between two grid cells; do is a decorrelation-length scale, i.e., 300 km for
measurement error and 100 km for leakage error; a is the radius of the Earth (6,371 km); and long and lat
denote longitude and latitude of a grid cell (62).
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Figure S3. Uncertainty estimates calculated from residuals in equation S1 for the three GRACE solutions.

These estimates of TWSA errors may overestimate actual errors because the residuals may contain
subseasonal signal.
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Figure S4. Uncertainty estimates for JPL-M and CSRT-GSH, including measurement, leakage, and total
(sum measurement and leakage) uncertainties.
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Table S1. Summary of measurement and leakage errors for the three GRACE solutions according to basin
areas (large: >0.5x10° km?2; medium (0.1x10° to 0.5x10° km?; small, <0.1x10° km?). The total error is
estimated by summing the measurement and leakage errors in quadrature. RMS is root mean square.
RMS of residuals assumes the residuals from the time decomposition (equation 1) approximates the
error.

Error (mm) CSRT-GSH JPL-M(v2) RMS of residuals (STL analysis)

Area Measure- Leakage Total Measure- Leakage Total CSRT- CSR- JPL-

ment Error ment Error GSH.sf M M.sf

Median Error (mm)
>0.5 x10° km? 8.6 7.9 12.0 6.8 2.4 7.7 15.0 12.0 14.7
0.1 < Area<0.5 13.5 15.0 20.7 13.1 6.8 15.7 20.0 17.7 20.7
<0.1 x106 km? 19.7 23.3 31.9 16.5 10.5 20.8 26.6 18.3 24.0
Mean Error (mm)

>0.5 x106 km? 9.1 10.0 13.8 7.4 2.8 9.3 16.3 13.9 16.7
0.1<area<0.5 15.9 18.7 25.2 14.1 9.1 17.5 21.1 18.3 22.1
<0.1 x10° km? 22.4 26.3 35.3 17.6 14.2 23.3 28.6 20.0 27.4

4.2 Uncertainties in GRACE TWSA Trends
The uncertainties in GRACE TWSA trends incorporates

(1) variability among the three GRACE solutions (solution uncertainty),
(2) uncertainty in the trend (slope of linear regression) for each solution based on linear regression, and
(3) uncertainty related to glacial isostatic adjustment (GIA)

To estimate solution uncertainty we calculated the standard deviation of the trends from the three GRACE
solutions. Trend uncertainties reflect uncertainties in the slopes from the linear regression analysis for
each solution and then the standard deviation of the three trend uncertainties was calculated.
Uncertainties related to GIA were computed from the 1-sigma model ensemble differences from four different
global GIA models, including the new ICE-6G model (63), and three other models (64-66).

Uncertainties from all three sources were combined by summing the uncertainties in quadrature (RSS, root
sum of squares).

Net TWSA trends were estimated by summing trends over all basins. The corresponding uncertainty was
estimated by summing the combined uncertainties for each basin in quadrature (RSS).

4.2a Uncertainty in Contribution of Land Water Storage to Global Mean Sea Level

Geocenter corrections impact TWSA trends because there are more continents in the northern
hemisphere and these corrections are incorporated into each GRACE solution. However, there are
uncertainties in these corrections, which are described in Reager et al. (67). We apply the uncertainty of
0.05 mm/yr from this source in our estimate of uncertainty in the land water storage contribution to GMSL
along with the 0.04 mm/yr uncertainty from GRACE solutions, trends, and GIA, resulting in a total
uncertainty of 0.09 mm/yr (Fig. 7).

4.2b Testing Significance of TWSA Trends

To assess the significance of the trends we performed the Mann-Kendall test on the long-term TWSA data
based on the STL analysis (equation 1, data after removal of seasonal and residuals). Because our analysis
focused on basin scale TWSA rather than grid scale TWSA as in the previous study, problems with leakage
and spatial correlation should be greatly reduced with basin scale mascons. We focused the analysis on
basins with large decreasing or increasing trends (trends outside +0.5 km?3/yr). Results show that all basins
show significant trends in at least one of the three GRACE solutions (CSR-M, JPL-M.dsf, and CSRT-GSH.sf)
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with the exception of the Congo basin where none of the solutions was significant. Approximately 85% of

the basins have significant trends in all three GRACE soltuions and ~15% of the basins had significant
trends in at least 2 GRACE solutions.
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Figure S5. Uncertainties in TWSA trends for GRACE CSR-M, JPL-M and CSRT-GSH.sf solutions for the 186
basins, ranked according to basin area. Uncertainties related to glacial isostatic adjustment are also
shown based on averaging uncertainties for 4 models.

19



¥y

Irrigated area (%)
o

[<1

m1-10

10 - 31

Figure S6. Percent irrigation in river basins examined in this study based on data from Food and

Agricultural Organization (FAO) Global Map of Irrigated Areas
(http://www.fao.org/nr/water/aquastat/irrigationmap/index.stm).

20



a) GRACE % s
é;:% _~ : » %
CSRM L3 L - g s 4
(mmiyr) &
9 g L
I 10-15 - b . <
B 5- 10 I/ & ‘i} % /
Clos-5 5-
~ |05-05 " ]os5-05
5-05 &ﬁ’ & g;j 5-05 &fe’
i -10-5 i B -10--5
B 20 - -10 B 27 - -10
c) d)
&
CSRT-GSH ! e MOSAIC
(mmiyr) ] (mmiyr)
I 10 - 31 - I 10-41
B s- 10 Bs-10
Clos-5 INos-5
~ |05-05 " ]os5-05
= § =0 | =
I -19--10 . 57 - 10
e) f)
3 % 2
vic VSW ﬁ) NOAH-3.3
(mmiyr) (mmiyr) ¥,
Il 10-13 I 10- 11
(]
5o y s 10 ff-?L\
. 105-5 <% % "E ~los-5 {
" ]05-05 ~ " ]05-05 \‘\y %
15-05 g’% i r
i 10-5 0 & B 10-5 4
. 29--10 14 --10 5
9 P
-, o
CLSM CLM-4.0
(mmiyr) (mmiyr)
I 10- 19 Il 10-45
s 10 B 5- 10 *\_
Ios5-5 Ios-5 4
T ]o5-05 " ]os-05
5-05 -5--05 &fz’
B 10-5 Il -10--5
I 45--10 . 27 - 10
i) GHWRM = S GHWRM s
» el
=y v o ;\7‘5\\153
. J 3\\2 e ,) U
% - %Q‘Lyj q ( S <
¢ Ea . > ‘ -
WGEMH fj T »fs k i PCR-GLOBWE 1 = \ﬁ : =
(mmiyr) ; & (mmyr) ) {’ ‘J\ o
=10-12 \) =10 62 .
5-10 5-10 w
T]o05-5 Tlo5-5 5 = .
T ]05-05 ~ ]o5--05 ; > s
505 %’f “s-05 ! %%
o -10-5 B -10-5 = vy
I -25--10 I -50 - -10

Figure S7. Long-term (Apr. 2002 — Dec 2014) trends in total water storage anomalies (anomalies based
on 2004 — 2009) expressed in mm/yr from GRACE ([a] CSR-M, [b] JPL-M, and [c] CSRT-GSH), land surface
models (d) MOSAIC and (e) VIC from GLDAS-1.0 and (f) NOAH-3.3 and (g) CLSM-F2.5 from GLDAS-2.1 and
(f) and GHWRMs, including (i) WGHM and (j) PCR-GLOBCLM-4.0).
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Figure S9. Time series of Total Water Storage Anomalies (TWSA) (deseasonalized) for Amazon and Amur
basins and cumulative precipitation anomaly from Princeton Global Meteorological Forcing Dataset
(PGMFD) from NOAH-3.3 (GLDAS-2.1) and WFDEI.
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Figure S9 (cted.). Time series of Total Water Storage Anomalies (TWSA) (deseasonalized) for Arkansas and
Brahmaputra basins and cumulative precipitation anomaly Princeton Global Meteorological Forcing
Dataset (PGMFD) from NOAH-3.3 (GLDAS-2.1) and WFDEI.
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Figure S9 (cted.). Time series of Total Water Storage Anomalies (TWSA) (deseasonalized) for Brazos and
Columbia basins and cumulative precipitation anomaly from Princeton Global Meteorological Forcing
Dataset (PGMFD) from NOAH-3.3 (GLDAS-2.1) and WFDEI.
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Figure S9 (cted.). Time series of Total Water Storage Anomalies (TWSA) (deseasonalized) for Don and
Euphrates basins and cumulative precipitation anomaly from Princeton Global Meteorological Forcing
Dataset (PGMFD) from NOAH-3.3 (GLDAS-2.1) and WFDEI.
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Figure S9 (cted.). Time series of Total Water Storage Anomalies (TWSA) (deseasonalized) for Ganges and
Hai basins and cumulative precipitation anomaly from Princeton Global Meteorological Forcing Dataset

(PGMFD) from NOAH-3.3 (GLDAS-2.1) and WFDEI.
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Figure S9 (cted.). Time series of Total Water Storage Anomalies (TWSA) (deseasonalized) for Huanghe and
Huaihe basins and cumulative precipitation anomaly from Princeton Global Meteorological Forcing

Dataset (PGMFD) from NOAH-3.3 (GLDAS-2.1) and WFDEI.
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Figure S9 (cted.). Time series of Total Water Storage Anomalies (TWSA) (deseasonalized) for Indus and
Kolyma basins and cumulative precipitation anomaly from Princeton Global Meteorological Forcing
Dataset (PGMFD) from NOAH-3.3 (GLDAS-2.1) and WFDEI.
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Figure S9 (cted.). Time series of Total Water Storage Anomalies (TWSA) (deseasonalized) for the Lena and
Mackenzie basins and cumulative precipitation anomaly from Princeton Global Meteorological Forcing

Dataset (PGMFD) from NOAH-3.3 (GLDAS-2.1) and WFDEI.
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Figure S9 (cted.). Time series of Total Water Storage Anomalies (TWSA) (deseasonalized) for the

and Missouri

Mississippi

basins and cumulative precipitation anomaly from Princeton Global

Meteorological Forcing Dataset (PGMFD) from NOAH-3.3 (GLDAS-2.1) and WFDEI.
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Figure S9 (cted.). Time series of Total Water Storage Anomalies (TWSA) (deseasonalized) for Nile and
Murray basins and cumulative precipitation anomaly from Princeton Global Meteorological Forcing

Dataset (PGMFD) from NOAH-3.3 (GLDAS-2.1) and WFDEI.
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Figure S9 (cted.). Time series of Total Water Storage Anomalies (TWSA) (deseasonalized) for the Ob and
Okavango basins and cumulative precipitation anomaly from Princeton Global Meteorological Forcing
Dataset (PGMFD) from NOAH-3.3 (GLDAS-2.1) and WFDEI.
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Figure S9 (cted.). Time series of Total Water Storage Anomalies (TWSA) (deseasonalized) for the Orinoco
and Parana basins and cumulative precipitation anomaly from Princeton Global Meteorological Forcing
Dataset (PGMFD) from NOAH-3.3 (GLDAS-2.1) and WFDEI.

34



150 [\ - 200
d i JaaW
100 \/\ /v v/ Volga | w5
E 50 4 k f‘/\\\._/\/ e 1A /:\ N AN 5 P'JE
E . / e . ) l.. . -_’ ':: ..:
Z 0 M giﬁi\’m‘%ﬁ;w h A /ﬁ%ﬂ A A\ P\P\n - ﬁ&': I/’\' L 0 i’
2 W'V WA WA LSV 2
~ ﬁ\gj \vN [N} / \ N VV\/ﬂ \7 \\ /\)_ _100I—
-100 - : A
V \J
_150 ' | | I | ! ! ! \lj' ! I } \X/\'\‘ '200
200
E 100 i o
£ 04 o //_/3’-’\ //\ '”‘f‘*’ j\ /\\._N\M/ \'\\,«v_ =
& 100 4 W Al o ~/J 5
Q ~ N O
-200
02 03 04 05 06 07 08 09 10 11 12 13 14 15
[ GRACE Uncertainty ------ PCR-GLOWB —— VIC PGMFD
—— GRACE CSR-M —— NOAH 3.3 —— CLM 4.0 ——— WFDEI
------ WGHM MOSAIC —— CLSM
130 400
100 4 . sy
A Yangtze : :
T 504 Ak At /r 9t2€ | %7 g Y 200 ~
A AP PR S
Z 0 - l'yw /P&.“, 7 n.ﬁ;(.]ﬁ;\ i AA\ AT m\ AT YA 0 Z
3 2TVTRAVVALRG D W T | ° 2
= 50 - 7 =
= v \7\\{ -200 F
-100 -
-150 ~400
200 —
100 . /QVMM\\‘;W/‘W\__‘N\ - 200 mg
E 04 B VAN -0 =
E 100 4 AN _A\,/n_/‘::\\\_%m:\\\/\ f_ 200 Z
G-200 1 = WP Ao L 00 &
-300 o/

02 03 04 05 06 07 08 Q9 10 11 12 13 14 15

Figure S9 (cted.). Time series of Total Water Storage Anomalies (TWSA) (deseasonalized) for the Volga and
Yangtze basins and cumulative precipitation anomaly from Princeton Global Meteorological Forcing

Dataset (PGMFD) from NOAH-3.3 (GLDAS-2.1) and WFDEI.
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Figure S9 (cted.). Time series of Total Water Storage Anomalies (TWSA) (deseasonalized) for the Yenisei
and Yukon basins and cumulative precipitation anomaly from Princeton Global Meteorological Forcing

Dataset (PGMFD) from NOAH-3.3 (GLDAS-2.1) and WFDEI.
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Figure S9 (cted.). Time series of Total Water Storage Anomalies (TWSA) (deseasonalized) for the Zambezi
basin and cumulative precipitation anomaly from Princeton Global Meteorological Forcing Dataset

(PGMFD) from NOAH-3.3 (GLDAS-2.1) and WFDEI.
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Figure S10. Boxplot showing basic statistics of GRACE and modeled TWSA trends for rising trends (GRACE
CSR-M >0.5 km?3/yr) and declining trends (CSR-M <-0.5 km?3/yr). Boxplots include median (black horizontal
line, mean red line, interquartile range (25 — 75 percentiles, box), 10" — 90" percentiles (bars) and 5% —
95t percentiles (points). The GRACE solutions include CSRT-GSH.sf; CSR-M, and JPL-M.dsf (downscaled),
GHWRMs (WGHM and PCR-GLOBWB), and LSMs (GLDAS-1.0 MOSAIC and VIC; GLDAS-2.1, NOAH-3.3 and
CLSM) and CLM-4.0.
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Figure S11. Comparison of TWSA trends from PCR-GLOBWSB relative to those from WGHM showing large
differences in certain basins, such as the Amazon, Indus, and Orinoco basins. For trends, see Fig. 5.
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Figure S12. Comparison between a) WGHM with human intervention (WGHM) and (b) WHGM with no

human intervention (NHI). Similar plots for (c) PCR-GLOBWB and (d) PCR-GLOBWB-NHI.
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Figure S13. Global mean sea level anomaly derived from GRACE TWSA, including CSR and JPL (downscaled,
dsf) mascons solutions (CSR-M and JPL-M) and CSR Tellus gridded spherical harmonic solution rescaled
(CSRT-GSH.sf). TWSA derived from GRACE (km3/yr) was divided by the area of the oceans (361x10° km?3)
to estimate the contribution of TWSA to GMSL.
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Figure S14. Contributions of land water storage trends to global mean sea level (GMSL) from this study
and from the literature with similar time periods (2002-2014). The corresponding data and sources are
provided in Table S12. GRACE TWSA trends include human and climate impacts and show similar results
for this study relative to previous studies. Human impacts are derived from models (WGHM and PCR-
GLOBWSB runs with and without human intervention in this study). Human impacts from the literature
include IPCC (68) and Wada et al. (69). Climate contributions to land water storage and GMSL were
estimated by subtracting contributions from human intervention from GRACE trends. Results show that
GRACE and climate contribute negatively to GMSL (reducing the rate of global sea level rise) whereas
human impacts contribute positively to GMSL (increasing rate of global sea level rise). The impacts of
climate are about a factor of 2 greater than those of human intervention.
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Figure S15. Timeseries of component and total water storage anomalies to evaluate spin-up in the WGHM
total water storage anomaly.
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Figure S16. Timeseries of component and total water storage anomalies to evaluate spin-up in the CLM-

4.0 model. SNWSA: snow water storage anomaly; SWSA, surface water storage anomaly; SMSA, soil
moisture storage anomaly; GWSA, Ground water storage anomaly; TWSA, total water storage anomaly.
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Figure S17. Comparison of TWSA trends from an early version of the CLM model (CLM-2.0; GLDAS 1.0
suite) and a recent version of the model (CLM-4.0).
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Figure $S18. Comparison in TWSA trends from a) WGHM with WFDEI climate forcing, b) WGHM with CRU
forcing, and ¢) WGHM with GPCC forcing. All forcings used for WGHM are available at 0.5° x 0.5°
resolution. Monthly CRU TS 3.23 (70) values of precipitation, number of rain days, temperature and
cloudiness were used together with a temporal disaggregation scheme (12) to obtain daily values (variant
CRU). CRU is available from 1901-2014. For forcing variant GPCC, we used GPCC v.7 (71) monthly totals
instead of CRU for the years that are available 1901-2013, for 2014 we used CRU TS 3.23 instead. WATCH
Forcing Data based on ERA-Interim reanalysis (WFDEI, (20) daily forcing variables precipitation (bias
corrected to monthly GPCC for 1901-2013 and CRU for 2014), temperature, shortwave downwelling and
longwave downwelling radiation was used. Differences are high in particular for the station density of
precipitation, not very much for total sums (73; Table 4) in the input data, but largely due to the applied
undercatch correction method (72, 73).
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Figure $S19. Comparison of the differences between GHWRMs (PCR-GLOBWB minus WGHM, blue) relative
to the difference between calibrated and non-calibrated WGHM runs (red). The result shows that the
differences between the two models are much greater than the difference between the calibrated and
non-calibrated WGHM; therefore, calibration alone cannot account for the differences between the
GHWRMs.
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Table S2. (a) Description of models used in this study.

NOAH-3.3 MOSAIC vic CLM CLSM
MODEL > WGHM PCR-GLOBWB NOAH GLDAS 1.0 GLDAS 2.1 GLDAS 1 GLDAS 1 GLDAS 1 GLDAS 2.1 cm

Version 2.2 2.7 3.3 2.0 Fortuna 2.5 4.0
Spatial resolution (deg) 0.5 0.5 1 1 1 1 1 1 1
Spatial res. (km equator) 55 55 110 110 110 110 110 110 110
Time resolution monthly monthly monthly monthly monthly monthly monthly monthly monthly
simulation time step daily daily 3hr 3hr 3hr 3 hr 3hr 1hr 3 hr
Time span 1950- 1958- 1979-present 2000- 1979- 1979- 1979- 2001- 1979 - 2014

2014 2014 present present present present present
Subgrid variability yes yes 1-13 tiles 1-13 tiles 1-13 tiles 1-13 tiles 1-13 tiles 1-13 tiles 1-13 tiles
Surface water storage yes yes no no no no no no yes
Canopy Storage yes yes yes yes yes yes yes yes yes
Vegetation yes yes SVAT SVAT SVAT SVAT SVAT SVAT SVAT
Irrigation yes yes no no no no no no no
Soil water storage yes yes yes yes yes yes yes yes yes
Soil layers (no.) 1 2 4 4 3 3 10 10 10
Soil data (1) (1) (1) (1) (1) (1) (1)
Soil zone depth (m) 2 2 3.5 3.5 1.9 3.5 3.4 3.4 3.4
Groundwater storage yes yes no no no no no yes yes
Precipitation data WFDEI WFDEI (2) (2) (3) (3) (3) (3) (4)
T Priestley FAO Energy Energy Energy Energy Energy Energy Energy

Taylor 56 PM balance balance balance balance balance balance balance
Runoff SE, IE SE, IE SE, IE SE, IE SE, IE SE, IE SE, IE SE, IE SE, IE
Surface flow routing yes yes no no no no no no yes
Water balance yes yes yes yes yes yes yes yes yes
Calibration/Data yes no no no no no no no no
Assimilation
Human water use yes yes no no no no no no no

SVAT: soil vegetation atmosphere transfer scheme; WFDEI: Watch Forcing Data + Era Interim Reanalysis; PM: Penman Monteith; Energy balance
in model framework; Runoff: SE: saturation excess; IE, infiltration excess; PET, potential ET; RS: remote sensing; data assimilation in GLDAS models
may be considered a type of calibration.

Precipitation forcing: (2) NOAA Climate Prediction Center Merged Analysis of Precipitation; (3) Princeton Global Meteorological Forcing Dataset,
(4) CRU-NCEP.

Soil data source (34).
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Table S2 (b) Description of number of soil layers, total depths, and depths of soil layers in GLDAS — 1.0

land surface models. NOAH-3.3 in GLDAS-2.1 has the same soil depth and intervals as NOAH-2.7. CLM-4.0
has the same soil depth and intervals as CLM-2.0.

No. soil layers and Soil layer
Data set Model (total depth, m) cm cm
GLDAS-1 0-10 10-40
NOAH-2.7 4(2.0)
NOAH-3.3 40-100 100-200
. 0-2 2-150
Mosaic 3(3.5) 150-350
0-10 10-160
VIC 3(1.9) 160-190
0-1.8 1.8-4.5
4.5-9.1 9.1-16.6
Etm:ig 10 (3.4) 16.6-28.9 28.9-49.3
49.3-82.9 82.9-138.3
138.3-229.6 229.6-343.3
GLDAS-2.1 CLSM-F2.5 1(1.0) 0-100
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Table S3. River Basin ID, name, basin area based on TRIP database, aridity index (Al) and climate setting
(H, humid; SH, subhumid; SA, semiarid; A, arid) and percent of basin area that is irrigated.

D River Name g e )| A | cim. '(’;5’ D River Name g e )| A | aim '(r;:j’
1 | Amazon 6.234 1.25 H 0.15 37 | Kolyma 0.640 | 0.75 H 0.00
2 | Congo 3.759 | 0.89 H 0.01 38 | Colorado 0.636 | 0.27 SA 2.27
3 | Mississippi 3.253 0.68 H 3.92 39 | Rio Grande 0.616 0.26 SA 1.91
4 | Ob 2.997 | 0.76 H 0.23 40 | Sdo Francisco 0.614 | 0.55 SH 1.03
5 | Parana 2.988 0.76 H 0.87 41 | Nullarbor 0.553 0.13 A 0.00
6 | Nile 2978 | 0.34 SA 1.77 42 | Dnieper 0.514 | 0.78 H 2.69
7 | Yenisei 2.609 | 0.88 H 0.03 43 | Salt Lake 0.494 | 0.15 A 0.00
8 | Lena 2.346 | 0.77 H 0.00 44 | Amu Darya 0.493 | 0.54 SH 8.92
9 | Niger 2.124 | 0.34 SA 0.18 45 | De Grey 0.472 | 0.14 A 0.00

10 | Amur 1.868 | 0.83 H 2.04 46 | Limpopo 0.444 | 0.33 SA 0.80
11 | Yangtze 1.831 | 1.01 H 8.40 47 | Senegal 0.443 | 0.28 SA 0.32
12 | Tamanrasset 1.762 | 0.02 A 0.01 48 | Tarim 0.440 | 0.10 A 1.95
13 | MacKenzie 1.740 | 0.76 H 0.00 49 | Don 0.425 | 0.62 | SH 1.50
14 | Volga 1.407 0.89 H 0.50 50 | Syr Darya 0.418 0.29 SA 7.90
15 | Zambezi 1.341 0.55 SH 0.30 51 | Xi 0.407 117 H 7.08
16 | Lake Eyre 1.248 | 0.13 A 0.00 52 | Missouri 0.383 | 0.49 SA 3.66
17 | Nelson 1.110 0.67 H 0.60 53 | Volta 0.378 0.53 SH 0.05
18 | St. Lawrence 1.109 1.10 H 0.48 54 | Northern Dvina 0.362 111 H 0.01
19 | Murray 1.070 0.36 SA 2.46 55 | Khatanga 0.357 1.02 H 0.00
20 | Ganges 1.032 | 0.73 H 30.62 56 | Irrawaddy 0.353 1.22 H 5.01
21 | Orange 0.999 | 0.22 SA 0.63 57 | Indigirka 0.348 | 0.73 H 0.00
22 | Indus 0.971 | 0.39 SA 22.71 58 | Salado (La Pampa) 0.331 | 0.22 SA 1.73
23 | Chari 0.925 | 0.40 SA 0.13 59 | Godavari 0.327 | 0.63 SH 12.00
24 | Orinoco 0912 | 1.34 H 0.94 60 | Salween 0.323 | 0.93 H 0.74
25 | Tocantins 0.876 | 0.99 H 0.21 61 | Paranaiba 0.319 | 0.56 SH 0.10
26 | Yukon 0.851 | 0.69 H 0.00 62 | Pechora 0311 | 1.24 H 0.00
27 | Danube 0.806 | 0.91 H 4.78 63 | Salado (Atlantic) 0.293 | 0.56 SH 0.32
28 | Mekong 0.804 0.99 H 3.77 64 | Dulce 0.293 0.29 SA 1.20
29 | Victoria Wiso 0.790 | 0.19 A 0.00 65 | Magdalena 0.271 | 136 H 1.48
30 | Okavango 0.793 | 0.29 SA 0.02 66 | Churchill 0.265 | 0.79 H 0.00
31 | HuangHé 0.786 | 0.52 SH 9.19 67 | Neva 0.255 1.16 H 0.09
32 | Euphrates 0.762 | 027 | SA 10.15 68 | Helmand 0.243 | 0.15 A 3.27
33 | Jubba 0.741 | 0.26 SA 0.17 69 | Tugai 0.241 | 0.25 SA 0.03
34 | Columbia 0.722 | 0.78 H 3.98 70 | Krishna 0.238 | 0.47 SA 21.09
35 | Arkansas 0.667 | 0.61 | SH 3.78 71 | Ural 0.234 | 040 | SA 0.36
36 | Brahmaputra 0.657 | 1.19 H 6.55 72 | Fraser 0.227 | 0.99 H 0.47
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ID River Name ( 1:5rZZ‘:2 ) Al Clim. l(r;? ID River Name ( 1:5rZZ‘:2 ) Al Clim. l(r;?
73 | Yana 0.226 | 0.70 H 0.00 111 | Tedzen 0.121 | 0.23 SA 8.97
74 | RheiN 0.225 1.26 H 1.80 112 | Pur 0.119 1.29 H 0.00
75 | HuaiHe 0.217 | 0.78 H 31.36 113 | Loire 0.118 | 0.87 H 6.21
76 | Olenek 0.201 | 0.76 H 0.00 114 | Kuskokuim 0.118 | 1.08 H 0.00
77 | Ogooué 0.198 | 1.10 H 0.00 115 | Kerulen 0.117 | 0.31 SA 0.03
78 | Wisla 0.194 | 0.85 H 0.39 116 | Chubut 0.117 | 0.26 SA 0.01
79 | Gairdner 0.193 | 0.15 A 0.00 117 | Flinders 0.117 | 0.31 SA 0.00
80 | Anadyr 0.193 | 0.98 H 0.00 118 | Colorado 0.116 | 0.44 SA 6.71
81 | Liao 0.192 | 0.58 SH 14.27 119 | Save 0.116 | 0.43 SA 0.07
82 | Rufiji 0.184 | 0.65 SH 0.48 120 | Negro 0.115 0.20 SA 2.37
83 | Kura 0.180 | 0.54 SH 14.62 121 | Odra 0.115 0.79 H 0.31
84 | P'asina 0.167 1.30 H 0.00 122 | Mattagami 0.113 1.13 H 0.00
85 | Chao Phraya 0.166 | 0.72 H 18.09 123 | Bandama 0.111 | 0.72 H 0.82
86 | Hai 0.163 0.47 SA 26.16 124 | Komoe 0.110 | 0.69 H 0.11
87 | Taz 0.160 | 1.32 H 0.00 125 | Hayes 0.107 | 0.95 H 0.00
88 | Lake Rudolf 0.160 | 0.46 SA 0.00 126 | Rhone 0.105 | 1.24 H 4.45
89 | Albany 0.156 | 1.10 H 0.00 127 | Anabar 0.104 | 0.76 H 0.00
90 | Koksoak 0.153 | 1.66 H 0.00 128 | Tes-Chem 0.104 | 0.39 SA 0.50
91 | Ili 0.153 | 0.44 SA 2.82 129 | Back 0.103 | 0.72 H 0.00
92 | Red 0.149 | 1.12 H 5.16 130 | Severn 0.103 | 1.08 H 0.00
93 | Essequibo 0.148 1.29 H 0.00 131 | La Grande Riviere 0.102 1.57 H 0.00
94 | Cuanza 0.146 | 0.70 H 0.57 132 | Neman 0.102 | 0.95 H 0.24
95 | Thelon 0.142 | 0.76 H 0.00 133 | Taimyra 0.101 1.12 H 0.00
96 | Elbe 0.140 | 0.89 H 1.27 134 | Broadback 0.100 | 1.54 H 0.00
97 | Santiago 0.138 | 0.44 SA 5.62 135 | Tana 0.099 | 0.38 SA 0.58
98 | Emba 0.136 | 0.17 A 0.00 136 | Saguenay 0.096 | 1.53 H 0.06
99 | Barito 0.136 | 2.06 H 0.21 137 | Gambia 0.097 | 0.55 SH 0.01

100 | Fitzroy 0.136 | 0.41 SA 0.17 138 | Balsas 0.094 | 0.58 SH 6.37

101 | Mobile 0.135 | 1.06 H 0.22 139 | Doce 0.094 | 0.82 H 2.14

102 | Sanaga 0.136 1.06 H 0.03 140 | Douro 0.093 | 0.67 H 5.57

103 | Ruvuma 0.133 | 0.74 H 0.05 141 | Ebro 0.092 | 0.70 H 9.09

104 | Swan-Avon 0.128 | 0.26 SA 0.13 142 | Panuco 0.092 | 0.53 SH 7.44

105 | Cunene 0.131 | 0.34 SA 0.14 143 | Western Dvina 0.091 1.01 H 0.10

106 | Usumacinta 0.131 1.27 H 0.12 144 | Gascoyne 0.090 0.11 A 0.00

107 | Mahanadi 0.127 | 0.81 H 11.62 145 | Garonne 0.089 | 0.94 H 5.82

108 | Burdekin 0.127 | 0.40 SA 0.15 146 | Churchill 0.088 191 H 0.00

109 | Narmada 0.126 | 0.65 SH 18.15 147 | Tagus Tejo 0.086 | 0.49 SA 4.95

110 | Brazos 0.125 | 0.49 SA 6.17 148 | Sacramento 0.085 | 0.71 H 9.31
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ID River Name ( 1:5rZZ‘:2 ) Al Clim. l(r;? ID River Name ( 1:5rZZ‘:2 ) Al Clim. l(r;?
149 | Moore-Hill 0.082 | 0.22 SA 0.01 168 | Mitchell 0.069 | 1.30 H 0.00
150 | Sarysu 0.083 | 0.23 SA 0.01 169 | Nadym 0.069 | 1.02 H 1.04
151 | Victoria 0.083 | 0.37 SA 0.00 170 | Paraiba 0.068 | 1.10 H 0.00
152 | Fitzroy 0.082 | 0.28 SA 0.00 171 | Attawapiskat 0.066 | 0.14 A 0.00
153 | Seine 0.082 | 0.85 H 6.54 172 | Murchison 0.065 | 1.10 H 2.08
154 | Mezen 0.081 | 1.15 H 0.00 173 | Yalu 0.063 | 0.98 H 4.59
155 | Ashburton 0.079 | 0.13 A 0.00 174 | Apalachicola 0.061 | 0.85 H 2.44
156 | SanlJoaquin 0.079 | 0.43 SA 13.93 175 | Po 0.061 1.42 H 24.04
157 | Rio Colorado 0.078 | 0.22 SA 0.37 176 | Lurio 0.060 | 0.57 SH 0.00
158 | Guadiana 0.077 | 0.43 SA 9.40 177 | Alazeja 0.059 | 0.53 SH 0.00
159 | Penzina 0.077 1.04 H 0.00 178 | Guadalquivir 0.059 | 0.42 SA 12.33
160 | Susquehana 0.075 1.03 H 0.38 179 | Chu 0.058 1.08 H 3.99
161 | Mamberamo 0.074 | 2.05 H 0.00 180 | Kemi 0.057 | 0.50 SA 1.72
162 | Sepik 0.074 | 1.98 H 0.00 181 | Sakarya 0.057 | 1.20 H 0.00
163 | Mearim 0.074 | 0.78 H 0.06 182 | Fortescue 0.057 | 0.18 A 0.00
164 | Kuban 0.074 | 2.06 H 0.00 183 | Onega 0.052 | 1.15 H 0.01
165 | Fly 0.074 | 0.86 H 0.10 184 | SaintJohn 0.051 | 1.39 H 0.15
166 | Sassandra 0.072 | 1.39 H 0.00 185 | Skeena 0.050 | 1.40 H 0.01
167 | Nottaway 0.071 | 0.55 SH 0.00 186 | Narva 0.047 1.04 H 0.02
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Table S4. (a). Decreasing TWSA trends (Apr. 2002 — Dec. 2014) (basin wide mean: mm/yr) for selected basins ranked according to GRACE CSR
mascons (CSR-M) and corresponding trends for GHWRMs (WGHM, WGHM no human intervention [NHI], PCR-GLOBWB and PCR-GLOBWB-NHI)
and LSMs (GLDAS-1.0 MOSAIC, VIC, and GLDAS-2.1 NOAH-3.3 and CLSMF2.5, and CLM-4.0).

GRACE GHWRMs Land Surface Models
i E % | g | =

River oy . g | o® w | & | E z 3 = | o VA I o

= 5| <« | 2] 3 s 3 6 | £ | = s o z = B < 5

o = N ECE I R 3 E | & | & 5 e s | & o S % =

| 2 |5| < E £ 3 g 4] = 2 2 g g s s = o o
Rio Colorado 0.08 | 0.22 SA 0.37 0.00 0.00 | -15.24 | -15.78 | -11.23 0.85 -2.42 -1.19 -2.89 -2.26 -1.98 -1.58 -4.48 -3.19 -9.20
Thelon 0.14 | 0.76 H 0.00 0.00 0.00 | -15.24 | -12.65 | -14.45 0.62 -15.32 | -15.32 -1.77 -1.76 | -13.63 | -15.96 | -10.88 -12.55 -2.08
Brahmaputra 0.66 1.19 H 6.55 3.84 1.93 -14.53 -13.49 -11.09 0.59 -1.91 -1.83 -3.89 -3.94 3.09 -1.44 -3.12 -5.79 -2.80
Kura 0.18 0.54 SH 14.62 1.07 9.40 | -13.95 -13.02 -14.36 0.82 -3.42 -1.52 -7.99 -3.18 -10.38 -2.28 -2.99 -7.10 -2.45
Euphrates 0.76 | 0.27 SA 10.15 1.77 5.57 | -13.92 | -15.81 | -19.41 0.82 -4.71 -1.23 -4.73 -0.88 -3.81 -1.28 -3.97 -1.86 -8.09
Brazos 0.13 | 0.49 SA 6.17 5.69 0.48 | -12.79 | -18.83 | -12.31 1.04 -24.58 -3.72 -18.11 -1.49 -9.54 -3.45 -9.16 -10.52 -21.82
Ganges 1.03 | 0.73 H 30.62 | 20.44 9.53 | -11.80 | -16.90 | -12.03 1.00 -6.39 0.38 4.61 15.43 -3.57 -5.17 0.59 -2.78 7.19
Rio Grande 0.14 | 0.17 A 0.00 0.00 0.00 | -10.80 | -19.60 | -15.24 0.55 -0.03 -0.01 -0.89 -0.91 -4.16 -0.63 -5.09 -2.61 -4.66
Don 0.42 | 0.62 SH 1.50 0.14 0.55 | -10.30 | -14.01 | -14.56 1.02 -2.82 -2.56 -1.49 -1.31 | -12.69 -4.12 -6.84 -12.76 -8.24
IColorado 0.12 0.44 SA 6.71 6.05 0.63 -10.25 -18.06 | -16.67 1.14 -24.01 -4.78 -15.44 -1.02 -8.20 -2.88 -11.05 -8.70 -17.72
De Grey 0.47 | 0.14 A 0.00 0.00 0.00 -8.41 | -10.40 -6.08 0.92 -0.01 -0.01 -0.37 -0.37 0.81 0.21 -0.96 -0.47 -7.92
Indus 0.97 0.39 SA 22.71 8.41 12.76 -8.32 -10.27 -7.81 0.59 -3.21 1.23 -39.55 5.82 -4.88 -8.88 3.33 1.11 5.93
Arkansas 0.67 | 0.61 SH 3.78 4.17 0.67 -8.10 | -10.83 -8.35 0.91 -14.35 -1.51 -9.12 -0.27 -8.10 -2.12 -5.82 -6.48 -7.72
Sao Francisco 0.61 | 0.55 SH 1.03 0.38 0.48 -7.90 | -11.42 -8.29 1.33 -4.31 -4.74 -2.18 -1.99 -3.14 -0.66 -3.05 -4.31 -10.28
Hai 0.16 | 0.47 SA 26.16 | 17.86 6.03 -7.65 | -11.18 -5.97 0.59 -25.01 0.69 -34.68 2.49 0.67 1.09 -0.89 0.06 -2.24
Ural 0.23 | 0.40 SA 0.36 0.03 0.12 -7.43 | -10.78 -8.30 0.60 -0.06 0.36 -2.18 -2.03 -7.26 -2.38 -5.49 -8.10 -8.46
Doce 0.09 0.82 H 2.14 0.21 1.89 -7.08 -14.01 -2.27 1.88 -2.24 -2.20 13.71 13.85 1.82 3.01 -3.87 -6.13 -5.67
Syr Darya 0.42 | 0.29 SA 7.90 0.38 6.31 -5.34 -6.54 -4.83 0.54 -2.85 -1.03 -3.35 -1.79 -5.86 -4.35 -3.67 -3.07 -5.09
Huaihe 0.22 0.78 H 31.36 9.87 20.40 -4.91 -8.05 -5.01 0.95 -7.46 -3.22 -12.38 -6.04 | -23.68 | -10.44 -4.26 -6.97 -16.69
Huanghe 0.79 | 0.52 SH 9.19 3.48 3.99 -4.89 -5.88 -5.85 0.48 0.92 0.77 -4.17 0.37 -0.74 -0.65 -1.49 -2.33 0.00
Volga 1.41 | 0.89 H 0.50 0.09 0.34 -4.58 -4.99 -6.07 0.70 -0.38 0.40 -1.98 -1.82 | -18.99 -4.01 -4.01 -11.35 -3.14
Amu Darya 0.49 | 0.54 SH 8.92 0.22 5.02 -4.37 -4.24 -5.04 0.74 0.11 0.59 13.03 13.68 -8.70 -6.04 -1.23 -1.77 -0.77
Dnieper 0.51 | 0.78 H 2.69 0.02 2.12 -4.05 -5.49 -6.65 0.76 1.13 0.98 -1.09 -1.29 | -10.43 -2.69 -3.63 -4.72 0.83
San Joaquin 0.08 | 0.43 SA 13.93 8.46 5.44 -3.68 -7.45 1.04 1.66 -9.75 -0.99 -31.78 -4.07 -1.65 -3.00 -4.69 -4.26 -8.61
Rio Grande 0.62 | 0.26 SA 1.91 0.60 0.88 -3.65 -5.70 -4.32 0.47 -2.57 -0.58 -3.16 -1.09 -3.21 -0.81 -4.62 -5.07 -5.69

CSRT-GSH: GRACE CSR Tellus Gridded Spherical Harmonic solution, sf, rescaled, CSR-M, mascons, dsf, downscaled from 3° to 0.5°;
GRACE uncertainty includes uncertainty among 3 GRACE solutions, trend (slope) uncertainty in solutions, and GIA uncertainty (Sl, Section 4.2).
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Table S4 (b). Increasing TWSA trends (Apr. 2002 — Dec. 2014) (basin wide mean: mm/yr) for selected basins ranked according to GRACE CSR
mascons (CSR-M) and corresponding trends for GHWRMs (WGHM, WGHM no human intervention [NHI], PCR-GLOBWB and PCR-GLOBWB-NHI)
and LSMs (GLDAS-1.0 MOSAIC, VIC, and GLDAS-2.1 NOAH-3.3 and CLSMF2.5, and CLM-4.0).

GRACE GHWRMs Land Surface Models
River :E< k2 § = % n

Units (mm/yr) b © X X \33“ & 5 3 Q I : (@) o S

= g . 2 2 s ' 2 5 3 2 v S T < : ¥

3 El S e g2 ||| &8s |&|8| ¢8| o - =

S| 2|5 ¢ £ £ 8| 8 | 8| & = = g g | € s S 3 3
Fitzroy 0.14 | 041 SA 0.17 0.01 0.07 | 15.39 | 10.93 | 11.14 | 0.94 2.17 1.73 8.73 8.26 8.41 -0.35 0.60 2.45 25.85
Broadback 0.10 | 1.54 H 0.00 0.00 0.00 | 1455 | 16.42 | 13.66 | 0.69 0.06 0.06 -2.95 -2.95 | -3.44 | -35.66 -28.52 -38.82 1.05
Okavango 0.79 | 0.29 | SA 0.02 0.00 0.00 | 14.55 | 16.60 | 10.36 | 0.68 1.59 1.59 0.08 0.09 1.37 2.31 1.24 -1.53 1.27
Saguenay 0.10 | 1.53 H 0.06 0.01 0.01 | 14.27 | 16.74 | 14.67 | 0.74 0.82 | -0.49 -1.94 -2.04 | -4.38 | -33.13 -17.38 -29.90 -0.76
Cunene 0.13 | 0.34 | SA 0.14 0.00 0.00 | 13.30 | 25.02 | 32.86 | 1.29 2.57 2.04 -0.12 -0.11 | -4.90 5.99 5.49 -3.49 -1.45
VOLTA 0.38 | 0.53 SH 0.05 0.00 0.02 | 12.09 | 12.47 | 10.11 | 0.79 -2.63 | -1.81 4.20 3.43 | -2.25 0.64 1.53 -6.93 18.17
Essequibo 0.15 | 1.29 H 0.00 0.00 0.00 | 11.57 | 14.72 | 11.39 | 2.00 -5.78 | -5.78 | -19.82 | -19.84 | -3.79 | -48.67 -10.12 -23.49 3.69
Zambezi 1.34 | 0.55 | SH 0.30 0.00 0.05 | 10.24 | 12.13 | 10.68 | 1.01 2.38 0.59 -1.26 -1.54 | -0.76 -2.28 -0.38 -3.62 1.74
Burdekin 0.13 | 040 | SA 0.15 0.00 0.00 9.68 | 16.72 | 10.15 | 1.06 1.69 1.74 27.60 | 27.61 5.86 2.08 0.16 1.40 39.42
Koksoak 0.15 | 1.66 H 0.00 0.00 0.00 8.04 | 19.07 | 11.04 | 0.66 -1.02 | -2.06 -4.03 -2.36 | -6.91 | -20.25 -28.97 -16.92 -2.28
Columbia 0.72 | 0.78 H 3.98 0.88 2.26 7.95 7.55 8.93 | 0.62 1.76 1.24 1.89 1.92 | -3.00 5.11 1.69 -2.51 -0.34
Godavari 0.33 | 0.63 | SH 12.00 6.72 3.49 7.82 9.80 6.80 | 1.12 -4.19 0.31 59.11 | 49.33 | -0.77 -5.18 -2.33 -1.19 25.08
Gambia 0.10 | 0.55 | SH 0.01 0.00 0.00 7.70 | 15.03 | 10.64 | 0.99 0.80 0.77 6.22 6.16 | -0.03 5.43 5.32 0.01 22.49
La Grande Riviere | 0.10 | 1.57 H 0.00 0.00 0.00 7.55 | 20.22 | 12.44 | 0.69 | -18.47 | -9.60 -4.60 -2.84 | -2.28 | -24.11 -23.89 -21.96 -2.17
Orinoco 091 | 1.34 H 0.94 0.05 0.39 7.32 5.15 4.66 | 1.41 -597 | -4.25 | -27.14 | -25.81 | -3.29 -3.55 -1.69 -11.75 -8.76
Amazon 6.23 | 1.25 H 0.15 0.02 0.09 6.94 6.99 6.59 | 0.87 1.73 1.70 | -10.67 | -10.62 | -0.19 | -11.35 -2.97 -5.11 -0.55
Krishna 0.24 | 0.47 | SA | 21.09 10.99 9.85 6.81 6.08 6.71 | 1.27 -2.68 1.25 55.39 | 35.65 | -2.25 -4.88 -1.59 -1.10 44.79
Lake Rudolf 0.16 | 0.46 | SA 0.00 0.00 0.00 6.38 | 10.34 3.51 | 0.63 3.44 3.28 4.68 4.72 | -2.60 3.87 2.87 -1.89 7.66
Murray 1.07 | 0.36 SA 2.46 0.30 1.48 5.26 8.66 8.10 | 0.92 3.78 3.03 2.26 2.11 5.52 2.69 2.76 1.63 -4.58
Kolyma 0.64 | 0.75 H 0.00 0.00 0.00 5.09 3.11 4.14 | 0.55 5.16 5.16 2.85 2.91 4.14 -6.73 -0.89 4.67 7.87
Niger 212 | 034 | SA 0.18 0.00 0.02 4.59 5.54 5.18 | 0.32 2.28 1.93 -0.70 -0.83 | -0.23 -1.46 0.42 -4.53 0.49
Amur 1.87 | 0.83 H 2.04 0.99 0.72 4.36 4.23 4.59 | 0.69 2.58 2.72 6.10 6.39 1.25 -3.08 4.15 1.25 0.96
Senegal 0.44 | 0.28 SA 0.32 0.02 0.20 3.79 5.80 5.59 | 0.51 2.14 1.82 0.89 1.16 | -0.20 4.84 4.55 -0.32 8.21
Anadyr 0.19 | 0.98 H 0.00 0.00 0.00 3.66 3.71 3.70 | 0.83 -1.42 | -1.42 1.57 1.57 3.52 -1.98 -0.96 4.50 6.49
Juba 0.74 | 0.26 | SA 0.17 0.00 0.05 3.22 1.04 3.90 | 0.45 0.58 0.58 -0.18 -0.19 | -2.35 -0.65 0.63 -1.04 -1.49
Orange 1.00 | 0.22 | SA 0.63 0.03 0.30 2.99 5.36 2.64 | 0.35 0.48 0.26 0.11 0.09 | -0.75 -2.10 -0.32 -0.97 -2.45
Mississippi 3.25 | 0.68 H 3.92 3.09 0.76 2.91 2.07 -0.58 | 0.69 -2.79 1.30 1.39 1.67 | -2.15 -5.40 -0.62 -3.70 2.54
Yangtze 1.83 | 1.01 H 8.40 0.34 7.70 2.83 4.80 1.57 | 0.55 0.54 0.75 2.01 0.33 | -1.51 -2.98 -0.61 -3.44 0.31
Magdalena 0.27 | 1.36 H 1.48 0.06 1.07 2.74 -0.62 0.20 | 1.30 4.20 3.84 61.83 | 61.55 | -1.29 4.04 -5.27 -11.11 5.29
Parana 2.99 | 0.76 H 0.87 0.18 0.53 2.67 3.60 0.52 | 0.77 -0.52 | -0.95 4.02 3.74 1.41 -4.25 -2.11 1.42 -4.06
Missouri 1.38 | 0.49 | SA 3.66 2.93 1.16 2.45 2.56 1.06 | 0.73 1.15 1.10 0.34 1.68 0.07 0.35 0.49 -0.23 2.07
St. Lawrence 1.11 | 1.10 H 0.48 0.26 0.14 2.41 1.70 2.51 | 0.68 -3.06 | -4.48 8.23 8.58 | -1.36 | -15.54 -4.93 -4.49 2.40
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Table S5a. Uncertainty in GRACE TWSA trends for increasing TWSA trends ranked based on GRACE CSR-M for selected basins, including uncertainty
from variability in trends among the three GRACE solutions (solution uncertainty: standard deviation from trends in CSR-M, JPL-M.dsf and CSRT-
GSH.sf), trend uncertainty based on uncertainty in regression slopes from the three solutions, and glacial Isostatic Adjustment (GIA) uncertainty
based on standard deviation from four models. The combined uncertainty is the square root of the sum of the squares of the solution, trend, and
GIA uncertainties.

Area Solution Trend GIA Combined
ID River 10° | CSR-M | JPL-M.dsf | CSRT-GSH.sf . CSR-M | JPL-M.dsf | CSRT-GSH.sf . . .
km? Uncertainty Uncertainty Uncertainty Uncertainty
Decreasing TWSA Trends (km?/yr)

19 Ganges 1.03 -12.2 -17.4 -12.4 3.0 0.9 1.2 1.0 0.12 0.06 3.0
30 Euphrates 0.76 | -10.6 -12.0 -14.8 2.1 0.5 0.6 0.6 0.08 0.02 2.1
34 Brahmaputra | 0.66 -9.5 -8.9 -7.3 1.2 0.4 0.5 0.4 0.03 0.05 1.2
21 Indus 0.97 -8.1 -10.0 -7.6 1.3 0.5 0.6 0.6 0.05 0.06 1.3
13 Volga 141 -6.4 -7.0 -8.5 1.1 0.9 1.1 1.0 0.12 0.19 1.1
33 Arkansas 0.67 -5.4 -7.2 -5.6 1.0 0.6 0.7 0.6 0.05 0.12 1.0
38 Sao Francisco | 0.61 -4.8 -7.0 -5.1 1.2 0.8 0.9 0.8 0.06 0.09 1.2
47 Don 0.42 -4.4 -6.0 -6.2 1.0 0.4 0.4 0.5 0.06 0.04 1.0
29 Huanghe 0.79 -3.8 -4.6 -4.6 0.4 0.3 0.4 0.4 0.06 0.07 0.5
3 Ob 3.00 -3.6 -3.8 -4.3 0.4 1.6 1.9 1.8 0.12 0.19 0.4
11 Tamanrasett 1.76 -2.6 -2.4 -2.0 0.3 0.2 0.3 0.2 0.05 0.13 0.4
37 Rio Grande 0.62 -2.2 -3.5 -2.7 0.6 0.3 0.4 0.2 0.07 0.08 0.6
48 Syr Darya 0.42 -2.2 -2.7 -2.0 0.4 0.2 0.2 0.3 0.03 0.04 0.4
90 Thelon 0.14 -2.2 -1.8 -2.1 0.2 0.1 0.1 0.1 0.01 0.63 0.7
42 Amu Darya 0.49 -2.1 -2.1 -2.5 0.2 0.3 0.4 0.3 0.06 0.04 0.2
12 MacKenzie 1.74 -1.9 -0.4 -3.2 1.4 0.5 0.6 0.6 0.07 1.13 1.8
105 Brazos 0.13 -1.6 -2.4 -1.5 0.5 0.1 0.2 0.1 0.02 0.04 0.5
81 Hai 0.16 -1.2 -1.8 -1.0 0.4 0.1 0.1 0.1 0.01 0.03 0.4
113 Colorado 0.12 -1.2 -2.1 -1.9 0.5 0.1 0.1 0.1 0.02 0.03 0.5
70 Huaihe 0.22 -1.1 -1.8 -1.1 0.4 0.2 0.2 0.2 0.02 0.03 0.4
46 Tarim 0.44 -0.9 -0.9 0.6 0.9 0.1 0.2 0.1 0.03 0.05 0.9
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Table 5b. Uncertainty in GRACE TWSA trends for decreasing TWSA trends ranked based on GRACE CSR-M for selected basins, including uncertainty
from variability in trends among the three GRACE solutions (solution uncertainty: standard deviation from trends in CSR-M, JPL-M.dsf and CSRT-
GSH.sf), trend uncertainty based on uncertainty in regression slopes from the three solutions, and glacial Isostatic Adjustment (GIA) uncertainty
based on standard deviation from four models. The combined uncertainty is the square root of the sum of the squares of the solution, trend, and
GIA uncertainties.

Area Solution Trend GIA Combined
ID River 10° | CSR-M | JPL-M.dsf | CSRT-GSH.sf . CSR-M | JPL-M.dsf | CSRT-GSH.sf . . .
Km? Uncertainty Uncertainty Uncertainty Uncertainty
Decreasing TWSA Trends (km3/yr)

1 Amazon 6.23 43.2 43.6 41.1 13 4.9 5.4 6.0 0.55 0.33 1.5
14 | Zambezi 1.34 13.7 16.3 14.3 1.3 1.2 1.5 1.4 0.13 0.10 1.3
27 | Okovango 0.79 11.5 13.2 8.2 2.5 0.6 0.6 0.4 0.08 0.08 2.5
8 Niger 2.12 9.8 11.8 11.0 1.0 0.6 0.7 0.7 0.07 0.17 1.0
2 Mississippi 3.25 9.5 6.7 -1.9 5.9 2.0 2.3 2.4 0.23 0.48 6.0
9 Amur 1.87 8.1 7.9 8.6 0.3 1.1 1.3 1.5 0.20 0.11 0.4
4 | Parana 2.99 8.0 10.8 1.5 4.7 2.1 2.3 2.5 0.20 0.11 4.7
23 | Orinoco 0.91 6.7 4.7 4.3 1.3 1.2 1.2 1.4 0.11 0.16 1.3
32 | Columbia 0.72 5.7 5.4 6.4 0.5 0.3 0.6 0.4 0.12 0.15 0.5
18 | Murray 1.07 5.6 9.3 8.7 2.0 0.9 1.1 1.0 0.12 0.12 2.0
10 | Yangtze 1.83 5.2 8.8 2.9 3.0 0.8 1.0 1.2 0.22 0.09 3.0
50 | Volta 0.38 4.6 4.7 3.8 0.5 0.3 0.4 0.2 0.07 0.08 0.5
5 Nile 2.98 4.1 14.0 -3.8 8.9 1.1 1.6 1.7 0.32 0.09 8.9
6 Yenisei 2.61 3.7 4.6 4.0 0.5 1.1 1.1 1.4 0.15 0.19 0.5

Missouri 1.38 3.4 3.5 1.5 0.1 1.0 0.0 0.9 0.09 0.34 0.4
35 | Kolyma 0.64 3.3 2.0 2.6 0.6 0.3 0.4 0.4 0.04 0.13 0.6
20 | Orange 1.00 3.0 5.4 2.6 1.5 0.3 0.4 0.3 0.03 0.08 1.5
17 | St. Lawrence 1.11 2.7 1.9 2.8 0.5 0.8 0.9 0.7 0.07 0.47 0.7
7 Lena 2.35 2.7 -2.0 -0.8 2.4 1.1 1.3 1.4 0.13 0.21 2.4
55 | Godavari 0.33 2.6 3.2 2.2 0.5 0.3 0.4 0.4 0.04 0.03 0.5
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Table S6a. Linear regression statistics comparing GRACE TWSA trends to each other considering large
declining and rising TWSA trends based on CSR-M data. Statistics include the slope (b), intercept (c) and
coefficient of determination (r?). GRACE solutions include CSR mascons (CSR-M), JPL-M, and CSR Tellus,
gridded spherical harmonic solutions rescaled. Subscript sf refers to scaling factors and dsf refers to
downscaled.

CSR-M CSRT-GSH.sf JPL-M.dsf
b c r b c r? b c r
CSRM 0.97 0.45 0.90 0.86 0.06 0.94
CSRT-GSH.sf 0.93 -0.38 0.90 0.80 -0.32 0.85
JPL-M.dsf 1.09 -0.02 0.94 1.05 0.48 0.85

Table S6b. Linear regression statistics comparing modeled TWSA trends to trends from GRACE solutions
considering large declining and rising TWSA trends based on CSR-M data (94 basins). Statistics include the
slope (b), intercept (c) and coefficient of determination (r?). GRACE solutions include CSR mascons (CSR-
M), JPL-M, and CSR Tellus, gridded spherical harmonic solutions. Subscript sf refers to scaling factors and
dsf refers to downscaled. Models include GHWRMs WGHM and PCR-GLOBWB and land surface models
(MOSAIC, VIC, NOAH-3.3, CLSM-F2.5, and CLM-4.0).

GRACE CSR-M GRACE CSRT-GSH.sf GRACE JPL-M.dsf
b c r b c r b c r
WGHM 0.24 -0.30 0.28 0.28 -0.21 0.36 0.24 -0.32 0.35
PCR-GLOBWB -0.64 -0.02 0.17 -0.66 -0.29 0.17 -0.46 -0.13 0.11
MOSAIC -0.85 -3.12 0.24 -0.72 -3.55 0.17 -0.63 -3.26 0.17
VIC -0.16 -1.00 0.07 -0.12 -1.09 0.04 -0.10 -1.05 0.03
NOAH-3.3 0.02 -0.97 0.00 0.07 -0.98 0.02 0.02 -0.98 0.00
CLSM-F2.5 -0.39 -2.27 0.22 -0.32 -2.47 0.14 -0.30 -2.33 0.17
CLM-4.0 0.05 0.04 0.00 0.05 0.06 0.00 0.03 0.05 0.00
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Table S7. Results of Kruskal Wallis test (74) applied to TWSA trends with basins in the zone of (a)
decreasing and (b) increasing CSR-M trends. The null hypothesis is that the TWSA trends from different
GRACE solutions and models belong to the same population. Values of KW statistic (upper row) and
associated P values (lower row) are tabulated. P values exceeding 0.05 are considered statistically
significant, indicating that the TWSA trends are from the same population. P values 20.05 are shown in
bold.

7a) Decreasing TWSA trends

z ) @ ™
3 3 s 3 L @ S
= s N , @ Dy z 3 s
sl | & |83 8| o S | =] 3
3 a 3 G} S s = ) O
CSR-M 0.04 1.93 21.66 10.95 2.78 21.31 12.93 3.82 5.76
0.84 0.17 0.00 0.00 0.10 0.00 0.00 0.05 0.02
0.79 13.16 9.82 3.09 18.61 11.15 3.01 5.76
CSRT-GSH.sf 0.37 0.00 0.00 0.08 0.00 0.00 0.08 0.02
25.86 15.85 5.58 25.86 18.03 6.59 10.60
JPL-M.dsf 0.00 0.00 0.02 0.00 0.00 0.01 0.00
1.99 4.12 0.06 1.95 6.87 5.41
WGHM 0.16 0.04 0.81 0.16 0.01 0.02
1.19 2.25 0.00 2.03 0.74
PCR-GLOBWB 027 013 0.99 0.15 0.39
4.56 1.53 0.00 0.15
MOSAIC 0.03 022 0.95 0.70
221 6.44 5.55
vic 014 0.01 0.02
2.08 0.89
NOAH-3.3 0.15 0.35
0.32
CLM-4.0 o5y
7b) Increasing TWSA trends
5
o™
o | | 2 5 | ¢ 2 |3
L9 s = !
sz | 2 | & | 5| 8 o R = 2
[SING) % = g = S S = [u] [v]
Csh 1.07 0.81 24.79 11.96 51.92 48.28 48.90 8.27 57.22
030 | 037 0.00 0.00 0.00 0.00 0.00 0.00 0.00
352 14.70 571 41.12 34.40 34.80 3.79 45.47
CSRT GSH 0.06 0.00 0.02 0.00 0.00 0.00 0.05 0.00
25.55 13.00 50.97 45.89 46.45 10.91 55.70
JPL-M.d
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.34 15.94 555 7.82 257 20.50
WGHM-Hai
al 0.25 0.00 0.02 0.01 0.11 0.00
2043 9.91 12.10 0.14 24.55
PCR-NonNat
onita 0.00 0.00 0.00 0.71 0.00
4.41 4.12 21.76 0.00
MOSAI
osalc 0.04 0.04 0.00 0.95
0.06 1331 5.88
vic
0.80 0.00 0.02
14.81 5.06
NOAH-3.3 0.00 0.02
26.21
CLM-4.0
0.00

55



Table S8. Linear regression parameters (b is slope, c is intercept, and r? is coefficient of determination) for relationships between modeled TWSA
trends, including 181 basins (Congo, Serrado, Yukon and Missouri basins excluded). Models include GHWRMs (WGHM, PCR-GLOBWB) and LSMs
(GLDAS-1.0 MOSAIC, and VIC and GLDAS- 2.1 NOAH3.3 and CLSMF2.5, and CLM-4.0).

GHWRMs Land Surface Models
anf;;jr b [ c [ 2 b [ c [ 7| b c 7”2 b clr”]b] c Pl b c 7”7 b ] 7
WGHM PCR-GLOBWB MOSAIC viC NOAH-3.3 CLSM-F2.5 CLM-4.0

WGHM -0.04 | -0.01 | 0.01 | -0.05 | -0.14 | 0.04 | 0.09 0.07 | 0.02 0.02 0.02 | 0.00 | -0.12 | -0.23 0.08 0.11 0.01 | 0.03
PCR-GLOBWB -0.39 | -0.25 | 0.01 0.39 0.78 | 0.21 | 1.11 0.57 | 0.21 0.13 | -0.17 | 0.00 0.54 0.79 0.15 0.40 | -0.22 | 0.03
GLDAS-1.0 MOSAIC -0.76 | -2.64 | 0.04 0.55 | -2.51 | 0.21 2.14 | -1.06 | 0.55 1.65 | -1.57 | 0.23 1.32 | -0.09 0.65 0.19 | -2.63 | 0.01
GLDAS-1.0 VIC 0.16 | -0.74 | 0.02 0.19 | -0.69 | 0.21 0.26 | -0.06 | 0.55 0.45 | -0.44 | 0.14 0.27 | -0.21 0.23 0.07 | -0.73 | 0.01
GLDAS-2.1 NOAH-3.3 0.03 | -0.65 | 0.00 0.01 | -0.64 | 0.00 0.14 | -0.28 | 0.23 | 0.32 | -0.41 | 0.14 0.33 | -0.01 0.49 | -0.07 | -0.65 | 0.01
GLDAS-2.1 CLSM-F2.5 | -0.66 | -1.93 | 0.08 0.28 | -1.86 | 0.15 0.49 | -0.63 | 0.65 | 0.84 | -1.31 | 0.23 147 | -0.98 | 0.49 -0.07 | -1.94 | 0.00
CLM-4.0 0.25 | -0.06 | 0.03 0.09 | -0.04 | 0.03 0.03 0.02 | 0.01 | 0.09 0.01 | 0.01 | -0.23 | -0.15 | 0.01 | -0.03 | -0.12 0.00
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Table S9. Spearman’s rho coefficient (p) between TWSA from CSR-M and GLDAS 2.1 precipitation from
NOAH-3.3 model with no time lag and maximum value of p and associated time lag in months.

River Basin P Max. p | Lag (mo.)
AMAZON 0.57 0.57 0
AMUR -0.06 0.52 -5
Arkansas 0.23 0.53 -5
BRAHMAPUTRA | 0.65 0.79 -1
BRAZOS 0.39 0.51 -5
COLUMBIA 0.50 0.50 0
DON 0.49 0.49 0
EUPHRATES 0.74 0.74 0
GANGES 0.90 0.90 0
HAI 0.28 0.38 -9
HUAIHE 0.57 0.57 0
HUANGHE 0.57 0.57 0
INDUS 0.32 0.42 -4
KOLYMA -0.21 0.58 -7
LENA -0.65 0.56 -7
MACKENZIE -0.68 0.64 -6
MISSISSIPPI 0.04 0.62 -5
Missouri 0.21 0.68 -4
MURRAY 0.51 0.60 -7
NILE 0.80 0.80 0
OB -0.02 0.53 -7
Okavango 0.50 0.50 0
ORINOCO 0.82 0.82 -1
VOLGA 0.23 0.32 -9
Yenisei -0.61 0.75 -7
YUKON -0.22 0.58 -8
Zambezi 0.67 0.67 0
Yangtze 0.45 0.55 -1
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Table S10. Median, mean, 10" and 90" percentiles, and standard deviation (Std. dev.) in TWSA trends for
corresponding values to GRACE CSR-M large decreasing and increasing trends (< 0.5 km3/yr and >0.5
km?3/yr) and CSR-M mid-range (+0.5 km3/yr) including other GRACE solutions (JPL-M and CSRT-GSH.sf) and
GHWRMs (WGHM and PCR-GLOBWB with human intervention and without human intervention, NHI),
and LSMs (MOSAIC, VIC, NOAH3.3, CLSMF2.5, and CLM-4.0). The number of basins in each group is listed:
(45 basins with CSR-M trends <-0.5 km3/yr (decreasing trends); 49 basins in the mid-range +0.5 km3/yr
and 87 basins with trends 0.5 km3/yr (increasing trends)). The number of basins totals 181, excluding the
Yukon Basin (glacier leakage), Salado basins (glacier leakage and earthquake), Congo Basin (trend not
significant), and Missouri Basin (included in Mississippi basin).

GRACE GHWRMs Land Surface Models
@
4 SE E E ) 1
T8 s | 3 = % © - N o
S S h T S 9 = P z s 3
& R & | 8| O g 5 S © S { =
4] ey 4] = = g & S N = ] §]
CSR-M TWSA trends <-0.5 km?/yr (45 basins)
Median -1.47 -2.18 | -1.94 | -0.31 | -0.09 -0.67 -0.34 -1.07 -0.40 -0.82 -1.09 -1.36
Mean -2.61 -3.23 | -2.78 | -1.02 | -0.14 -1.81 0.11 -2.99 -1.06 -1.24 -2.22 -1.60

10-90Pi | 535 6.46 | 6.48 | 3.43 | 1.60 3.67 2.62 6.17 4.76 3.81 4.12 6.06
Std. dev. 2.78 345 | 3.18 | 205 | 0.84 5.97 2.98 8.58 2.68 231 3.79 2.85
CSR-M TWSA trends within +0.5 km3/yr (49 basins)
Median -0.02 0.01 | -0.08 | 0.04 | 0.04 0.05 0.07 -0.31 | -0.06 | -0.09 -0.25 0.02
Mean -0.03 0.05 | -0.10 | 0.00 | 0.07 0.01 0.09 098 | -0.42| -018 -0.85 | -0.19
10-90Pi | 0.60 120 | 117 | 093 | 0.76 2.36 2.05 3.29 1.79 1.03 2.65 1.55
Std.dev. | 0.23 050 | 0.64 | 056 | 0.37 1.43 1.29 231 1.08 0.50 2.00 0.80
CSR-M TWSA trends 0.5 km3/yr (87 basins)
Median 1.74 213 | 159 | 022 | 0.26 0.60 0.59 -1.57 | -019 | -0.42 -0.97 1.04
Mean 3.90 456 | 323 | 068 | 0.90 0.62 0.46 465 | -1.23| -0.73 -2.97 1.56
10-90Pi | 767 | 1029 | 800 | 584 | 5.01 13.05 11.18 15.47 6.39 4.19 10.81 9.71
Std.dev. | .53 456 | 323 | 068 | 0.90 0.62 0.46 465 | -1.23| -0.73 -2.97 1.56
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Table S11. Median TWSA trends in GRACE and models in basins with large rising CSR-M trends (20.5
km?3/yr) and large declining CSR-M trends (<-0.5 km3/yr).

GRACE GHWRMs Land Surface Models
GRACE kA 2 o
. +~— Ln
CSR-M Ranked bafms Tl & |s5|s| 3 g £ | ¢ | 8| 9
TWSA trends S S g by 52 I @ = X = S J
Sl a | 5188188985 |e|S|3]|3
G g (¢ S S = € 6 & S S = (@) O
Global Net TWSA Trends (km3/yr)
Sum 181 71 82 25 | 15.6 -12 44 -50 36 | -448 | -144 | -107 | -320 -13
<-0.5 km3/yr 45 | -118 | -145 | -125 6.2 -46 -6.2 -82 5.1 | -134 -48 -56 | -100 -72
>0.5 km3/yr 49 191 224 158 | 13.8 33 44 31 22 | -228 -60 -36 | -146 76
Sum Inc + Dec 94 73 78 33 | 15.0 -12 38 -51 27 | -362 | -108 -91 | -245 4.3
Contribution to Global Mean Sea Level (mm/yr)
Total 181 [ -0.20 [ -0.23 [ -0.07 [ 0.09 [ 003 [ -0.12 [ 0.14 [ -0.10 [ 1.24 [ 0.40 | 0.30 [ 0.89 [ 0.04
Human int. 0.15 0.24

Net TWSA trends (km3/yr) were calculated by summing TWSA trends for GRACE solutions and global
models, over all 181 basins (excluding Congo Basin, two Serrado basins, Yukon, and Missouri basins). The
contribution of net TWSA trends on global mean sea level (GMSL) was calculated by dividing the TWSA
trend by the ocean area (361x10° km?) and changing the sign. GRACE solutions include (CSR-M, JPL-M,
CSR Tellus gridded spherical harmonics [CSRT-GSH]). Models include global hydrological and water
resource models (GHWRMs, WGHM and PCR-GLOBWB) and land surface models (MOSAIC, VIC, NOAH-
3.3, CLSM-F2.5, and CLM-4.0). Uncertainty in the GRACE contribution to GMSL also includes geocenter
uncertainty (0.05 mm/yr) (67). Human intervention was estimated by comparing WGHM and WGHM-NHI
(no human intervention) and PCR-GLOBWB and PCR-GLOBWB-NHI. Human intervention is -56 km3/yr (-
12-44 km3/yr = -56 km?3/yr) for WGHM, dividing by ocean area (361x10° km?) and changing sign results in
0.15 mm/yr.
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Table S12. Data corresponding to Fig. S14 showing trend contributions to global mean sea level from this
study and other studies based on similar time periods (2002 — 2014). The GRACE data include human and
climate impacts. Human impacts are modeled. Climate impacts are estimated by subtracting modeled
human impacts from GRACE trends. Negative values indicate a negative contribution to GMSL, slowing
the rate of sea level rise.

mm/yr This Study Other Studies
Trend Source Trend Source Trend Source Trend Source

GRACE (H+C) -0.23 1 -0.20 2 -0.33 5 -0.29 6
Human (Model) 0.15 3 0.24 4 0.38 7 0.12 8
Climate (G - H) -0.38 -0.44 -0.71 -0.41

Glaciers 0.65 5 0.38 6
Ice sheets 1.26 5 0.99 6
Thermal expansion 1.38 6

Sources of data include: GRACE (human [H]) + climate [C]) from 1. CSR-M and 2. JPL-M (Table 3), human
impacts from models 3. WGHM and 4. PCR-GLOBWB (Table 3), and climate contribution estimated by
subtracting human impacts from GRACE trends. Other studies include GRACE trends from 5. Reager et al.
(67), and 6. Rietbroek et al. (75), and human impacts from IPCC (68), and Wada et al. (69). The other
components of the sea level budget are also shown for context, including land glaciers, ice sheets
(Greenland and Antartica) and thermal expansion of the oceans. The net result from Rietbroek is a sea
level rise of 2.68 mm/yr after including an additional 0.22 mm/yr (termed other component).
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