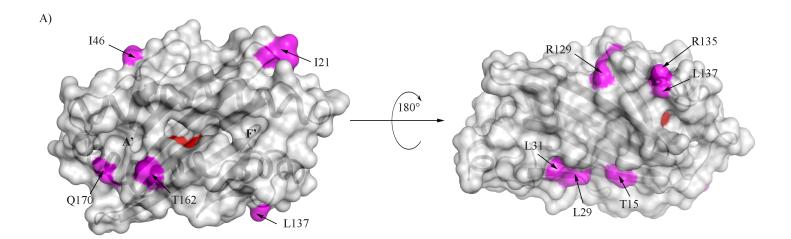
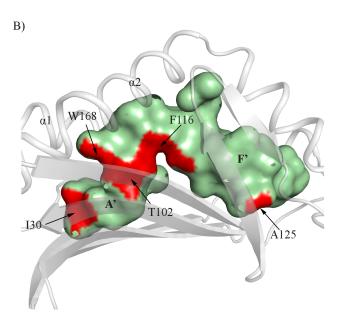

Supplementary Figure 1. The strategy used for the quantitative PCR is shown. Va14 rearrangements were amplified with primers specific for Va14 (Va14F) and Ca (CaR) and a Va14-specific probe (Va14Probe). Determination of Ja18-usage within Va14 rearrangement was revealed using an identical amplification strategy (Va14F-CaR) and a Ja18-specific probe (Ja18 Probe). In parallel, total amount of TCR rearrangements in each sample was determined by amplifying the TCRa constant region using specific primers and probe (CaF, CaR and CaProbe). The relative amount of Va14 rearrangement in each sample. The relative Ja18 usage within Va14 rearrangement was normalized to the amount of TCRa rearrangement in each sample.

Supplementary Figure 2. Left panel, unbiased Fo-Fc electron density map (in magenta) contoured at 2.2 σ level of the unknown endogenous bound lipid(s). Right panel, 2Fo-Fc electron density map (in marine) contoured at 0.8 σ level of the phosphatidic acid (C10) lipid Ag modeled in the unbiased electron density (Left panel). The lipid Ag is shown as black sticks. For clarity, only the α 1- and α 2- helices of CD1d2 are colored in light grey and shown as cartoon representation.


Supplementary Figure 3. Sequence alignment of *CD1D2* and *CD1D1*. The residues on a red background are strictly conserved whilst residues in red font and framed in blue are similar across both sequences. The secondary structural elements of CD1d2 are indicated atop the alignment and the numbering is based on the coordinates of the CD1d2 crystal structure. The alignment was computed using Clustal Omega (63) and edited by ESPript 3.0 (64).


Supplementary Figure 4. (A) Molecular surface of CD1d2 (in grey) and position of the non-conserved residues in CD1d1 (In magenta). (B) Molecular surface of the antigenbinding cleft of CD1d2 and footprint of the residues that form the cleft and that are not conserved in CD1d1 (in red).

mCD1d2 mCD1d2 mCD1d1	βI 1 0 20 SEAQQKNYTFRCLQTSSFANISWSR SEAQQKNYTFRCLQMSSFANRSWSR	β2 30 TDSLILLGDLQ TDSVVWLGDLQ	β3 40 THRWSNDSAII THRWSNDSAII	50 SFT SFT
<i>mCD1d2</i> mCD1d2 mCD1d1	al 6000000000000000000000000000000000000	SFTRDIQELVK	MMSPKEDYPIE	
<i>mCD1d2</i> mCD1d2 mCD1d1	β4 110 120 STGCEMYPONASESFE HVAFQGKYA SAGCEMYPGNASESFE HVAFQGKYA	β6 130 VRFRGTSWQRV VRFWGTSWQTV	0000000 140 LGAPSWLDLPI PGAPSWLDLPI	200 159 VL VL
<i>mCD1d2</i> mCD1d2 mCD1d1	a2 000000000000000000000000000000000000	LEAGKSDLEKQ	EKPVAWLSSVPS	200 55A 55A
mCD1d2 mCD1d2 mCD1d1	β9 β0 μGEL OLVCHVSGFYPKPVWVMWMRG DGER OLVCHVSGFYPKPVWVMWMRG	230 DOEOOGTHRGD	FLPNADETWYL	β14 25 φ 24 π 24 π
<i>mCD1d2</i> mCD1d2 mCD1d1	β15 260 270 LDVEAGEEAGLACRVKHSSLGGQDI LDVEAGEEAGLACRVKHSSLGGQDI			

Supplementary table 1

Data collection and refinement statistics

	CD1d2-endogenous lipids	CD1d2-α-GalCer (C10)
Data collection		
Temperature	100K	100K
Resolution limits (Å)	46.19-2.43 (2.56-2.43)	45.93 - 2.3 (2.38 - 2.30)
Space Group	$P2_1$	$P2_1$
Cell dimensions (Å)	<i>a</i> =58.57, <i>b</i> =71.55, <i>c</i> =104.75	<i>a</i> =105.96, <i>b</i> =74.23,
	β=101.8	<i>c</i> =117.60, β=102.94°
Total N ^{o.} observations	239689 (34156)	556347 (30235)
N ^{o.} unique observations	32094 (4600)	79496 (7814)
Multiplicity	7.5 (7.4)	7.0 (6.9)
Data completeness	99.7 (98.4)	99.8 (97.5)
Wilson B-factors ($Å^2$)	50.3	36.19
I/σ_I	17.9 (2.9)	11.6 (2.8)
$R_{p.i.m}^{1}$ (%)	4.4 (31.2)	4.3 (34.8)
Refinement statistics		
R_{factor}^{2} (%)	21.5	23
R_{free}^{3} (%)	25.1	28
Non hydrogen atoms		
- Protein	5836	11728
- Water	64	305
- Heterogen	84	363
Ramachandran plot (%)		
- Most favoured	97.6	98
- Allowed	2.4	2
r.m.s.d bonds (Å)	0.01	0.005
r.m.s.d angles (°)	1.11	0.83

¹ $R_{p,i,m} = \Sigma_{hkl} [1/(N-1)]^{1/2} \Sigma_i | I_{hkl, i} - \langle I_{hkl} \rangle | / \Sigma_{hkl} \langle I_{hkl} \rangle$

 $^{2}R_{factor} = \left(\left. \Sigma \mid \left| F_{o} \right| - \left| F_{c} \right| \right| \right) / \left(\left. \Sigma \mid F_{o} \right| \right) \text{ - for all data except as indicated in footnote 3.}$

 3 5% of data was used for the $R_{\rm free}$ calculation

Values in parentheses refer to the highest resolution bin