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SI Text
Proof of Uniqueness in Result 5. Following Eq. 10, the transformation of the frequency x of phenotype A is

x ′ = F (x ) = FB ◦ · · · ◦ FB︸ ︷︷ ︸
l times

◦ FA ◦ · · · ◦ FA︸ ︷︷ ︸
k times

(x ). [S1]

Using Eqs. 25 and 26, we can write

F ′A(x ) = ρ
wW[
w(x )

]2 + (1− ρ), w(x ) = (W − w)x + w [S2]

F ′B (x ) = ρ
wW[
w̃(x )

]2 + (1− ρ), w̃(x ) = (w −W )x + W . [S3]

Since F ′A(x ) > 0, F ′B (x ) > 0 for 0 ≤ x ≤ 1, all of the functions FA, FB , FA ◦ · · · ◦ FA, FB ◦ · · · ◦ FB , and F are monotone increasing
for 0 ≤ x ≤ 1.

From Result 2, the two fixations x = 0 and x = 1 are not stable, because F ′(0) > 1 and F ′(1) > 1. Therefore,

F (x )− x > 0 for x > 0 “near” x = 0, [S4]

F (x )− x < 0 for x < 1 “near” x = 1. [S5]

Hence, as F (x )−x is a continuous function of x for 0 ≤ x ≤ 1, there exists (at least one) polymorphic equilibrium x∗ with 0 < x∗ < 1,
such that F (x∗) = x∗.

If there is more than one polymorphic equilibrium, and as there is a finite number of equilibria, let x∗ be the “closest” polymorphic
equilibrium to x = 0. Since F (x ) > x for 0 < x < x∗, F (x ) < x for x > x∗ (at least “near” x∗), and F (x ) is a monotone increasing
function in [0, 1], x∗ must be locally stable.

Let x̂ = F (x̂ ) with 0 < x̂ < 1 be any polymorphic equilibrium; then, from [S1], its evolution in the k + k generations is

A A · · · A B B · · · B A
x̂ = x̂0 → x̂1 → · · · → xk−1 → ŷ0 → ŷ1 → · · · → ŷk−1 → x̂0 = x̂ .

[S6]

Due to the symmetry between phenotypes A and B , we have

ŷt = 1− x̂t , w
(
x̂t
)

= w̃
(
ŷt
)

[S7]

for all t = 0, 1, 2, . . ., k − 1.
The polymorphic equilibrium x̂ is locally stable if F ′(x̂ ) < 1 or from [S1–S3], if

k−1∏
t=0

{
ρ

wW[
w(x̂t)

]2 + (1− ρ)

}
·
k−1∏
t=0

{
ρ

wW[
w̃(ŷt)

]2 + (1− ρ)

}
< 1. [S8]

Applying [S7], we conclude that x̂ is locally stable if

k−1∏
t=0

{
ρ

wW[
w(x̂t)

]2 + (1− ρ)

}
< 1. [S9]

As x∗, the closest polymorphic equilibrium to x = 0, is stable, then [S9] implies that

k−1∏
t=0

{
ρ

wW[
w(x∗t )

]2 + (1− ρ)

}
≤ 1, [S10]

where x∗t for t = 0, 1, . . ., k − 1 is defined as in [S6].
If x̂ is any polymorphic equilibrium other than x∗, then x̂ > x∗ or x̂0 > x∗0 by [S4]. Since FA is a monotone increasing function and

x̂t+1 = FA

(
x̂t
)
, x∗t+1 = FA

(
x∗t
)

t = 0, 1, . . ., k − 1, [S11]

then by induction, we have x̂t > x∗t for all t = 0, 1, 2, . . ., k − 1. In addition, as w(x ) = (W − w)x + w and W > w , we also have
w(x̂t) > w(x∗t ) for all t = 0, 1, 2, . . ., k − 1 and

k−1∏
t=0

{
ρ

wW[
w(x̂t)

]2 + (1− ρ)

}
<

k−1∏
t=0

{
ρ

wW[
w(x∗t )

]2 + (1− ρ)

}
≤ 1. [S12]
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Hence, x̂ is also locally stable. However, it is impossible that all polymorphic equilibria are stable unless there is only one stable
polymorphic equilibrium. Therefore, x∗ is the unique stable polymorphic equilibrium, and since F (x ) > x for 0 < x < x∗, F (x ) < x
for x∗ < x < 1, and F (x ) is monotone increasing in [0, 1], therefore, x∗ is globally stable.

Proof of Result 6. Rewrite recursion Eq. 28 as

xt + 1

xt
= (1 + ρst)

[
1− xt

ρst(1 + st)

(1 + ρst)(1 + xtst)

]
. [S13]

Then,

log xt+1 − log xt = log(1 + ρst) + log

[
1− xt

ρst(1 + st)

(1 + ρst)(1 + xtst)

]
. [S14]

Summation yields

1

t
[log xt − log x0] =

1

t

t−1∑
n=0

log(1 + ρsn) +
1

t

t−1∑
n=0

log

[
1− xn

ρsn(1 + sn)

(1 + ρsn)(1 + xnsn)

]
. [S15]

Let µ = E [log(1 + ρst)]. As {st}t≥0 are independent and identically distributed random variables, the strong law of large numbers
applies, and

lim
t→∞

1

t

t−1∑
n=0

log(1 + ρsn) = µ [S16]

almost surely.
Let ζ be such that 1

t

∑t−1
n=0 log[1 + ρsn(ζ)] = µ, and assume that limt→∞xt(ζ) = 0. As the random variables {st}t≥0 are uniformly

bounded,

xt(ζ)
ρst(ζ)[1 + st(ζ)]

[1 + ρst(ζ)][1 + xt(ζ)st(ζ)]
t →∞ 0 [S17]

and

lim
t→∞

1

t

t−1∑
n=0

log

[
1− xn(ζ)

ρxn(ζ)[1 + sn(ζ)]

[1 + ρsn(ζ)][1 + xt(ζ)sn(ζ)]

]
= 0. [S18]

Thus, [S15] implies that

lim
t→∞

1

t
[log xt(ζ)− log x0(ζ)] = µ. [S19]

If µ=E [log(1 + st)] > 0, then from [S19], we deduce that limt→∞xt(ζ) =∞, a contradiction. Therefore, when µ> 0, P(limt→∞xt =
0) = 0, and fixation of B (x∗= 0) is stochastically locally unstable.

Thus, by Result 6, for x∗ = 0 to be stochastically locally stable, it is necessary that E [log(1 + ρst)] ≤ 0. In fact, the strict inequality
is sufficient.

Fig. 3 presents a numerical example of the dynamics of recursion Eq. 28 with a specific random selection coefficient st .

Proof of Result 7. Let µ = E [log(1 + ρst)]. Then, as {st}t≥0 are independent and identically distributed random variables, the strong
law of large number applies and almost surely

lim
t→∞

1

t

t−1∑
n=0

log(1 + ρsn) = µ < 0. [S20]

Appealing to the Egoroff Theorem, for any ε > 0, there exists T , such that

P

(
1

t

t−1∑
n=0

log(1 + ρsn) <
µ

2
for all t ≥ T

)
≥ 1− ε. [S21]

As 0 ≤ ρ ≤ 1 and the {st}t≥0 are uniformly bounded, we can find a δ′ > 0, such that

xt < δ′ =⇒
∣∣∣∣log

[
1− xt

ρst(1 + st)

(1 + ρst)(1 + xtst)

]∣∣∣∣ < −µ4 . [S22]

Also, as 0 ≤ xt ≤ 1 for all t ,

xt+1 = xt
1 + ρst + xt(1− ρ)st

1 + xtst
< Kxt , [S23]

where K is independent of t . It follows that there exists a δ with 0 < δ < δ′, such that

xo < δ =⇒ xt < δ′ for all t = 0, 1, 2, . . .,T − 1. [S24]

Let ξ be a realization of the evolutionary process, such that
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1

t

t−1∑
n=0

log[1 + ρsn(ξ)] <
µ

2
for all t ≥ T , [S25]

and assume that x0 < δ. Then,

1

T
[log xT (ξ)− log x0(ξ)] =

1

T

T−1∑
n=0

log[1 + ρsn(ξ)] +
1

T

T−1∑
n=0

log[1− xn(ξ)
ρsn(ξ)[1 + sn(ξ)]

[1 + ρsn(ξ)][1 + xn(ξ)sn(ξ)]

<
µ

2
− µ

4
=
µ

4
< 0, [S26]

and therefore, xT (ξ) < x0(ξ) < δ′. Invoking induction, we get that, for t ≥ T ,

1

t
log

xt(ξ)

x0
≤ µ

4
, [S27]

or for all t ≥ T ,

xt(ξ) ≤ x0 exp
(µ

4
t
)
. [S28]

As µ < 0, this implies that xt(ξ) t → ∞ 0. Therefore, we have shown that, for given ε > 0, there is a δ > 0, such that, if 0 < x0 < δ,
then P (limt→∞xt = 0) ≥ 1− ε; therefore, x∗ = 0, and the fixation in B is stochastically locally stable. The second statement of Result
6 follows from the convexity of the log function and Jensen’s inequality.

Proof of Result 8. The external stability of x∗ (Eqs. 35 and 36) to the introduction of the modifier allele M with rate P is determined
by the linear approximation matrix L = L2 · L1 near x∗, which is derived from Eq. 32 and given by

w∗L1 =

[
W
[
(1− P)x∗1 + P

]
w(1− P)x∗1

W (1− P)x∗2 w
[
(1− P)x∗2 + P

]] [S29]

and

w∗∗L2 =

[
w
[
(1− P)x∗∗1 + P

]
W (1− P)x∗∗1

w(1− P)x∗∗2 W
[
(1− P)x∗∗2 + P

]], [S30]

where x∗∗ = T1x
∗, x∗∗1 = x∗2 = 1− x∗1 , x∗∗2 = x∗1 , and

w∗ = Wx∗1 + wx∗2 , w∗∗ = wx∗∗1 + Wx∗∗2 . [S31]

Due to the symmetry between the two phenotypes A and B in the A1B1 case, we have x∗∗1 = x∗2 and x∗∗2 = x∗1 , so that w∗∗ = w∗, and
in fact,

w∗L2 =

[
w
[
(1− P)x∗2 + P

]
W (1− P)x∗2

w(1− P)x∗1 W
[
(1− P)x∗1 + P

]]. [S32]

Note that, as x∗ = T2(T1x
∗) with x∗3 = x∗4 = 0, from [S29] and [S30] with P = ρ, we have[

x∗1
x∗2

]
= L2 · L1

[
x∗1
x∗2

]
= L

[
x∗1
x∗2

]
. [S33]

Hence, when P = ρ, one of the eigenvalues of L is one. In general, L = L2 · L1, and using [S29] and [S32], we have

(w∗)
2 L11 = Ww

[
(1− P)2x∗1 x

∗
2 + P

]
+
[
w(1− P)x∗1

]2
(w∗)

2 L12 = W (1− P)
[
P + x∗1 (1− P)

][
Wx∗2 + wx∗1

]
(w∗)

2 L21 = w(1− P)
[
1− x∗1 (1− P)

][
Wx∗2 + wx∗1

]
(w∗)

2 L22 = Ww
[
(1− P)2x∗1 x

∗
2 + P

]
+
[
W (1− P)x∗2

]2
.

[S34]

The external stability of x∗ is determined by the eigenvalues of L, namely the roots of its characteristic polynomial R(λ) = det(L−λI ),
with I the 2× 2 identity matrix. From Eq. S34, R(λ) = a2λ

2 + a1λ+ a0, where

a0 =
P2W 2w2

(w∗)4
, a1 = −2PWw + (1− P)2[Wx∗2 + wx∗1 ]2

(w∗)2
, a2 = 1. [S35]

As L is a positive matrix, by the Perron–Frobenius theorem, L has a positive eigenvalue, and as a0 > 0 and a2 = 1, the product of the
two eigenvalues of L is positive. Thus, L has two positive eigenvalues. Let R(1) = R(1;P); then, from [S35],

R(1;P) =
W 2w2 − (w∗w̃∗)2

(w∗)4
P2 + 2P

(w̃∗)2 −Ww

(w∗)2
+

(w∗)2 − (w̃∗)2

(w∗)2
, [S36]

where w̃∗ = Wx∗2 + wx∗1 .
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By Eq. 36,
(√

Ww − w
)
/(W − w) < x∗1 <

1
2

, from which it is easily seen that
√
Ww < w∗ < w̃∗. [S37]

When P = ρ, one of the eigenvalues of L is one; hence, R(1; ρ) = 0. Another root of R(1;P) = 0 is
[
(w∗)2 + w∗w̃∗

]
/
[
Ww + w∗w̃∗

]
,

which by Eq. S37, is larger than one. As R(1; 0) =
[
(w∗)2 − (w̃∗)2

]
/(w∗)2 < 0 by Eq. S37, we deduce that, when 0 < P < ρ,

R(1;P) < 0, whereas when ρ < P < 1, R(1;P) > 0. Hence, when P < ρ, R(1) < 0, and since a2 = 1, R(+∞) > 0; therefore, we
conclude that R(λ) = 0 has a positive root larger than one, and the largest positive eigenvalue of L is larger than one.

When P > ρ, we have R(1) > 0 and also, R(0) = a0 > 0. As R(λ) = 0 has two positive roots and as a2 > 0, R(λ) is convex: either
the two positive roots are less than one or both larger than one. However, the product of the two roots is P2W 2w2/(w∗)2 < 1 by Eq.
S37; thus, when P > ρ, the two positive eigenvalues of L are less than one.

Proof of Result 10. Without loss of generality and for the ease of representation, we will show that, for t > 0,

v(x ; t) =
1− e−tx

1− e−t
[S38]

is monotone increasing as a function of t . Observe that

∂v

∂t
=

(
1− e−t

)
xe−tx −

(
1− e−tx

)
e−t

(1− e−t)2
. [S39]

For the monotonicity, we have to show that

f (x ; t) =
(
1− e−t) xe−tx −

(
1− e−tx) e−t ≥ 0 [S40]

when t > 0 and 0 ≤ x ≤ 1. Note that f (0; t) = 0 and f (1; t) = 0. Also,

∂f

∂x
=
(
1− e−t) (e−tx − txe−tx)− te−txe−t [S41]

or
∂f

∂x
= e−tx [(1− e−t) (1− tx )− te−t] = e−txg(x ; t), [S42]

say where for fixed t , g(x ; t) is a linear function of x , which vanishes at x0 = (1 − e−t − te−t)/t(1 − e−t). If t > 0, et > 1 + t ;
therefore, 1 > e−t(1 + t) and x0 > 0. Also, if t > 0, e−t > 1 − t , and therefore, 1 − e−t − te−t < t(1 − e−t) and x0 < 1. Since
g(0, t) = 1− e−t − te−t > 0 and g(1; t) = (1− e−t)(1− t)− te−t < 0 for t > 0, we deduce that ∂f

∂x
(x , t) > 0 for 0 < x < x0 and

∂f
∂x

(x , t) < 0 for x0 < x < 1 for all t > 0. These facts combined with f (0, t) = f (1; t) = 0 prove that f (x ; t) ≥ 0 for 0 ≤ x ≤ 1 [in
fact, f (x ; t) > 0 for 0 < x < 1], and inequality [S40] is satisfied as desired.

Proof of Result 11. The proof is based on induction on n , where to prove Eq. 45, we show that, if Xt is the number of individuals with
phenotype A at stage t of the cycle and x is the initial frequency of A, then

E

(
Xt

N
− x

)
' 1

N
ρStx (1− x ), V

(
Xt

N

)
' 1

N
tx (1− x ), [S43]

where N is the size of the population. When t = 1, [S43] coincides with the constant environment case. Assuming [S43], we go to
t + 1. Now, Xt+1 given Xt = Ny has a binomial distribution with parameters (N , y ′). Hence,

E

(
Xt+1

N
− Xt

N

∣∣∣∣Xt = Ny

)
= y ′ − y . [S44]

Following ref. 1, chap. 5, y ′ − y ' (1/N )ρst+1y(1− y), and therefore,

E

(
Xt+1

N
− Xt

N

∣∣∣∣Xt

)
' 1

N
ρst+1

Xt

N

(
1− Xt

N

)
. [S45]

Observe that

E

[
Xt

N

(
1− Xt

N

)]
= E

(
Xt

N

)
− E

[(
Xt

N

)2
]

= E

(
Xt

N

)
−V

(
Xt

N

)
−
[
E

(
Xt

N

)]2
. [S46]

By the induction assumption, V (Xt/N ) ' (1/N )tx (1− x ), and ignoring terms of order 1/N 2, we have

E

(
Xt+1

N
− Xt

N

)
' 1

N
ρst+1E

(
Xt

N

)[
1− E

(
Xt

N

)]
. [S47]

Applying [S43], we have

E

(
Xt

N

)
' x +

1

N
ρStx (1− x ),

1− E

(
Xt

N

)
' 1− x − 1

N
ρStx (1− x ),

[S48]

and ignoring terms O(1/N 2), we find
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E

(
Xt+1

N
− Xt

N

)
' 1

N
ρst+1x (1− x ). [S49]

Thus,

E

(
Xt+1

N
− x

)
= E

(
Xt+1

N
− Xt

N

)
+ E

(
Xt

N
− x

)
' 1

N
ρst+1x (1− x ) +

1

N
ρStx (1− x ),

[S50]

and since St + st+1 = St+1,

E

(
Xt+1

N
− x

)
' 1

N
ρSt+1x (1− x ) [S51]

as desired.
We now compute V (Xt+1/N ) using the induction assumption and the formula

V

(
Xt+1

N

)
= E

[
V

(
Xt+1

N

∣∣∣∣Xt

)]
+ V

[
E

(
Xt+1

N

∣∣∣∣Xt

)]
, [S52]

where by [S43],

E

(
Xt+1

N

∣∣∣∣Xt

)
' Xt

N
+

1

N
ρst+1

Xt

N

(
1− Xt

N

)
[S53]

and

V

(
Xt+1

N

∣∣∣∣Xt

)
' 1

N

Xt

N

(
1− Xt

N

)
. [S54]

Here, we used the fact that y ′(1− y ′) ' y(1− y). Now,

E

[
V

(
Xt+1

N

∣∣∣∣Xt

)]
' 1

N
E

[
Xt

N

(
1− Xt

N

)]
' 1

N
x (1− x ), [S55]

where we use the same computations as led from [S46] to [S49]:

V

[
E

(
Xt+1

N

∣∣∣∣Xt

)]
= V

[
Xt

N
+

1

N
ρst+1

Xt

N

(
1− Xt

N

)]
. [S56]

Since (Xt/N )
[
1− (Xt/N )

]
is a random variable taking values in [0,1], its variance is less than 1/4 and

V

[
1

N
ρst+1

Xt

N

(
1− Xt

N

)]
≤ 1

4N 2
ρ2s2t+1. [S57]

We ignore terms O(1/N 2), so that the random variable (1/N )ρst+1(Xt/N )
[
1− (Xt/N )

]
is almost constant. As a result,

V

[
E

(
Xt+1

N

∣∣∣∣Xt

)]
' V

(
Xt

N

)
' 1

N
tx (1− x ) [S58]

by the induction assumption. Combining [S55] and [S58] gives

V

(
Xt+1

N

)
' 1

N
x (1− x ) +

1

N
tx (1− x ) =

1

N
(t + 1)x (1− x ) [S59]

as expected.

Calculation of Stable Vertical Transmission Rate in AkBk. Here, we describe the analysis of the stability of a modifier allele m with vertical
transmission rate ρ to invasion by a modifier M with a vertical transmission rate P , as described in Eq. 32, in environmental regime
AkBl . The analysis is similar to that used in Result 8 to analyze stability in A1B1, but it is numerical, because the cases where k > 1 or
l > 1 require solving polynomials of degree > 6 to obtain closed form expressions.

The analysis includes the following steps for fixed W ,w , k , and l . First, we find the stable frequency of phenotype A with a single
modifier x∗. This is done by minimizing the expression |xk+l − x0|, where xt is defined in Eq. 9. The minimization is done by iterating
the recurrence in Eq. 9 until it converges (i.e., until the difference |xk+l −x0| is smaller than available machine precision; roughly 10−8

when subtracting similar small numbers). Second, we set the frequency vector with two modifiers to x∗ = (x∗, 1− x∗, 0, 0) (that is, to
the stable frequencies in the absence of modifier M ).

Now, we define FA(x ) by Eq. 32 with wA = W and wB = w (W > w), and similarly, we define FB (x ) with wB = W and wA = w .
Also, we define, similar to Eq. 34, F (x ) by composition

F = FB ◦ · · · ◦ FB︸ ︷︷ ︸
l times

◦FA ◦ · · · ◦ FA︸ ︷︷ ︸
k times

. [S60]
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To obtain a linear approximation of F (x ) near x∗, we calculate the Jacobian matrix of F (x ) at x = x∗,

Jij = J(x∗)ij =
∂F (x∗)i
∂xj

, [S61]

and the 2× 2 external stability matrix L = Lex is as in Eqs. S29 and S30 (note that the upper right block is 0, because x∗3 = x∗4 = 0):

J =

[
Lin 0
∗ Lex

]
. [S62]

We calculate the eigenvalues λ1>λ2 of L using the quadratic formula, as the characteristic polynomial of L has degree 2. By the
Perron–Frobenius theorem, the leading eigenvalue λ1 is real and positive. Denote by λ1(ρ,P) the resulting leading eigenvalue with
resident rate ρ and invader rate P . Note that, for any ρ ∈ (0, 1),

λ1(ρ, ρ) = 1. [S63]

The evolutionarily stable rate ρ∗ is defined to be stable to invasion; that is, for a small enough value ∂P > 0, we have

λ1(ρ∗, ρ∗ ± ∂P) < 1 = λ1(ρ∗, ρ∗), [S64]

where the equality is given by Eq. S63. Therefore,

∂λ1

∂P

(
ρ∗, ρ∗

)
= 0. [S65]

We use Brent’s (2) root-finding method to find ρ∗ that satisfies Eq. S65. If, due to numerical instability of the described numerical
process, we have

∂
λ1

∂P

(
0, 0
)
· ∂λ1

∂P

(
1, 1) > 0 [S66]

(i.e., the partial derivative sign is identical at ρ = P = 0 and ρ = P = 1), then we cannot use Brent’s (2) method. In these cases, we
assume that the partial derivative does not have a root in (0, 1), and we determine the stable rate ρ∗ by the rule

ρ∗ =

{
0 if ∂λ1

∂P

(
0, 0
)
≤ 0

1 if ∂λ1
∂P

(
0, 0
)
> 0.

[S67]

Fig. S10 shows the sensitivity of the leading eigenvalue λ1 of the external stability matrix L to changes in the invader rate P as a
function of the resident rate ρ for different choices of environmental cycles AkBk .

The numerical analysis above is fine for small k , but for large k and especially for w = 0.1, the calculation is unstable. This is probably
because when the environment is constant for a long period, most of the time the frequencies xi are very close to the boundaries (i.e.,
zero and one).

Crucially, the Jacobian J in Eq. S61 is calculated using automatic differentiation from a function that iteratively calculates F (x∗)

according to Eq. S60. Similarly, the partial derivative ∂λ1
∂P

in Eq. S65 is calculated from a function that calculates λ1 using simple
arithmetic operations. Note that automatic differentiation does not mean symbolic or numerical differentiation, which can lead to
inefficient or inaccurate estimation of J when k is not very small. Rather, from ref. 3, “Automatic differentiation is a set of techniques
for transforming a program that calculates numerical values of a function, into a program which calculates numerical values for
derivatives of that function with about the same accuracy and efficiency as the function values themselves.”

Diffusion Approximation. We compute the mean µ(x ) and the variance σ2(x ) of the change in one generation in the frequency of
phenotype A given that, at the beginning of the generation, Xt = Nx . To compute µ(x ), observe that, by Eq. 40,

x ′ − x =
wAx

w
ρ+ (1− ρ)x − x = ρx

[wA

w
− 1
]

= ρx (1− x )
wA − wB

wAx + wB (1− x )
, [S68]

since w = wAx + wB (1− x ). For the diffusion approximation, it is essential that the differential selection does not have a large effect
per individual in each time period ∆t

(
∆t ' 1

N

)
. That is, we assume that

wA − wB =
s

N
. [S69]

Then,

x ′ − x ' 1

N
ρsx (1− x ) [S70]

up to terms of order small than 1
N

. Since one generation corresponds to ∆t ' 1
N

, we conclude that

µ(x ) = ρsx (1− x ); 0 ≤ x ≤ 1. [S71]

In the same way, we can compute

σ2(x ) = x (1− x ). [S72]

1. Ewens W (2004) Mathematical Population Genetics (Springer, New York), 2nd Ed.
2. Brent RP (1971) An algorithm with guaranteed convergence for finding a zero of a

function. Comput J 14:422–425.

3. Bartholomew-Biggs M, Brown S, Christianson B, Dixon L (2000) Automatic differenti-
ation of algorithms. J Comput Appl Math 124:171–190.
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Fig. S1. Ratios of selection periods k
l that lead to fixation of phenotype A (red) or polymorphism of phenotypes A and B (blue); k and l are the numbers of

generations in which phenotypes A and B, respectively, are favored by selection. In all cases, W = 1, and w = 1 − s. A, C, E, and G are for different ρ values
and B, D, F, and H are for different s values.
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Fig. S2. Frequency of phenotype A after every two generations in selection regime A1B1. The orange line is the finite population model (Eqs. 40 and 41)
(average of 100 simulations). The blue line is the infinite population model (Eq. 21), and the green line is the solution of Q(x) = 0 (Eq. 22). In all cases, W = 1;
for the finite population model (orange lines), population size is N = 10, 000, and initial frequency of A is x0 = 0.5. A–F are for the shown values of ρ and w.

Fig. S3. Properties of stability in A1B1 selection regime. (A) Stable frequency of phenotype A and (B) stable mean fitness as functions of the vertical
transmission rate ρ and the fitness of the disfavored phenotype w. Black contour lines join ρ and w combinations that result in the same stable value. In all
cases, fitness of the favored phenotype is W = 1.
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Fig. S4. Convergence of the frequency of phenotype A to a stable polymorphism in selection regime AkBk. Comparison of dynamics starting with different
initial frequencies of phenotype A (0.01–0.99) and different k, ρ, and w values. The lines show the x frequency of phenotype A at the end of each period
after every 2k generations. In all cases, W = 1. A–L are for the specified value of k.
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Fig. S5. Frequency of phenotype A after every three generations in selection regime A1B2. Comparison of dynamics starting with different initial frequency
of phenotype A (0.01–0.99) (Figs. 1 and 7). In all cases, W = 1. A–F are for the specified values of ρ and w.

Fig. S6. Frequency of phenotype A after every 13 generations in selection regime A3B10. Comparison of dynamics starting with different initial frequency
of phenotype A (0.01–0.99). In all cases, W = 1. A–F are for the specified values of ρ and w.
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Fig. S7. Stable population mean fitness in selection regime AkBk as a function of the vertical transmission rate ρ and the number k of generations in which
phenotypes A and B are favored by selection for different selection intensities: (A) w = 0.1, (B) w = 0.5, and (C) w = 0.9. Colors represent the geometric
average of the stable population mean fitness over 2k generations calculated by iterating Eq. 9 until phenotype frequencies stabilized and for at least 1, 000
generations. Blue markers show the maximum average mean fitness for each period k. For example, with w = 0.1, ρ̂= 0 maximizes the average fitness
for k ≤ 11; then, ρ̂ increases to ρ̂≈ 0.24 and continues to decrease as k increases, down to ρ̂≈ 0.15 for k = 50 (Fig. 6). Contour lines represent ρ and k
combinations that produce the same average mean fitness. In all cases, W = 1.

Fig. S8. The geometric average of the stable population mean fitness over the 2k generation period peaks at ρ = 0 for k ≤ 30 (red, blue, and green lines)
and at ρ ≈ 0.23 for k = 31 and 32 (purple and orange lines, respectively) (Fig. 6). Inset zooms out to show that the geometric mean fitness is strictly and
significantly decreasing for ρ > 0.3 (reaching ≈ 0.7 for ρ = 1). In all cases, W = 1 and w = 0.5.

Fig. S9. Fixation probability and mean time in a finite population. (A) Fixation probability u(x) of phenotype A (Eq. 42). (B) Expected time to fixation T(x)
of phenotype A (Eq. 43) conditioned on its fixation, starting with a single copy in a population of size N. The figure compares two estimates: Wright–Fisher
simulations (blue circles) and diffusion equation approximation (green solid lines). Parameters: selection coefficient, s = wA − wB = 0.1; population size,
N = 10, 000.
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Fig. S10. Evolutionarily stable vertical transmission rate in AkBl selection regime. The figure shows ∂λ1
∂P , the sensitivity of the leading eigenvalue of the

external stability matrix L to changes in P (the vertical transmission rate of the invader allele) as a function of ρ, the vertical transmission rate of the resident
allele (details are in Evolutionary Stability of Oblique Transmission and SI Text). The shaded areas mark ρ values for which phenotype B fixes and there is no
polymorphism (Eq. 20). Without polymorphism, selection does not affect the transmission rate, and therefore, any rate in the shaded areas is neutrally stable.
In A, B, D, G, J, and M, ∂λ1

∂P < 0 at the vicinity of ρ = 0, and therefore, the stable rate is ρ* = 0. In B, C, E, F, H, I, K, and L, the stable rate ρ* can be identified

as the ρ value at which ∂λ1
∂P changes from positive to negative. In N and O, ∂λ1

∂P > 0 for all ρ values that protect polymorphism, and therefore, there are only
neutrally stable rates (in the shaded areas). Here, W = 1 and w = 0.1.
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Fig. S11. Fixation in a finite population with different ratios of selection periods k
l . Fixation probability of phenotype A when starting with a single copy in

a population of size N: u(1/N) = (1 − exp(−2ρ k−l
k+l (W − w))/(1 − exp(−2Nρ k−l

k+l (W − w)) (Eqs. 46 and 47); k and l are the numbers of generations in which
phenotypes A and B, respectively, are favored by selection. In all cases, fitness of the favored phenotype is W = 1; fitness of the unfavored phenotype is
w = 1 − s, and the population size is N = 10,000. A, C, E, and G are for the specified value of s and B, D, F, and H are for the specified value of ρ.
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Fig. S12. Consecutive fixation of modifiers that reduce the vertical transmission rate in selection regime A1B1. The figure shows results of numerical
simulations of evolution with two modifier alleles (Eq. 32). When a modifier allele fixes (frequency >99.9%), a new modifier allele is introduced with a
vertical transmission rate one order of magnitude lower (vertical dashed lines). (A, D, and G) The frequency of phenotype A in the population over time.
(B, E, and H) The frequency of the invading modifier allele over time. (C, F, and I) The population geometric mean fitness over time; Insets zoom in to show
that the mean fitness decreases slightly with each invasion. Invading alleles are introduced at frequency 0.01%; whenever their frequency drops below 0.01%,
they are reintroduced. Parameters: vertical transmission rate of the initial resident modifier allele, ρ0 = 0.1; fitness values: W = 1 and w = 0.1 (A–C), 0.5
(D–F), and 0.9 (G–I). The x axis is on a log scale, as each sequential invasion takes an order of magnitude longer to complete. D–F are the same as in Fig. 4.
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