SUPPORTING INFORMATION

Designing Flavoprotein-GFP fusion Probes for Analyte-specific Ratiometric Fluorescence Imaging

Devin A. Hudson,[†] Jeffrey L. Caplan,[§] and Colin Thorpe*,[†]

[†]Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.

[§]Bioimaging Center, Delaware Biotechnology Institute, Newark, Delaware 19716, United States

Table of Contents

Page S2.	DNA Sequences of TrxR-mCherry
Page S3.	Protein Sequence of TrxR-mCherry
Page S3.	DNA Sequences of LipDH-mCherry (Bacterial)
Page S4.	Protein Sequences of LipDH-mCherry (Bacterial)
Page S4.	DNA Sequence of TrxR _{GV} -mRuby2
Page S5.	Protein Sequence of TrxR _{Gv} -mRuby2
Page S5.	DNA Sequences of LipDH-mCherry (Mammalian)
Page S6.	Protein Sequences of LipDH-mCherry (Mammalian)
Figure S1.	Reduction of <i>Ec</i> Trx1 followed by tryptophan fluorescence.

- Figure S2. Confocal field of view of thioredoxin sensor flow cell.
- Figure S3. Confocal field of view of NAD⁺/NADH sensor flow cell.

DNA Sequences of TrxR-mCherry

GCTAGCATGACTGGTGGACAGCAAATGGGTCGGGATCTGTACGACGATGACGATAAGGA TCCAACCCTTATGGGCACGACCAAACACAGTAAACTGCTTATCCTGGGTTCAGGCCCGGC GGGATACACCGCTGCTGTCTACGCGGCGCGCGCCCAACCTGCAACCTGTGCTGATTACCGG CATGGAAAAAGGCGGCCAACTGACCACCACCACGGAAGTGGAAAACTGGCCTGGCGATC CAAACGATCTGACCGGTCCGTTATTAATGGAGCGCATGCACGAACATGCCACCAAGTTTG GAATGGCGATAACGGCGAATACACTTGCGACGCGCTGATTATTGCCACCGGAGCTTCTGC ACGCTATCTCGGCCTGCCCTCTGAAGAAGCCTTTAAAGGCCGTGGGGTTTCTGCTTGTGCA ACCTGCGACGGTTTCTTCTATCGCAACCAGAAAGTTGCGGTCATCGGCGGCGGCAATACC GCGGTTGAAGAGGCGCTGTATCTGTCTAACATCGCTTCGGAAGTGCATCTGATTCACCGC CGTGACGGTTTCCGCGCGGAAAAAATCCTCATTAAGCGCCTGATGGATAAAGTGGAGAAC GGCAACATCATTCTGCACACCAACCGTACGCTGGAAGAAGTGACCGGCGATCAAATGGGT GTCACTGGCGTTCGTCTGCGCGATACGCAAAACAGCGATAACATCGAGTCACTCGACGTT GCCGGTCTGTTTGTTGCTATCGGTCACAGCCCGAATACTGCGATTTTCGAAGGGCAGCTGG AACTGGAAAACGGCTACATCAAAGTACAGTCGGGTATTCATGGTAATGCCACCCAGACCA GCATTCCTGGCGTCTTTGCCGCAGGCGACGTGATGGATCACATTTATCGCCAGGCCATTAC TTCGGCCGGTACAGGCTGCATGGCAGCACTTGATGCGGAACGCTACCTCGATGGTTTAGC TGACGCAAAAGTGAGCAAGGGCGAAGAGGATAACATGGCCATCATCAAGGAGTTCATGC GCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAG GGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGTGG CCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTAC GTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAG TGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCC CTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGAC GGCCCCGTAATGCAGAAGAAGAACCATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCC CGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTGAAGCTGAAGGACGGCGGCC ACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGC GCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACAACGAGGACTACACCATCGTG GAACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGACGAGCTGTACAA GTAAGCTT

Primers for G154V Mutation of TrxR

G154V_Fwd: GTC ATC GGC GGC GTC AAT ACC GCG GTT G154V_Rev: AAC CGC GGT ATT GAC GCC GCC GAT GAC

Protein Sequence of TrxR-mCherry

MTGGQQMGRDLYDDDDKDPTLMGTTKHSKLLILGSGPAGYTAAVYAARANLQPVLITGME KGGQLTTTTEVENWPGDPNDLTGPLLMERMHEHATKFETEIIFDHINKVDLQNRPFRLNGDN GEYTCDALIIATGASARYLGLPSEEAFKGRGVSACATCDGFFYRNQKVAVIGGGNTAVEEALY LSNIASEVHLIHRRDGFRAEKILIKRLMDKVENGNIILHTNRTLEEVTGDQMGVTGVRLRDTQ NSDNIESLDVAGLFVAIGHSPNTAIFEGQLELENGYIKVQSGIHGNATQTSIPGVFAAGDVMDH IYRQAITSAGTGCMAALDAERYLDGLADAKVSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFE IEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGF KWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMY PEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQ YERAEGRHSTGGMDELYK

DNA Sequences of LipDH-mCherry (for bacterial expression)

CCATGGGTCACCATCACCATCATCATGAGAACCTTTACTTTCAAGGCACCATTAACAAAA GTCACGATGTAGTTATCATTGGCGGCGGTCCTGCTGGATATGTTGCCGCAATTAAAGCGG CCCAGTTAGGGTTTAACACCGCTTGTGTGGAAAAACGTGGTAAACTGGGGGGGTACATGTT TGAATGTTGGGTGCATTCCATCGAAAGCCTTACTGAATAATTCCCACTTGTTTCACCAGAT GCACACAGAAGCGCAGAAACGTGGTATTGACGTGAACGGCGATATTAAGATTAACGTGG CAAACTTTCAAAAAGCCAAAGATGATGCTGTCAAACAACTTACGGGTGGTATTGAACTGT TATTCAAAAAGAACAAGGTAACTTATTATAAAGGAAACGGATCATTTGAGGATGAAACC AAAATTCGTGTGACTCCGGTAGATGGACTGGAAGGTACCGTAAAAGAGGATCATATCTTA GACGTCAAAAATATCATCGTAGCAACAGGTAGCGAAGTGACCCCCTTCCCTGGAATTGAA CGCCTCACCATCGTCGGCGGGGCGGGAATTATCGGTCTGGAAATGGGCCGGTGTATATAGCCGT GAGGTTGCAAAAGCGACCCAAAAATTTCTGAAGAAACAGGGCCTTGACTTTAAACTGAGC ACAAAAGTAATTTCGGCCAAACGCAATGACGATAAAAACGTAGTAGAAATTGTAGTTGA AGACACTAAAACGAACAAACAGGAAAATCTCGAAGCGGAAGTACTTCTGGTTGCGGTCG GTCGCCGCCCGTACATTGCGGGTTTGGGTGCAGAGAAGATCGGCCTCGAAGTGGACAAAC GCGGACGTCTGGTTATCGACGATCAGTTTAATTCTAAATTCCCACATATCAAGGTGGTTGG TGACGTTACCTTCGGCCCTATGTTGGCGCACAAAGCAGAAGAAGAGGGTATTGCGGCTGT TGAAATGCTGAAAACAGGACACGGTCATGTAAATTACAATAATATTCCGAGTGTAATGTA TTCGCACCCCGAAGTGGCGTGGGTCGGCAAAACCGAAGAACAATTAAAGGAGGCAGGGA ATACCGAAGGTTTCGTGAAAATTTTAATCGACAGTAAAACCGAACGCATTCTGGGAGCTC ATATTATTGGCCCGAACGCGGGTGAGATGATTGCGGAAGCAGGTTTGGCTTTAGAATATG GCGCTTCAGCTGAAGATGTGGCTCGTGTCTGTCATGCCCATCCAACATTGAGTGAAGCCTT AGGATAACATGGCCATCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCG TGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACC CAGACCGCCAAGCTGAAGGTGACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATCCTG TCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCCCGCCGACATCCCCGAC TACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGAC GGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAG GTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGAAGACAATG

GGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGAT CAAGCAGAGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCT ACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGAC ATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAACGCGCCGAGGGCCG CCACTCCACCGGCGGCATGGACGAGCTGTACAAGTAAGCTT

Protein Sequences of LipDH-mCherry (for bacterial expression)

MGHHHHHENLYFQGTINKSHDVVIIGGGPAGYVAAIKAAQLGFNTACVEKRGKLGGTCLN VGCIPSKALLNNSHLFHQMHTEAQKRGIDVNGDIKINVANFQKAKDDAVKQLTGGIELLFKK NKVTYYKGNGSFEDETKIRVTPVDGLEGTVKEDHILDVKNIIVATGSEVTPFPGIEIDEEKIVSS TGALSLKEIPKRLTIIGGGIIGLEMGSVYSRLGSKVTVVEFQPQIGASMDGEVAKATQKFLKKQ GLDFKLSTKVISAKRNDDKNVVEIVVEDTKTNKQENLEAEVLLVAVGRRPYIAGLGAEKIGLE VDKRGRLVIDDQFNSKFPHIKVVGDVTFGPMLAHKAEEEGIAAVEMLKTGHGHVNYNNIPSV MYSHPEVAWVGKTEEQLKEAGIDYKIGKFPFAANSRAKTNQDTEGFVKILIDSKTERILGAHII GPNAGEMIAEAGLALEYGASAEDVARVCHAHPTLSEAFKEANMAAYDKAIHCVSKGEEDNM AIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYG SKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFP SDGPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLP GAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK

DNA Sequence of TrxR_{GV}-mRuby2

TCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATAATGACTGGTGGACAGCAAATG GGTCGGGATCTGTACGACGATGACGATAAGGATCCAACCCTTATGGGCACGACCAAACAC AGTAAACTGCTTATCCTGGGTTCAGGCCCGGCGGGATACACCGCTGCTGTCTACGCGGCG CGCGCCAACCTGCAACCTGTGCTGATTACCGGCATGGAAAAAGGCGGCCAACTGACCACC ACCACGGAAGTGGAAAACTGGCCTGGCGATCCAAACGATCTGACCGGTCCGTTATTAATG GAGCGCATGCACGAACATGCCACCAAGTTTGAAACTGAGATCATTTTTGATCATATCAAC AAGGTGGATCTGCAAAACCGTCCGTTCCGTCTGAATGGCGATAACGGCGAATACACTTGC GACGCGCTGATTATTGCCACCGGAGCTTCTGCACGCTATCTCGGCCTGCCCTCTGAAGAA GCCTTTAAAGGCCGTGGGGTTTCTGCTTGTGCAACCTGCGACGGTTTCTTCTATCGCAACC AGAAAGTTGCGGTCATCGGCGGCGTGAATACCGCGGTTGAAGAGGCGCTGTATCTGTCTA ACATCGCTTCGGAAGTGCATCTGATTCACCGCCGTGACGGTTTCCGCGCGGAAAAAATCC TCATTAAGCGCCTGATGGATAAAGTGGAGAACGGCAACATCATTCTGCACACCAACCGTA CGCTGGAAGAAGTGACCGGCGATCAAATGGGTGTCACTGGCGTTCGTCTGCGCGATACGC GCCCGAATACTGCGATTTTCGAAGGGCAGCTGGAACTGGAAAACGGCTACATCAAAGTAC AGTCGGGTATTCATGGTAATGCCACCCAGACCAGCATTCCTGGCGTCTTTGCCGCAGGCG ACGTGATGGATCACATTTATCGCCAGGCCATTACTTCGGCCGGTACAGGCTGCATGGCAG CACTTGATGCGGAACGCTACCTCGATGGTTTAGCTGACGCAAAAGTCAGCAAAGGCGAGG AACTGATTAAAGAGAATATGCGCATGAAAGTAGTGGTGGAAGGCAGTGTTAATGGGCAT CAGTTTAAGTGCACTGGTGAGGGGAGAGGGGTAACCCGTATATGGGTACGCAGACCATGCGT ATCAAAGTTATTGAGGGTGGTCCGCTTCCTTTCGCGTTTGATATCCTTGCTACCTCCTTTAT GTATGGCTCTCGCACGTTTATTAAATATCCGAAAGGAATTCCTGATTTTTTAAACAATCA TTTCCGGAAGGCTTTACATGGGAACGTGTTACGCGTTATGAAGACGGCGGCGTCGTTACT

GTCATGCAAGATACCTCACTGGAAGATGGCTGCCTGGTCTATCACGTCCAGGTTCGTGGA GTTAATTTTCCGTCAAATGGTCCTGTGATGCAGAAAAAGACAAAGGGTTGGGAACCGAAC ACGGAAATGATGTATCCGGCGGATGGGGGGTCTGCGCGGCTACACACATATGGCTCTTAAA GTTGATGGTGGCGGGCATCTGTCTTGCAGCTTCGTGACGACCTATCGCAGCAAAAAAACG GTGGGGAACATCAAAATGCCTGGCATTCATGCTGTCGACCACCGCCTGGAACGTCTGGAA GAATCCGACAATGAAATGTTTGTGGTGCAGCGTGAACACGCGGTGGCGAAATTCGCTGGC CTGGGTGGCGGTATGGACGAGCTCTATAAAGGGAGCGGCCATCACCATCACCATCACTAA CCATGG

Protein Sequence of TrxR_{GV}-mRuby2

MTGGQQMGRDLYDDDDKDPTLMGTTKHSKLLILGSGPAGYTAAVYAARANLQPVLITGME KGGQLTTTTEVENWPGDPNDLTGPLLMERMHEHATKFETEIIFDHINKVDLQNRPFRLNGDN GEYTCDALIIATGASARYLGLPSEEAFKGRGVSACATCDGFFYRNQKVAVIGGVNTAVEEALY LSNIASEVHLIHRRDGFRAEKILIKRLMDKVENGNIILHTNRTLEEVTGDQMGVTGVRLRDTQ NSDNIESLDVAGLFVAIGHSPNTAIFEGQLELENGYIKVQSGIHGNATQTSIPGVFAAGDVMDH IYRQAITSAGTGCMAALDAERYLDGLADAKVSKGEELIKENMRMKVVMEGSVNGHQFKCTG EGEGNPYMGTQTMRIKVIEGGPLPFAFDILATSFMYGSRTFIKYPKGIPDFFKQSFPEGFTWERV TRYEDGGVVTVMQDTSLEDGCLVYHVQVRGVNFPSNGPVMQKKTKGWEPNTEMMYPADG GLRGYTHMALKVDGGGHLSCSFVTTYRSKKTVGNIKMPGIHAVDHRLERLEESDNEMFVVQ REHAVAKFAGLGGGMDELYKGSGHHHHHH

DNA Sequence of LipDH-mCherry (for mammalian expression)

GGATCCCACAATTAACAAGTCCCATGACGTGGTCATCATCGGAGGCGGACCTGCCGGCTA CGTCGCCGCTATCAAGGCCGCCCAGCTGGGCTTTAATACCGCTTGCGTGGAGAAGAGAGG CAAGCTGGGCGGCACATGCCTGAATGTGGGATGTATCCCTTCCAAGGCCCTGCTGAACAA TTCCCACCTGTTCCACCAAATGCACCGAGGCCCAAAAAAGGGGGCATCGATGTGAACGG CGACATCAAGATCAACGTCGCCAATTTTCAGAAGGCCAAAGACGACGCCGTGAAACAGC TCACAGGCGGCATTGAGCTGCTCTTTAAGAAGAATAAAGTGACCTACTACAAGGGCAACG GCTCCTTCGAGGATGAGACCAAGATTAGAGTGACCCCTGTGGACGGCCTCGAAGGCACCG TCAAAGAGGACCATATTCTGGACGTGAAAAACATCATTGTGGCCACCGGCTCCGAGGTCA CCCCCTTCCCCGGCATTGAGATCGATGAAGAGAAGATTGTGTCCAGCACCGGCGCCCTGT CCCTGAAGGAGATCCCCAAAAGACTCACCATCATCGGAGGCGGCATCATCGGCTTAGAAA TGGGCAGCGTCTATAGCAGGCTGGGCTCCAAGGTGACCGTCGTCGAGTTCCAGCCTCAAA TCGGAGCCAGCATGGACGGCGAAGTGGCCAAAGCCACCCAGAAGTTCCTGAAGAAGCAA GGCCTCGACTTCAAACTGTCCACCAAGGTGATCAGCGCTAAAAGGAACGACGACAAAAA CGTGGTGGAGATCGTGGTCGAGGACACAAAGACCAACAAGCAGGAGAATCTGGAAGCCG AAGTGCTCCTGGTCGCCGTGGGCAGAAGGCCTTACATTGCCGGACTGGGCGCCGAAAAGA TCGGACTGGAAGTGGACAAGAGGGGGCAGGCTCGTGATCGATGACCAGTTCAACTCCAAG TTCCCCCACATCAAGGTCGTGGGAGACGTGACCTTTGGCCCCATGCTGGCCCACAAGGCC GAAGAAGAGGGAATTGCCGCCGTCGAAATGCTGAAGACAGGCCACGGCCATGTGAACTA CAACAATATCCCCAGCGTGATGTACTCCCATCCTGAGGTCGCTTGGGTCGGCAAAACAGA GGAGCAGCTCAAAGAGGCCGGCATTGACTACAAGATCGGCAAGTTCCCCTTCGCCGCCAA CAGCAGAGCCAAGACAAATCAGGACACCGAGGGCTTCGTGAAGATTCTGATCGACAGCA AGACAGAGAGAATCCTGGGCGCTCACATCATCGGCCCTAATGCCGGCGAGATGATTGCCG

AGGCTGGACTGGCCCTCGAATACGGCGCCAGCGCTGAGGATGTGGCTAGGGTCTGTCACG CCCATCCCACCCTCTCCGAGGCCTTCAAGGAGGGCTAACATGGCCGCCTACGACAAGGCTA TCCACTGTGTGTCAAAAGGGGAAGAAGACAACATGGCTATCATAAAAGAATTTATGCGGT TCAAAGTTCACATGGAAGGGTCCGTTAATGGTCATGAGTTCGAGATTGAGGGCGAAGGAG AGGGCAGACCGTACGAAGGAACACAGACGGCAAAACTGAAGGTCACCAAGGGCGGACGG CTGCCTTTCGCGTGGGATATACTGTCACCCCAGTTTATGTACGGAAGCAAAGCGTATGTCA AGCACCCGGCGGACATCCCAGATTATCTCAAACTGTCCTTCCCCGAAGGTTTCAAATGGG AAAGGGTAATGAACTTCGAGGATGGTGGGAGTCGTCACAGTTACACAAGATTCTTCTCTTC AGGACGGCGAGTTTATCTACAAGGTCGAAGCGCACCAACTTCCCTTCTGACGGAC CCGTAATGCAAAAAAAGACGATGGGGTGGGAGGCTTCATCAGAGCGCATGTACCCAGAG GATGGGGCTCTGAAGGGCGAGATCAAGCAGCGGCTGAAGCTGAAAGACGGAGGACACTA CGACGCGGAAGTGAAAACTACTTACAAAGCAAGCGGCTGAAGCTGAAAGACGGAGGGCAT ATAATGTAAACATCAAACTGGACATTACGAGCCACAATGAGGACTACACGATAGTCGAA CAGTACGAACGGGCGGAAAGAAGAAGACACTCTACAGGTGGGATGGACGACGACACTCTATAAGTG ACTCGAG

Protein Sequences of LipDH-mCherry (for mammalian expression)

MDYKDDDDKARADPTINKSHDVVIIGGGPAGYVAAIKAAQLGFNTACVEKRGKLGGTCLNV GCIPSKALLNNSHLFHQMHTEAQKRGIDVNGDIKINVANFQKAKDDAVKQLTGGIELLFKKN KVTYYKGNGSFEDETKIRVTPVDGLEGTVKEDHILDVKNIIVATGSEVTPFPGIEIDEEKIVSST GALSLKEIPKRLTIIGGGIIGLEMGSVYSRLGSKVTVVEFQPQIGASMDGEVAKATQKFLKKQG LDFKLSTKVISAKRNDDKNVVEIVVEDTKTNKQENLEAEVLLVAVGRRPYIAGLGAEKIGLEV DKRGRLVIDDQFNSKFPHIKVVGDVTFGPMLAHKAEEEGIAAVEMLKTGHGHVNYNNIPSVM YSHPEVAWVGKTEEQLKEAGIDYKIGKFPFAANSRAKTNQDTEGFVKILIDSKTERILGAHIIGP NAGEMIAEAGLALEYGASAEDVARVCHAHPTLSEAFKEANMAAYDKAIHCVSKGEEDNMAII KEFMRFKVHMEGSVNGHEFEIEGEGEGGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSK AYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSD GPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGA YNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK

Figure S1. Reduction of *Ec*Trx1 followed by tryptophan fluorescence. Solutions of 5 μ M Trx1 (in 200 μ L of 50 mM phosphate buffer, pH 7.5, 25 °C) were monitored by fluorescence (excitation 290 nm with emission at 350 nm). Potential reductants (100 μ M NADPH, 10 mM GSH, 200 μ M or 10 mM DTT) were added at 50 s. The lines represent an average of 3 experiments normalized relative to unit initial fluorescence.

Figure S2. Confocal field of view of *E. coli* cells expressing $TrxR_{GV}$ -mCherry sensor. Cells were allowed to adhere to the base of poly-L-lysine treated ibidi flow cells. The wells were serially infused with M9 media containing 5 mM DTT, 5 mM diamide, medium alone, and finally 5 mM DTT (Panels A-D, respectively).

Figure S3. Confocal field of view for one of the NAD⁺/NADH sensor flow cell experiments. HEK293T cells over-expressing LipDH-mCherry are attached to the bottom face of an ibidi flow cells. Solutions flowing over the cells were as described in the Text. Panel A-D contain, respectively, 10 mM pyruvate, 10 mM lactate, media alone, and 10 mM pyruvate.