
Appendix for: “Extremely scalable spiking

neuronal network simulation code: from laptops

to exascale computers”

Jakob Jordan 1 Tammo Ippen 1,2 Moritz Helias 1,3

Itaru Kitayama4 Mitsuhisa Sato4 Jun Igarashi5

Markus Diesmann 1,3,6 Susanne Kunkel 7,8

February 4, 2018

1 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced
Simulation (IAS-6) and JARA Institute Brain Structure Function Relationship
(INM-10), Jülich Research Centre, Jülich, Germany
2 Faculty of Science and Technology, Norwegian University of Life Sciences, Ås,
Norway
3 Department of Physics, Faculty 1, RWTH Aachen University, Aachen,
Germany
4 Advanced Institute for Computational Science, RIKEN, Kobe, Japan
5 Computational Engineering Applications Unit, RIKEN, Wako, Japan
6 Department of Psychiatry, Psychotherapy and Psychosomatics, Medical
Faculty, RWTH Aachen University, Aachen, Germany
7 Department of Computational Science and Technology, School of Computer
Science and Communication, KTH Royal Institute of Technology, Stockholm,
Sweden
8 Simulation Laboratory Neuroscience — Bernstein Facility Simulation and
Database Technology, Institute of Advanced Simulations, Jülich Research
Centre and JARA, Jülich, Germany

1

A Network and simulation parameters

Table 1, Table 2 and Table 3 summarize the network model and parameters.

A: Model Summary

Populations Two: excitatory, inhibitory

Topology –

Connectivity Random convergent connections

Neuron models Leaky integrate-and-fire (LIF), fixed firing threshold, fixed absolute refractory
time (voltage clamp), α-currents

Channel models –

Synaptic plasticity Spike-timing dependent plasticity at excitatory-excitatory recurrent
connections

External input Independent fixed-rate Poisson spike trains to all neurons

Measurements Total number of spikes generated per process

Other Multapses allowed, no autapses

B: Populations

Name Elements Size

E LIF neuron NE = 4NI with NE +NI = N

I LIF neuron NI

C: Connectivity

Name Source Target Pattern

EE E E Random convergent, KE → 1, weight variable, delay d

IE E I Random convergent, KE → 1, weight J , delay d

EI I E Random convergent, KI → 1, weight −gJ , delay d
II I I Random convergent, KI → 1, weight −gJ , delay d

Table 1: Tabular description of network model after Nordlie et al. (2009).

2

D: Neuron Model

Name LIF neuron

Type Leaky integrate-and-fire, α-current input

Subthreshold
dynamics

τm
dV (t)
dt = −V (t) + I(t)

Cm
if (t > t∗ + τref)

V (t) = Vreset else

Synaptic current
dynamics

For each presynaptic spike:
Isyn(t) = w e

τsyn
t e−t/τsyn

Spiking If V (t−) < Θ and V (t+) ≥ Θ
1. set t∗ = t
2. emit spike with time stamp t∗

E: Synapse Model

Name Power law STDP (Morrison et al., 2007)

Type Weight dependent STDP with a power law update rule for potentiation and a
multiplicative update rule for depression

Spike pairing scheme All-to-all (for nomenclature see Morrison et al., 2008)

Pair-based update
rule

∆w+ = F+ (w) e
− |∆t|τ+ if ∆t > 0

∆w− = −F− (w) e
− |∆t|τ− else

∆t - temporal difference between post- and pre-synaptic spikes, synaptic delay
considered to be purely dendritic

Weight dependence F+ (w) = λw1−µ
0 wµ, F− (w) = λαw

F: Input

Type Target Description

Poisson generator I&E Independent for each neuron, rate νxKx, weight J

Table 2: Tabular description of network model after Nordlie et al. (2009),
continued.

3

B: Populations

Name Value Description

NE variable Size of excitatory population E

NI variable Size of inhibitory population I

C: Connectivity

Name Value Description

KE 9000 Number of incoming connections from E

KI 2250 Number of incoming connections from I

D: Neuron Model

Name Value Description

τm 10 ms Membrane time constant

Cm 250 pF Membrane capacitance

Θ 20 mV Fixed firing threshold

V0 0 mV Resting potential

Vreset V0 Reset potential

τref 0.5 ms Absolute refractory period

τsyn 0.33 ms Rise time of PSC

µV 5.7 mV Mean value of initial normal distribution of membrane potentials

σV 7.2 mV Standard deviation of initial normal distribution of membrane potentials

E: Synapse Model

Name Value Description

τ+ 15 ms Time constant of potentiation window

τ− 30 ms Time constant of depression window

λ 0.1 Learning rate

µ 0.4 Weight-dependence parameter of potentiation

α 0.0513 Asymmetry parameter

w0 1 pA Normalization parameter

d 1.5 ms Delay

J 0.14 mV Excitatory weight

g 5.0 Relative inhibitory weight

F: Input

Name Value Description

Kx 9000 Number of external inputs

νx 2.3 spikes
s Rate of single external input

Table 3: Simulation parameters after Nordlie et al. (2009).

B Connection infrastructure for devices

Next to the neuronal network, a virtual experiment requires representations
of further components. For example, an electrophysiological experiment may

4

encompass a current generator for the stimulation of individual neurons and a
multi-channel amplifier for the acquisition of the membrane potential of multiple
neurons. In the concept implemented in the NEST software (Gewaltig and
Diesmann, 2007) these entities are additional nodes of the network collectively
referred to as ‘devices’. Although a primary motivation is to not only formally
describe the system under study but also the measurement process, also devices
without a real-world counterpart can be defined. These are useful, for example,
for obtaining the time course of an arbitrary state variable of an abstract neuron
model. To avoid extensive communication between compute nodes, stimulation
and recording devices should be co-located on the same compute node as the
neurons to which they are sending events and from which they are receiving
events, respectively. In NEST, creation of a single stimulation or recording device
leads to a creation of a device object on every thread. These device objects only
send data to and receive data from neurons located on the same thread. This
has two advantages: On the one hand, processes do not need to exchange data
that is sent from and received by devices, and on the other hand this supports
parallel post-processing of recorded data, since the data is already distributed
over compute nodes. To simplify maintenance and construction of the two-tier
connection infrastructure managing connections between neurons, connections
to and from devices are stored in separate data structures that consist of two
four-dimensional resizable arrays (Figure 1). Connections from devices are stored
according to (i) the thread of the device, (ii) the thread-local id of the device,
and (iii) the synapse type. If a device sends an event (e.g., a spike generated
by a Poisson generator), it is delivered through all connections for all synapse
types to the corresponding targets. Connections to devices are stored according
to (i) the thread of the sending neuron, (ii) the thread-local id of the neuron
and (iii) the synapse type. If a neuron sends an event, it is delivered through
all connections for all synapse types to the corresponding target devices. Due
to their small memory footprint, these data structures are not included in the
memory model.

The separate data structures for connections to and from devices can improve
the delivery of data from devices to neurons, for example from Poisson sources,
with regard to the previous kernel. While the previous technology uses the same
infrastructure employed by neurons to communicate spikes, devices have now a
more direct access to their targets.

5

local threads

synapse types

synapses

from neurons

to devices

local neurons

local threads

synapse types

synapses

from devices

to neurons

local devices

(B)(A)

Figure 1: Connection infrastructure for devices of the NEST 5g kernel.
(A) Connections from neurons to thread-local devices. Each MPI process stores
a pointer to a dynamic container of connection objects for every thread, every
thread-local neuron, and every synapse type. If a synapse type is in use, the
corresponding container (orange filled rectangle) holds the synapses objects (pink
filled squares). (B) Connections from devices to thread-local neurons. A data
structure of identical shape is used to store the connections from devices to
thread-local neurons.

C Scalability of MPI_Allgather and MPI_Alltoall

Here we investigate the scaling properties of MPI_Allgather and MPI_Alltoall

on JUQUEEN for increasing numbers of MPI processes and MPI send buffer
sizes. In network simulators, naively switching from a source-based AER using
MPI_Allgather to a target-based AER scheme using MPI_Alltoall would lead
to an average increase of the send buffer size proportional to the average out-
degree of neurons independent of the number of processes, as in the case of
5g-nosort. Here we assume that the out-degree is K = 10, 000 and hence increase
the send buffer size for all MPI_Alltoall measurements correspondingly. We
measure the average time a single MPI communication among M nodes takes
for an MPI send buffer of size s. In addition we measure the latency by setting
the send buffer size to zero.

For MPI_Allgather, the latency is almost constant, independent of the
number of processes. For non-empty send buffers however, the wall-clock time
of a single MPI call increases significantly with the number of processes, almost
linearly for large send buffer sizes (Figure 2). Even though the send buffers
are very small, the size of receive buffers scales linearly in the number of MPI
processes. The increase in communication time for MPI_Allgather is most likely

6

(A) (B)

(C) (D)

101 102 103 104 105

MPI processes M

10-5
10-4
10-3
10-2
10-1
100
101

T
im

e
 (

s)

101 102 103 104 105

MPI processes M

10-5
10-4
10-3
10-2
10-1
100
101

T
im

e
 (

s)

102 103 104 105

Buffer size (B)

10-4

10-3

10-2

10-1

100

101

T
im

e
 (

s)

106 107 108 109

Buffer size (B)

10-4

10-3

10-2

10-1

100

101

T
im

e
 (

s)

Figure 2: Scaling of communication time for MPI_Allgather (left)
and MPI_Alltoall (right) over MPI processes (top) and send
buffer sizes (bottom). Communication time measured on JUQUEEN.
Darker colors indicate smaller buffer sizes (top) and smaller number
of MPI processes (bottom), respectively. Number of MPI processes
M ∈ 32; 64; 128; 256; 512; 1024; 2048; 4096; 8192; 16, 384; 28, 672. Send
buffer sizes for MPI_Allgather s ∈ 0 kB; 0.2 kB; 1.6 kB; 13 kB; 105 kB, for
MPI_Alltoall s ∈ 0 kB; 2048 kB; 16, 384 kB; 131, 072 kB; 1, 048, 576 kB. Error
bars denote SEM and are partly covered by markers.

due to the increase in receive buffer sizes that require an increasing amount of
memory to be written. For MPI_Alltoall, on the other hand, latency increases
significantly with the number of processes while scaling of communication time
for non-empty buffers is much better than for MPI_Allgather, with only a
small increase over the range of investigated processes. Note that the total
size of the send buffers is much larger for MPI_Alltoall with a maximal send
buffer size of 1 GB that is communicated across 28, 672 compute nodes in ∼ 2 s.
From 104 processes on, the receive buffers of MPI_Allgather are larger than for
MPI_Alltoall, leading to a better performance of MPI_Alltoall (Figure 2A,B).
When scaling the buffer size, communication time increases supra-linearly for
MPI_Allgather, while it increases almost linearly for MPI_Alltoall, almost
independent of the number of MPI processes (Figure 2C,D).

D Structural plasticity

Structural plasticity modifies the connectivity of the network at runtime, for
example allowing researchers to grow network connectivity according to certain
rules instead of specifying it at the beginning of the simulation (Diaz-Pier et al.,
2016). Due to the purely postsynaptic storage of connections in the previous

7

102

MPI processes M

0

50

100

150

200

250

300

S
im

 T
 (

s)

4g
5g-sort

Figure 3: Weak scaling of a neuronal network simulation with struc-
tural plasticity on JURECA. Runtime for simulating 5000 neurons per
compute node for 10 s of biological real time using one thread per MPI process.
M ∈ 24; 48; 72; 96; 120; 144; 168. Same line styles and color code as in Figure
7 in the main text.

simulation kernel, structural plasticity only needed to manipulate postsynaptic
data structures. However, due to the two-tier connection infrastructure in the
new kernel, it becomes necessary to update also the presynaptic part when
connections are created or removed at runtime. Since the scalability of the
structural plasticity algorithm in the previous kernel is only feasible up to a
few hundreds of processes, we provide only a naive implementation for the
new simulation kernel. In this implementation, the whole presynaptic part
of the connection infrastructure is destroyed whenever new connections are
created or connections are removed and then reconstructed from scratch from
the postsynaptic part. While this is a fairly expensive operation, structural
plasticity operates on slow timescales in the seconds range, making this approach
feasible up to about O(100) MPI processes. In this range the performance
is comparable to the previous simulation kernel Figure 3. To support larger
simulations, an alternative implementation needs to be developed, that in the
optimal case operates only on local data structures, without requiring global
communication among all compute nodes.

8

E Strong scaling over threads

Modern simulation codes need to be able to exploit the increased parallelism
available on compute nodes that support tens to hundreds of concurrent threads.
Here we investigate strong scaling over threads for the previous and the new
kernel. For an increasing number of threads the build time scales very well for
both kernel versions, as long as the number of threads is smaller or equal to the
number of available cores (Figure 4). As soon as hyper-threading is used, the
scaling behavior becomes slightly worse, leading to smaller differences between
32 and 64 threads. As nodes are constructed serially, this contribution does not
scale over threads but is in any case negligible compared to the time spent on
the construction of connections. The init time does not scale with the number
of threads for the new kernel and even increases for a large number of threads
that exceeds the core count. As in the weak scaling scenario, most of the time is
spent on collocating MPI buffers which does not significantly profit from multiple
threads and is mainly limited by memory access not processing speed. The sim
time decreases monotonously for the new kernel, even beyond 16 threads in
contrast to the old kernel. For both kernels, the memory consumption increases
with the number of threads, not allowing simulations with more than 16 threads
when employing the old kernel. Further detailed investigations are necessary to
improve scaling of the init time with an increasing number of threads in the new
kernel.

F Strong scaling over MPI processes (full data)

Figure 5 contrasts build time, init time, and memory usage with the simulation
time already shown in Figure 9 in the main text.

References

Diaz-Pier, S., Naveau, M., Butz-Ostendorf, M., and Morrison, A. (2016). Au-
tomatic generation of connectivity for large-scale neuronal network models
through structural plasticity. Front. Neuroanat. 10, 57. doi:10.3389/fnana.
2016.00057

Gewaltig, M.-O. and Diesmann, M. (2007). NEST (NEural Simulation Tool).
Scholarpedia 2, 1430. doi:10.4249/scholarpedia.1430

9

(A) (B)

(C) (D)
8 16 32 64

100

101

102

103

In
it
 T

 (
s)

8 16 32 64

Threads T

101

102

103

104

S
im

 T
 (
s)

4g

5g-sort

8 16 32 64

Threads T

0
2
4
6
8

10
12
14

M
e
m

.
u
sa

g
e
 (
G
B
)

108

109

N
e
tw

o
rk

 s
iz
e
 N

8 16 32 64
10-1

100

101

102

103

B
u
ild

 T
 (
s)

Figure 4: Strong scaling over threads of an archetypal neuronal network
simulation on a petascale computer. Runtime and memory usage per
compute node for an increasing number of threads per MPI process (T ∈
8; 16; 32; 64) and M = 28, 672 MPI processes on JUQUEEN. Other parameters
same as in Figure 7 in the main text. Solid lines indicate decrease of the
respective times for perfect scaling. Same line styles and color code as in Figure
7 in the main text.

(A) (B)

(C) (D)
102 103 104 105

10-2

10-1

100

101

102

103

In
it
 T

 (
s)

102 103 104 105

MPI processes M

100

101

102

103

S
im

 T
 (
s)

4g

5g-sort

105

106

107

N
e
tw

o
rk

 s
iz
e
 N

102 103 104 105
10-2

10-1

100

101

102

103

B
u
ild

 T
 (
s)

102 103 104 105

MPI processes M

10-2

10-1

100

101

102

M
e
m

.
u
sa

g
e
 (
G
B
)

Figure 5: Strong scaling of an archetypal neuronal network simulation
on a petascale computer. Data obtained from JUQUEEN. Same line styles
and color code as in Figure 7 in the main text.

10

Morrison, A., Aertsen, A., and Diesmann, M. (2007). Spike-timing dependent
plasticity in balanced random networks. Neural Comput. 19, 1437–1467.
doi:10.1162/neco.2007.19.6.1437

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological
models of synaptic plasticity based on spike-timing. Biol. Cybern. 98, 459–478.
doi:10.1007/s00422-008-0233-1

Nordlie, E., Gewaltig, M.-O., and Plesser, H. E. (2009). Towards reproducible
descriptions of neuronal network models. PLoS Comput. Biol. 5, e1000456.
doi:10.1371/journal.pcbi.1000456

11

	Network and simulation parameters
	Connection infrastructure for devices
	Scalability of MPI_Allgather and MPI_Alltoall
	Structural plasticity
	Strong scaling over threads
	Strong scaling over MPI processes (full data)

