Supporting Information for

Orthogonality and burdens of heterologous AND gate gene circuits in *E. coli*

Qijun Liu^{1,2,3}, Jörg Schumacher⁴, Xinyi Wan^{1,2}, Chunbo Lou⁵ and Baojun Wang^{1,2*}

¹School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
²Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
³Department of Chemistry and Biology, National University of Defense Technology, China
⁴Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
⁵CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China

*Corresponding author. Email: baojun.wang@ed.ac.uk

Table of Contents

Supplementary Figures S1-S7 Supplementary Tables S1-S10 Supplementary Methods Supplementary References (1-17)

1.	Plasi	mid maps showing the gene circuit constructs used in this study	2			
2.	Cell	growth measurement and the growth curve model fitting	4			
3.	Gene	e expression analysis	7			
	3.1	Gene expression calculation	7			
	3.2	Identicality of the RNA-Seq biological duplicate samples	8			
	3.3	Expression of other genes in the circuit-hosting plasmids	11			
	3.4	Identification of differentially expressed genes	12			
4.	Func	tional analysis of the identified differentially expressed genes	12			
5.	List of host genes of specific functional categories analyzed in this study					
	5.1	Resource related genes	15			
	5.2	The expression of transcription factors	17			
	5.3	The expression of housekeeping genes	17			
	5.4	The expression of essential genes in the host	18			
6.	List o	of genetic part sequences used in the study	19			
7.	Supp	plementary references	24			

1. Plasmid maps showing the gene circuit constructs used in this study

С pSB3K3 carrying the Inputs-gfp EcoRl_Xbal luxR p15A ORI (rev) I 6000 rbs32 1000 S3_Inputs-gfp@pSB3K3 gfp 6595 bps 2000 kanR (rev) rbs33 3000 tetR gfp Pstl / Spel

Figure S1. Plasmid maps showing the gene circuit constructs used in this study. (A) The AND gate circuit (*J115-rbs32luxR-P_{lux2}-rbs32hrpR-B15-J114-rbs30tetR-B15-P_{tet2}-rbs33St -hrpL-rbs30gfp-B15*) in the medium copy number *pSB3K3* plasmid (Samples 1 & 2). (B) The AND gate circuit in the low copy number *pSB4K5* plasmid (Sample 5). (C) The promoter-inputs circuit (*J115-rbs32luxR-P_{lux2}-rbs32gfp-B15-J114-rbs30tetR-B15-P_{tet2}-rbs33gfp-B15*) in *pSB3K3* plasmid (Sample 3). (D) The promoter-inputs circuit in *pSB4K5* plasmid (Sample 6). (E) The empty *pSB3K3* plasmid (Sample 4). (F) The empty *pSB4K5* plasmid (Sample 7). Maps were generated in Clone Manager 7.1. Related to Figure 1.

2. Cell growth measurement and the growth curve model fitting

Cell growth was monitored by measuring the sample cell density (OD₆₀₀ readings) periodically (around 30 min). The data were recorded as shown in the below table.

Time (min)	S1-1	S1-2	S1-3	S2-1	S2-2	S2-3	S3-1	S3-2	S3-3	S4-1	
0	0.021	0.018	0.024	0.018	0.019	0.021	0.024	0.019	0.021	0.016	
65	0.033	0.037	0.041	0.035	0.038	0.034	0.030	0.037	0.032	0.064	
95	0.054	0.055	0.06	0.057	0.059	0.065	0.056	0.062	0.057	0.097	
125	0.093	0.086	0.087	0.092	0.091	0.098	0.083	0.089	0.088	0.182	
155	0.148	0.151	0.152	0.154	0.162	0.153	0.138	0.139	0.144	0.322	
185	0.259	0.258	0.263	0.272	0.278	0.275	0.243	0.247	0.251	0.608	
230	0.551	0.560	0.555	0.586	0.595	0.589	0.527	0.528	0.508	1.165	
250	0.840	0.852	0.840	0.890	0.906	0.881	0.801	0.779	0.754	1.666	
275	1.261	1.228	1.139	1.368	1.361	1.384	1.226	1.163	1.188	2.010	
305	1.620	1.654	1.642	1.834	1.868	1.850	1.584	1.606	1.596	2.316	
335	2.010	2.05	2.044	2.306	2.290	2.312	1.894	1.912	1.908	2.700	

Table S1. Cell	growth de	ensity raw	data	(OD ₆₀₀	readings)
----------------	-----------	------------	------	--------------------	-----------

continued columns

S4-2	S4-3	S5-1	S5-2	S5-3	S6-1	S6-2	S6-3	S7-1	S7-2	S7-3
0.019	0.018	0.021	0.018	0.024	0.016	0.024	0.020	0.015	0.020	0.018
0.068	0.065	0.041	0.042	0.047	0.040	0.038	0.043	0.072	0.073	0.070
0.098	0.103	0.071	0.078	0.076	0.070	0.073	0.078	0.097	0.106	0.101
0.178	0.179	0.131	0.126	0.127	0.107	0.113	0.114	0.176	0.180	0.182
0.315	0.312	0.220	0.228	0.230	0.210	0.197	0.192	0.331	0.337	0.328
0.615	0.589	0.428	0.435	0.426	0.366	0.132	0.369	0.664	0.650	0.654
1.116	1.004	0.950	0.965	0.956	0.830	0.836	0.797	1.223	1.184	1.181
1.651	1.582	1.327	1.315	1.308	1.185	1.165	1.098	1.694	1.659	1.627
1.973	2.002	1.862	1.856	1.792	1.702	1.712	1.720	2.014	2.024	1.968
2.306	2.292	2.120	2.144	2.136	2.050	2.066	2.056	2.398	2.406	2.384
2.724	2.702	2.550	2.564	2.546	2.406	2.446	2.420	2.854	2.822	2.834

S1-S7 indicates sample type labels. Measurement are three repeats for each sample type.

The cell growth data (Table S1) above were used to plot growth curves as shown in Figure 2A. The nonlinear least square fitting function (cftool) in Matlab (MathWorks R2014a) was applied to fit the experimental data to parameterize the Gompertz model for cell growth¹ (see Methods section for detail). Figure S2 shows the model fitting performance for each sample cell growth data.

Figure S2. Growth curve model fitting results for all samples in the study. The displayed include the coefficient of determination (R²), root mean squared error (RMSE) and value of μ_m for each fitting.

3. Gene expression analysis

3.1 Gene expression calculation

To obtain the expression level for each gene, we mapped the reads in RNA-Seq sequencing datasets to the genome of *E. coli* K-12 substrain MG1655 (NCBI accession number NC_00913) and then counted the number of reads mapped to each gene according to their location in the chromosome. The reads were then normalized according to the cognate gene length to obtain the relative expression level for each gene (RPKM value). The distribution of the expression levels of all genes across all seven samples, shown in Figure S3, seems to follow an expected normal distribution.

Figure S3. Distribution of transcriptome expression profiles of all samples.

To increase accuracy, under the assumption of normal distribution, we treated genes with the expression values that are out of the typical range of $\mu \pm 3\sigma$ as exceptions and thus did not take them into account for subsequent statistical comparison analysis. Here, we filtered out those genes due to their expression levels are either too high or too low, as listed in Table S2.

				-			
Samples	S1	S2	S3	S4	S5	S6	S7
Means	6.4747	6.5724	6.5059	6.5862	6.2619	6.2717	6.1154
Std.	2.4243	2.3076	2.3905	2.3015	2.5717	2.5756	2.6779
Too low	insX 0.0386	insX 0.0826	insX 0	insX 0.0414	insX 0.0496	insX 0	insX 0.053
expressed	yagB 0	yagB 0	yagB 0	yagB 0	yagB 0	yagB 0	yagB 0
genes	yagA 0	yagA 0	yagA 0	yagA 0	yagA 0	yagA 0	yagA 0
	yagE 0	yagE 0	yagE 0	yagE 0	yagE 0	yagE 0	yagE 0
	yagF 0	yagF 0	yagF 0	yagF 0	yagF 0	yagF 0	yagF 0
	yagG 0	yagG 0	yagG 0	yagG 0	yagG 0	yagG 0	yagG 0
	yagH 0	yagH 0	yagH 0	yagH 0	yagH 0	yagH 0	yagH 0
	yagl 0	yagl O	yagl 0	yagl 0	yagl 0	yagl 0	yagl O
	argF 0	argF 0.1305	argF 0	argF 0	argF 0	argF 0	argF 0.083
	rfbD 0	rfbD 0	rfbD 0	rfbD 0	ykgS 0	rfbD 0	rfbD 0

Table	S2.	List o	of aenes	with too	hiah a	or too le	ow exi	pression	levels	and thei	r RPKM	values
TUDIC	<u>ں ح</u>		n gonoo		ingii o				10,0010			valueo

	rfbB 0	rfbB 0	rfbB 0	rfbB 0	ybfl 0	rfbB 0	rfbB 0
	wcaN0	wcaN0	wcaN0	wcaN0	safA 0.305	wcaN0	wcaN0
	wcaM0	wcaM0	wcaM0	wcaM0	rfbD 0	wcaM0	wcaM0
	wcaL 0	wcaL 0	wcaL 0	wcaL 0	rfbB 0	wcaL 0	wcaL 0
	wcaK0	wcaK0	wcaK0	wcaK0	wcaN0	wcaK 0	wcaK0
	wzxC0	wzxC0	wzxC0	wzxC0	wcaM0	wzxC0	wzxC0
	wcaJ 0	wcaJ 0	wcaJ 0	wcaJ 0	wcaL 0	wcaJ 0	wcaJ 0
	cpsG 0	cpsG 0	cpsG 0	cpsG 0.096	wcaK0	cpsG 0	cpsG 0
	cpsB 0	cpsB 0	cpsB 0	cpsB 0	wzxC 0	cpsB 0	cpsB 0
	wcal O	wcal O	wcal O	wcal O	wcaJ 0	wcal O	wcal O
	wcaH0	wcaH0	wcaH0	wcaH0	cpsG 0	wcaH0	wcaH0
	wcaG0	wcaG0	wcaG0	wcaG0	cpsB 0	wcaG0	wcaG0
	gmd 0	gmd 0	gmd 0.132	gmd 0	wcal O	gmd 0	gmd 0
					wcaH0		wcaF 0
					wcaG0		yfdM 0.310
					gmd 0		
Too high	mcaS7.76E5	mcaS9.56E5	cyaR 2.11E5	mcaS7.65E5	cyaR 2.05E5	nmpC 1.24E5	nmpC 1.14E5
expressed	cyaR 1.99E5	cyaR 2.44E5	gcvB 1.54E5	cyaR 2.06E5	ssrS 2.71E5	mcaS9.44E5	mcaS1.02E6
genes	gcvB 9.29E5	gcvB 1.09E5	ssrS 1.89E5	gcvB 1.02E5		cyaR 2.18E5	cyaR 2.14E5
	ssrS 1.75E5	ssrS 1.84E5		ssrS 1.60E5		ryfD 4.83E4	ryfD 4.75E4
						gcvB 7.12E4	gcvB 3.59E4
						ssrS 2.44E5	ssrS 2.07E5
						rbsD 1.55E4	

3.2 Identicality of the RNA-Seq biological duplicate samples

To verify the repeatability and quality of the RNA-Seq in this study, we have produced biological duplicate for the AND-gate in *pSB3K3* condition, i.e. Sample 1 and Sample 2. Figure S4 shows that the correlation of gene expression in the two replicate samples is significantly high ($R^2 = 0.9788$), indicating the RNA-Seq performed have excellent reproducibility and is of high credibility. This is also reflected in the uniform mapped reads profiles of the plasmid hosted genes from the two biological duplicate samples (S1 and S2) as shown in Figure S5A-B.

Figure S4. Correlation of gene expression of the biological duplicate samples (S1 vs S2).

A S1: AND-gate in pSB3K3

B S2: AND-gate in pSB3K3

C S3: Inputs-gfp in pSB3K3

D S4: pSB3K3

E S5: AND-gate in pSB4K5

F S6: Inputs-gfp in pSB4K5

G S7: pSB4K5

Figure S5. Full mapped transcription profiles and RNA-Seq reads of all the genes in the circuit-hosting plasmids under different conditions for all seven samples S1-S7 (A-G). Read mapping were visualized using the Integrative Genomics Viewer tool (IGV)².

3.3 Expression of other genes in the circuit-hosting plasmids

Figure S6 shows the transcription profiles of the antibiotic resistance and origin of replication control genes in the circuit-hosting plasmids under different circuit conditions. Clearly the expression levels of the antibiotics resistance gene (kan^R) and copy control related genes (p15A for pSB3K3, repA for pSB4K5) in the samples containing medium-copy number plasmid (S1-S4) are significantly higher (3-5 times) than those in samples (S5-S7) containing the low-copy number plasmid. The copy number of medium-copy pSB3K3 is around 3~4 times that of the low-copy pSB4K5, consistent with the expression ratios (RPKM values) of p15A and repA in the two plasmids across all samples (Figure S6).

Figure S6. Transcription profiles of the antibiotic resistance and origin of replication control genes in the circuit-hosting plasmids under different conditions.

Figure S7. GFP reporter expression under the two inducible promoters in the Inputs-*gfp* circuit hosted in the two plasmids pSB3K3 and pSB4K5. Green bars are the condition when sample cultures were induced with 100 nM AHL, and light green bars are the condition when sample cultures were induced with 20 ng/ml aTc. Cells were grown in M9-glycerol media at 37 °C and assayed 4 hr after induction using a fluorescent microplate reader. Error bars, s.d. (n = 3). a.u., arbitrary units.

3.4 Identification of differentially expressed genes

To minimize potential false positives, two parallel methods were used to find and cross-validate differentially expressed genes between compared conditions.

The first method used is the combined 2-fold expression change detection and χ^2 -test. Differentially expressed genes were determined when both the expression levels (RPKM values) between compared conditions having more than 2-fold difference and the p-value < 0.05 from the χ^2 -test. The results are listed in the file named *list_of_Chi-Test_DEGs_s2.x/s*.

For the second method, the software edgeR³ was used. edgeR identifies the DEGs from statistical test, hence suitable not only for the samples with biological duplication but also for the case without repeats. The biological duplicate samples are used to calculate the dispersion of gene expression levels, which is then used in the normalization of all other gene expression. Since duplicate is available for one circuit condition, as suggested by edgeR, we used the duplicate samples to calculate the dispersion value in the experiment which was subsequently adopted for all other paired comparison analysis to screen out the DEGs. Here, we calculated the dispersion value 0.0252 from the two duplicate samples (S1 and S2: AND-gate in pSB3K3). The results are listed in the file named *list_of_edgeR_DEGs_s3.xls*.

We then integrated the results from the above two methods to obtain the cross-validated intersection set of identified DEGs (Table 3), as listed in the file *final_DEGs*.xls.

4. Functional analysis of the identified differentially expressed genes

The online tool DAVID^{4, 5} was used for the functional enrichment analysis among the identified overlapped differentially expressed genes (Table 3). Gene functions were retrieved from the GO biological process and KEGG pathway databases. The results (Table S4 and S5) show that a few specific biological processes were affected by the heterologous genetic circuits as well as by the copy number variation of their hosting plasmid(s).

Functional Catalogues	C5: S1/2 vs S5 (129 genes)	C6: S3 vs S6 (273 genes)	C7: S4 vs S7(627 genes)	
Transport (GO_BP)	ion transport (18) electron transport chain (9)	ion transport (38) electron transport chain (13) organic acid transport (8) carbohydrate transport (14)	ion transport (46) electron transport chain (18) organic acid transport (10) carbohydrate transport (24) phosphonate transport (5)	
Transport (KEGG Pathways)	ABC transporters (13)	ABC transporters (31) Phosphotransferase system (PTS) (3)	ABC transporters (29) Phosphotransferase system (PTS) (8)	
Membrane (SP_PIR_KEYWORD S)	membrane (47)	membrane (95)	membrane (187)	
Metabolic process (in GO_BP)	amine biosynthetic process (9) catechol metabolic process (4) phenol metabolic process (4) diol metabolic process (4) cofactor biosynthetic process (6) nitrogen compound biosynthetic process (12) energy derivation by oxidation of organic compounds (9) tryptophan biosynthetic process(4)	amine biosynthetic process (13) catechol metabolic process (5) phenol metabolic process (5) diol metabolic process (5) cofactor biosynthetic process (9) nitrogen compound biosynthetic process (20) energy derivation by oxidation of organic compounds (20) cellular respiration (18) generation of precursor metabolites and energy (25) organic acid biosynthetic process (14)	amine biosynthetic process (18) catechol metabolic process (5) phenol metabolic process (5) diol metabolic process (5) cofactor biosynthetic process (11) nitrogen compound biosynthetic process (28) energy derivation by oxidation of organic compounds (24) cellular respiration (21) generation of precursor metabolites and energy (31) organic acid biosynthetic process (17) cellular amino acid derivative metabolic process (9)	organophosphate metabolic process (9) alditol metabolic process (7) polyol metabolic process (7) glycerol metabolic process (5) colanic acid biosynthetic process (6) polysaccharide metabolic process (22) carbohydrate biosynthetic process (21) nucleobase metabolic process (7) phospholipid metabolic process (7) phosphorus metabolic process (17) lipid biosynthetic process (16) lipopolysaccharide metabolic process (13) indolalkylamine biosynthetic process (4) fatty acid metabolic process (11) oxidation reduction (50)
metabolic process (KEGG Pathways)	biosynthesis of siderophore group nonribosomal peptides (4) Purine metabolism (3) Nitrogen metabolism (3) Phenylalanine, tyrosine and tryptophan biosynthesis (3)	biosynthesis of siderophore group nonribosomal peptides (5) Purine metabolism (6) Glycerophospholipid metabolism (5) Fructose and mannose metabolism(4) Nitrogen metabolism (6) Citrate cycle (TCA cycle) (3) Glyoxylate and dicarboxylate metabolism (4) Valine, leucine and isoleucine biosynthesis (3) Alanine, aspartate and glutamate metabolism (3)	biosynthesis of siderophore group nonribosomal peptides (5) Purine metabolism (9) Glycerophospholipid metabolism (5) Fructose and mannose metabolism (6) Pentose and glucuronate interconversions (6)	Galactose metabolism (7) Propanoate metabolism (5) Benzoate degradation via CoA ligation (4) Butanoate metabolism (3)
Regulation (GO_BP)	regulation of transcription (7) regulation of RNA metabolic process (5)	regulation of transcription (10) regulation of RNA metabolic process (9)	regulation of transcription (54) regulation of RNA metabolic process (46)	cell division (6)
Signal (KEGG Pathways)	Two-component system (8)	Two-component system (6)	Two-component system (26)	
Others (GO_BP)	protein complex assembly (7) viral infectious cycle (3)	protein complex assembly (7) Bacterial chemotaxis (3)	protein complex assembly (10) Bacterial chemotaxis (3)	response to abiotic stimulus (9) Flagellar assembly (5), cell adhesion (12),

Table S3. Function annotations of DEGs in comparisons between circuit-hosting plasmids of different copy number

Copy number	AND-gate vs. Inputs-gfp (mid-copy C2=#25, low-copy C8=#8)	AND-gate vs. empty plasmid (mid-copy C4=#41, low-copy C10=#42)	Inputs- <i>gfp</i> vs. empty plasmid (mid-copy C3=#46, low-copy C9=#62)	Function annotation sources
Mid-copy	tryptophan biosynthetic process (3) carboxylic acid biosynthetic process (5) nitrogen compound biosynthetic process (5) oxidation reduction (5) cellular amino acid biosynthetic process (5) indole derivative biosynthetic process (3) aromatic amino acid family biosynthetic process (3) heterocycle biosynthetic process (5) dicarboxylic acid metabolic process (3) generation of precursor metabolites and energy(4)	tryptophan biosynthetic process (4) carboxylic acid biosynthetic process (13) nitrogen compound biosynthetic process (13) oxidation reduction (4) cellular amino acid biosynthetic process (13) indole derivative biosynthetic process (4) aromatic amino acid family biosynthetic process (4) heterocycle biosynthetic process (4) dicarboxylic acid metabolic process (4) chorismate metabolic process (4) ion transport (5) biogenic amine biosynthetic process (4) sulfur metabolic process (10) sulfate assimilation (5) serine family amino acid biosynthetic process (5) cysteine biosynthetic process (4) sulfate transport (4) inorganic anion transport (4)	tryptophan biosynthetic process (3) carboxylic acid biosynthetic process (1) nitrogen compound biosynthetic process (15) oxidation reduction (6) cellular amino acid biosynthetic process (10) indole derivative biosynthetic process (3) aromatic amino acid family biosynthetic process (3) dicarboxylic acid metabolic process (3) generation of precursor metabolites and energy (5) chorismate metabolic process (3) ion transport (4) organic acid biosynthetic process (3) glutamine family amino acid metabolic process (4) purine nucleotide biosynthetic process (3) ribonucleoside monophosphate biosynthetic process (3) nucleoside monophosphate biosynthetic process (3) cellular amino acid derivative biosynthetic process (3) cellular amino acid derivative biosynthetic process (3) caluar amino acid derivative biosynthetic process (3) cellular amino acid derivative biosynthetic process (3)	GO Biological Processes
	Two-component system (3) Phenylalanine, tyrosine and tryptophan biosynthesis (3)	Two-component system (3) Alanine, aspartate and glutamate metabolism (3) ABC transporters (6) Sulfur metabolism (6) Selenoamino acid metabolism (3) Phenylalanine, tyrosine and tryptophan biosynthesis (3)	Two-component system (4) Alanine, aspartate and glutamate metabolism (5) ABC transporters (5) Purine metabolism (5) Pyrimidine metabolism (3)	KEGG pathways
Low-copy	fatty acid oxidation (2)	metal ion transport (12) enterobactin biosynthetic process (4) siderophore biosynthetic process from catechol (4) nonribosomal peptide biosynthetic process (4) phenol metabolic process (4) diol metabolic process (4) cofactor biosynthetic process (4) fatty acid oxidation (3) aromatic amino acid family biosynthetic process (3) nitrogen compound biosynthetic process (4) carboxylic acid biosynthetic process (3)	ion transport (5) metal ion transport (4) aromatic amino acid family biosynthetic process (4) tryptophan biosynthetic process (3) indole derivative biosynthetic process (3) indolalkylamine biosynthetic process (3) dicarboxylic acid metabolic process (4) nitrogen compound biosynthetic process (6) carboxylic acid biosynthetic process (5) amine biosynthetic process (5) regulation of transcription (7)	GO Biological Processes
	Two-component system (3)	Two-component system (10) Biosynthesis of siderophore group nonribosomal peptides (4)	Two-component system (10)	KEGG pathways

Table S4. Function annotations of DEGs in comparisons between different circuit compositions

5. List of host genes of specific functional categories analyzed in this study

In this study we studied the effect of the imported genetic circuits on the host cell, including the change of expression levels of resource related genes, transcription regulatory genes, housekeeping genes and essential genes.

5.1 Resource related genes

These include the DNA polymerases (Table S5), RNA polymerases (Table S6), transcription termination factors (Table S7), other transcription related genes (Table S8), ribosome and tRNA genes (see the file tRNA_related_genes.xls) and translation related genes (see the file translation_related_genes.xls).

Symbol	Alias	Description	Start position	End position	Orien tation
polA	b3863, ECK3855, JW3835, <i>resA</i>	fused DNA polymerase I 5'->3' polymerase/3'->5'	4046966	4049752	plus
		exonuclease/5'->3' exonuclease			
dinB	b0231, ECK0232, JW0221, dinP	DNA polymerase IV	250898	251953	plus
dnaX	b0470, ECK0464, JW0459, <i>dnaZ</i>	DNA polymerase III/DNA elongation factor III, tau	492092	494023	plus
		and gamma subunits			
umuD	b1183, ECK1171, JW1172	DNA polymerase V, subunit D	1230767	1231186	plus
dnaN	b3701, ECK3693, JW3678	DNA polymerase III, beta subunit	3881221	3882321	minus
umuC	b1184, ECK1172, JW1173, <i>uvm</i>	DNA polymerase V, subunit C	1231186	1232454	plus
dnaE	b0184, ECK0183, JW0179, polC,	DNA polymerase III alpha subunit	205126	208608	plus
	sdgC				
polB	b0060, ECK0061, JW0059, dinA	DNA polymerase II	63429	65780	minus
dnaQ	b0215, ECK0215, JW0205, mutD	DNA polymerase III epsilon subunit	236067	236798	plus
holA	b0640, ECK0633, JW0635	DNA polymerase III, delta subunit	670574	671605	minus
holB	b1099, ECK1085, JW1085	DNA polymerase III, delta prime subunit	1155762	1156766	plus
holE	b1842, ECK1843, JW1831	DNA polymerase III, theta subunit	1925108	1925338	plus
holC	b4259, ECK4252, JW4216	DNA polymerase III, chi subunit	4483837	4484280	minus
holD	b4372, ECK4363, JW4334	DNA polymerase III, psi subunit	4607803	4608216	plus
dnaC	b4361, ECK4351, JW4325, dnaD	DNA biosynthesis protein	4600238	4600975	minus
dnaA	b3702, ECK3694, JW3679, hsm-2	chromosomal replication initiator protein	3882326	3883729	minus
		DnaA, DNA-binding transcriptional dual			
		regulator			
radA	b4389, ECK4381, JW4352, sms	DNA repair protein	4625912	4627294	plus

Table S6. List of RNA polymerases genes (retrieved from NCBI database)

Symbol	Alias	Description	Start position	End position	Orien tation
rpoA	b3295, ECK3282, JW3257, <i>pez,</i>	RNA polymerase, alpha subunit	3440039	3441028	minus
	phs, sez				
rpoB	b3987, ECK3978, JW3950, ftsR,	RNA polymerase, beta subunit	4181244	4185272	plus
	groN, mbrD?, nitB, rif, ron, sdgB,				
	stl, stv, tabD, tabG				

b3988, ECK3979, JW3951, <i>tabB</i>	RNA polymerase, beta prime subunit	4185349	4189572	plus
b3649, ECK3639, JW3624, spoS	RNA polymerase, omega subunit	3822105	3822380	plus
b3067, ECK3057, JW3039, alt	RNA polymerase, sigma 70 (sigma D)	3213046	3214887	plus
	factor			
b2573, ECK2571, JW2557, <i>sigE</i>	RNA polymerase, sigma 24 (sigma E)	2709436	2710011	minus
	factor			
b3461, ECK3445, JW3426, <i>fam</i> ,	RNA polymerase, sigma 32 (sigma H)	3599928	3600782	minus
<i>hin</i> , htpR	factor			
b3202, ECK3191, JW3169, glnF,	RNA polymerase, sigma 54 (sigma N)	3344716	3346149	plus
ntrA	factor			
b2741, ECK2736, JW5437, abrD,	RNA polymerase, sigma S (sigma 38)	2866558	2867550	minus
appR, csi2, dpeB, katF, nur, otsX,	factor			
sigS				
b4293, ECK4283, JW4253	KpLE2 phage-like element; RNA	4517713	4518234	minus
	polymerase, sigma 19 factor			
b1922, ECK1921, JW1907, <i>flaD,</i>	RNA polymerase, sigma 28 (sigma F)	2001069	2001788	minus
rpoF	factor			
b2572, ECK2570, JW2556, mclA,	anti-sigma factor	2708753	2709403	minus
yfiJ				
b2571, ECK2569, JW2555	anti-sigma E factor, binds RseA	2707798	2708754	minus
b1071, ECK1056, JW1058, <i>mvi</i> S	anti-sigma factor for FliA (sigma 28)	1129835	1130128	minus
b0059, ECK0060, JW0058, <i>hepA</i> ,	RNA polymerase remodeling/recycling	60357	63263	minus
yabA	factor ATPase; RNA			
	polymerase-associated, ATP-dependent			
	b3988, ECK3979, JW3951, <i>tabB</i> b3649, ECK3639, JW3624, <i>spoS</i> b3067, ECK3057, JW3039, alt b2573, ECK2571, JW2557, <i>sigE</i> b3461, ECK3445, JW3426, <i>fam</i> , <i>hin</i> , htpR b3202, ECK3191, JW3169, <i>glnF</i> , <i>ntrA</i> b2741, ECK2736, JW5437, <i>abrD</i> , <i>appR</i> , <i>csi2</i> , <i>dpeB</i> , <i>katF</i> , <i>nur</i> , <i>otsX</i> , <i>sigS</i> b4293, ECK4283, JW4253 b1922, ECK1921, JW1907, <i>flaD</i> , <i>rpoF</i> b2572, ECK2570, JW2556, <i>mclA</i> , <i>yfiJ</i> b2571, ECK2569, JW2555 b1071, ECK1056, JW1058, <i>mviS</i> b0059, ECK0060, JW0058, <i>hepA</i> , <i>yabA</i>	b3988, ECK3979, JW3951, <i>tabB</i> RNA polymerase, beta prime subunit b3649, ECK3639, JW3624, <i>spoS</i> RNA polymerase, omega subunit b3067, ECK3057, JW3039, alt RNA polymerase, sigma 70 (sigma D) factor b2573, ECK2571, JW2557, <i>sigE</i> RNA polymerase, sigma 24 (sigma E) factor b3461, ECK3445, JW3426, <i>fam</i> , RNA polymerase, sigma 32 (sigma H) <i>hin</i> , htpR factor b3202, ECK3191, JW3169, <i>glnF</i> , RNA polymerase, sigma 54 (sigma N) <i>ntrA</i> factor b2741, ECK2736, JW5437, <i>abrD</i> , RNA polymerase, sigma S (sigma 38) <i>appR</i> , <i>csi2</i> , <i>dpeB</i> , <i>katF</i> , <i>nur</i> , <i>otsX</i> , factor b4293, ECK4283, JW4253 KpLE2 phage-like element; RNA polymerase, sigma 19 factor b1922, ECK1921, JW1907, <i>flaD</i> , RNA polymerase, sigma 28 (sigma F) <i>rpoF</i> factor b2571, ECK2570, JW2556, <i>mclA</i> , anti-sigma factor <i>yfiJ</i> b2571, ECK2569, JW2555 anti-sigma factor for FliA (sigma 28) b0059, ECK0060, JW0058, <i>hepA</i> , RNA polymerase remodeling/recycling <i>yabA</i> factor ATPase; RNA polymerase-associated, ATP-dependent	b3988, ECK3979, JW3951, tabB RNA polymerase, beta prime subunit 4185349 b3649, ECK3639, JW3624, spoS RNA polymerase, omega subunit 3822105 b3067, ECK3057, JW3039, alt RNA polymerase, sigma 70 (sigma D) 3213046 factor factor 5273, ECK2571, JW2557, sigE RNA polymerase, sigma 24 (sigma E) 2709436 b2573, ECK2571, JW2557, sigE RNA polymerase, sigma 32 (sigma H) 3599928 hin, htpR factor 3344716 b3202, ECK3191, JW3169, glnF, RNA polymerase, sigma 54 (sigma N) 3344716 factor b2741, ECK2736, JW5437, abrD, RNA polymerase, sigma S (sigma 38) 2866558 appR, csi2, dpeB, katF, nur, otsX, factor 2001069 101111 b4293, ECK4283, JW4253 KpLE2 phage-like element; RNA 4517713 polymerase, sigma 19 factor 2001069 tpoF factor 2001069 102572, ECK1921, JW1907, flaD, RNA polymerase, sigma 28 (sigma F) 2001069 tpoF factor 2708753 2708753 2707798 2708753 b1922, ECK1921, JW1907, flaD, rnti-sigma factor, binds RseA 2707798 2707798 b1071, ECK2569, JW2555 anti-sigma factor for FliA (sigma 28) <td< td=""><td>b3988, ECK3979, JW3951, tabB RNA polymerase, beta prime subunit 4185349 4189572 b3649, ECK3639, JW3624, spoS RNA polymerase, omega subunit 3822105 3822380 b3067, ECK3057, JW3039, alt RNA polymerase, sigma 70 (sigma D) 3213046 3214887 factor 52573, ECK2571, JW2557, sigE RNA polymerase, sigma 24 (sigma E) 2709436 2710011 b2573, ECK2571, JW2557, sigE RNA polymerase, sigma 32 (sigma H) 3599928 3600782 b3461, ECK3445, JW3426, fam, RNA polymerase, sigma 32 (sigma H) 3599928 3600782 bin, htpR factor 3344716 3346149 ntrA factor 3344716 3346149 b2741, ECK2736, JW5437, abrD, RNA polymerase, sigma 54 (sigma N) 3344716 3346149 plymerase, sigma 54 (sigma A) 2866558 2867550 appR, csi2, dpeB, katF, nur, otsX, factor 52573 52657 b4293, ECK4283, JW4253 KpLE2 phage-like element; RNA 4517713 4518234 polymerase, sigma 19 factor 5201069 2001788 rpoF factor 5272, ECK2570, JW2556, mc/A, anti-sigma factor, binds RseA 2707798 2709403 <</td></td<>	b3988, ECK3979, JW3951, tabB RNA polymerase, beta prime subunit 4185349 4189572 b3649, ECK3639, JW3624, spoS RNA polymerase, omega subunit 3822105 3822380 b3067, ECK3057, JW3039, alt RNA polymerase, sigma 70 (sigma D) 3213046 3214887 factor 52573, ECK2571, JW2557, sigE RNA polymerase, sigma 24 (sigma E) 2709436 2710011 b2573, ECK2571, JW2557, sigE RNA polymerase, sigma 32 (sigma H) 3599928 3600782 b3461, ECK3445, JW3426, fam, RNA polymerase, sigma 32 (sigma H) 3599928 3600782 bin, htpR factor 3344716 3346149 ntrA factor 3344716 3346149 b2741, ECK2736, JW5437, abrD, RNA polymerase, sigma 54 (sigma N) 3344716 3346149 plymerase, sigma 54 (sigma A) 2866558 2867550 appR, csi2, dpeB, katF, nur, otsX, factor 52573 52657 b4293, ECK4283, JW4253 KpLE2 phage-like element; RNA 4517713 4518234 polymerase, sigma 19 factor 5201069 2001788 rpoF factor 5272, ECK2570, JW2556, mc/A, anti-sigma factor, binds RseA 2707798 2709403 <

Table S7. List of transcription termination factor genes (retrieved from NCBI database)

Symbol	Aliases	Description	Start position	End position	Orien tation
rho	b3783, ECK3775, JW3756, hdf,	transcription termination factor	3966416	3967675	plus
	nitA, nusD, psuA, rnsC, sbaA, sun,				
	tabC, tsu				
greA	b3181, ECK3170, JW3148	transcript cleavage factor	3328238	3328714	minus
greB	b3406, ECK3393, JW3369	transcript cleavage factor	3536811	3537287	plus
nusA	b3169, ECK3158, JW3138	transcription termination/antitermination	3316038	3317525	minus
		L factor			
nusB	b0416, ECK0410, JW0406, groNB,	transcription antitermination protein	435137	435556	plus
	ssaD, ssyB				
nusG	b3982, ECK3973, JW3945	transcription termination factor	4177742	4178287	plus

Symbol	Alias	Description	Start position	End position	Orien tation
ruvA	b1861, ECK1862, JW1850	component of RuvABC resolvasome,	1945364	1945975	minus
		regulatory subunit			
ruvB	b1860, ECK1861, JW1849	ATP-dependent DNA helicase,	1944345	1945355	minus
		component of RuvABC resolvasome			
ruvC	b1863, ECK1864, JW1852	component of RuvABC resolvasome,	1946854	1947375	minus
		endonuclease			
rep	b3778, ECK3770, JW5604, <i>dasC</i> ,	DNA helicase and single-stranded	3960676	3962697	plus
	mbrA, mmrA	DNA-dependent ATPase			
uvrD	b3813, ECK3808, JW3786, dar-2,	DNA-dependent ATPase I and helicase II	3997982	4000144	plus
	dda, mutU, pdeB, rad, recL, srjC,				
	uvr502, uvrE				
dnaB	b4052, ECK4044, JW4012, groP,	replicative DNA helicase	4264314	4265729	plus
	grpA, grpD				
pcnB	b0143, ECK0142, JW5808	poly(A) polymerase	157729	159126	minus
mfd	b1114, ECK1100, JW1100	transcription-repair coupling factor	1170517	1173963	minus
rsd	b3995, ECK3987, JW3959, <i>yjaE</i>	stationary phase protein, binds sigma 70	4196331	4196807	minus
		RNA polymerase subunit			
mfd	b1114, ECK1100, JW1100	transcription-repair coupling factor	1170518	1173964	minus

Table S8. List of other transcription related genes (retrieved from NCBI database)

5.2 The expression of transcription factors

We also studied the expression levels of transcription factors as downloaded from database RegulonDB⁶ (Version 8.0). There are 162 transcription factors in total as listed in file regulonDB_TFs.xls and their expression levels among all samples are shown in Figure 4D.

5.3 The expression of housekeeping genes

The expression levels of housekeeping genes are generally constant in various conditions. Here, we studied the expression of 39 housekeeping genes (Table S9) as reported before in the reference⁷.

			1 0 0
Symbol	description	Symbol	description
mdoG	Glucan biosynthesis protein G	tolB	Periplasmic protein
dapA	Dihydrodipicolinate synthase	rnc	RNase III
crp	DNA-binding transcriptional dual regulator	ntpA	Dihydroneopterin triphosphate pyrophosphatase
hslV	Peptidase component of the HsIUV protease	yabB	Conserved protein, MraZ family
mrdB	Cell wall shape-determining protein	IoIA	Chaperone for lipoproteins
fucU	L-Fucose mutarotase	yggD	Predicted DNA-binding transcriptional regulator
yjgP	LPS transport (lptF)	pnp	Polynucleotide phosphorylase/polyadenylase
yigC	3-Octaprenyl-4-hydroxybenzoate decarboxylase	xerC	Site-specific tyrosine recombinase

Table S9. List of housekeeping genes

gor	Glutathione oxidoreductase	rfaF	ADP-heptose:LPS heptosyltransferase II
hflB	ATP-dependent metalloprotease	yigP	Conserved protein, SCP2 family
yqiB	Predicted dehydrogenase	gyrB	DNA gyrase, subunit B
murG	N-Acetylglucosaminyl transferase	nrdR	Conserved protein
yrbG	Predicted calcium/sodium:proton antiporter	hemD	Uroporphyrinogen III synthase
yejK	Nucleotide associated protein	pheT	Phenylalanine tRNA synthetase, beta subunit
yfgA	Cytoskeletal protein required for MreB assembly	frr	Ribosome recycling factor
hflX	Putative GTPase HflX	holC	DNA polymerase III, chi subunit
cls	Cardiolipin synthase 1	xerD	Site-specific tyrosine recombinase
nagC	DNA-binding transcriptional dual regulator,	yheS	Fused predicted transporter subunits of ABC
	repressor of N-acetylglucosamine		superfamily: ATP-binding components
spoT	Bifunctional (p)ppGpp synthetase	sun	16S rRNA m(5)C967
	Il/guanosine-3,5-bis pyrophosphate		methyl transferase, S-adenosyl-L-methion ine-dependent
	3-pyrophosphohydrolase		
yrbB	ABC transporter maintaining OM lipid		
	asymmetry, cytoplasmic STAS component		

5.4 The expression of essential genes in the host

Essential genes used in this study are referred from the database DEG⁸. These genes are listed in the file named essential_genes_collect.xls, available in the supplementary excel file (Supplementary_file_ list_of_grouped_host_genes_s1).

6. List of genetic part sequences used in the study

Table S10. List of genetic parts, circuit and plasmid backbone sequences used in thisstudy (promoters are in red, RBSs are in italic and bold, protein coding sequences are inbrown and terminators are in bold)

Part name	Type and source	DNA sequence (5'– 3')
		TTTATGGCTAGCTCAGTCCTAGG <u>TACAAT</u> GCTAGCTACTAGAG ATTAAAGAGG AGAAATACCATATGTCCAGATTAGATAAAAGTAAAGTGATTAACAGCGCATTA
		GAGCTGCTTAATGAGGTCGGAATCGAAGGTTTAACAACCCGTAAACTCGCCCA
		GAAGCTAGGTGTAGAGCAGCCTACATTGTATTGGCATGTAAAAAATAAGCGGG
		CTTTGCTCGACGCCTTAGCCATTGAGATGTTAGATAGGCACCATACTCACTTT
		TGCCCTTTAGAAGGGGAAAGCTGGCAAGATTTTTTACGTAATAACGCTAAAAG
	Inducible	TTTTAGATGTGCTTTACTAAGTCATCGCGATGGAGCAAAAGTACATTTAGGTA
	promoter	CACGGCCTACAGAAAAACAGTATGAAACTCTCGAAAATCAATTAGCCTTTTTA
P _{J114} -rbs30-	with TetR	TGCCAACAAGGTTTTTCACTAGAGAATGCATTATATGCACTCAGCGCTGTGGG
tetR-B0015-	receptor	GCATTTTACTTTAGGTTGCGTATTGGAAGATCAAGAGCATCAAGTCGCTAAAG
P _{tet2}	(de novo	AAGAAAGGGAAACACCTACTACTGATAGTATGCCGCCATTATTACGACAAGCT
	synthesized	ATCGAATTATTTGATCACCAAGGTGCAGAGCCAGCCTTCTTATTCGGCCTTGA
)9	ATTGATCATTTGCGGATTAGAAAAACAACTTAAATGTGAAAGTGGGTCCTAAT
		AATACTAGAGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGC
		CTTTCGTTTTATCTGTTGTTGTCGGTGAACGCTCTCTACTAGAGTCACACTG
		GCTCACCTTCGGGTGGGCCTTTCTGCGTTTATA TACTAGAGTTTTCAGCAGGA
		CGCACTGACCTCCCTATCAGTGATAGAGATTGACATCCCTATCAGTGATAGAG
		ATACTGAGCACATAT
		TTTATAGCTAGCTCAGCCCTTGGTACAATGCTAGCTACTAGAGTCACACAGGA
		AAG TACTAGATGAAAAACATAAATGCCGACGACACATACAGAATAATTAAT
		AATTAAAGCTTGTAGAAGCAATAATGATATTAATCAATGCTTATCTGATATGA
		CTAAAATGGTACATTGTGAATATTATTTACTCGCGATCATTTATCCTCATTCT
		ATGGTTAAATCTGATATTTCAATCCTAGATAATTACCCTAAAAAATGGAGGCA
		ATATTATGATGACGCTAATTTAATAAAATATGATCCTATAGTAGATTATTCTA
	Inducible	ACTCCAATCATTCACCAATTAATTGGAATATATTTGAAAAACAATGCTGTAAAT
	naucible	AAAAAATCTCCAAATGTAATTAAAGAAGCGAAAACATCAGGTCTTATCACTGG
Puur-rhs32-l		GTTTAGTTTCCCTATTCATACGGCTAACAATGGCTTCGGAATGCTTAGTTTTG
	with LuxR	CACATTCAGAAAAAGACAACTATATAGATAGTTTATTTTTACATGCGTGTATG
ихк-воотэ-	receptor	AACATACCATTAATTGTTCCTTCTCTAGTTGATAATTATCGAAAAAATAAAT
P _{lux2}		AGCAAATAATAAATCAAACAACGATTTAACCAAAAGAGAAAAAGAATGTTTAG
	synthesized	CGTGGGCATGCGAAGGAAAAAGCTCTTGGGATATTTCAAAAATATTAGGTTGC
)°	AGTGAGCGTACTGTCACTTTCCATTTAACCAATGCGCAAATGAAACTCAATAC
		AACAAACCGCTGCCAAAGTATTTCTAAAGCAATTTTAACAGGAGCAATTGATT
		GCCCATACTTTAAAAATTAATAACACTGATAGTGCTAGTGTAGATCACTACTA
		GAGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGT
		TTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACC
		TTCGGGTGGGCCTTTCTGCGTTTATA TACTAGAGACCTGTAGGATCGTACAGG

		ATGAGTACAGGCATCGATAAGGACGTCCGAGAGTGTTGGGGGCGTAACTGCATT
		ATCAGCGGGTCATCAAATTGCAATGAATAGCGCGTTTCTGGATATGGACTTGC
		TGTTGTGCGGGGAAACCGGCACCGGCAAGGACACACTGGCCAACCGCATTCAC
		GAGTTGTCCAGCAGGTCGGGACCCTTTGTGGGCATGAACTGCGCCGCCATTCC
		CGAGTCGCTGGCAGAGAGCCAGTTATTCGGTGTGGTCAACGGTGCATTCACCG
		GCGTATGCCGGGCTCGCGAGGGCTACATAGAGGCCTCCAGTGGTGGCACCTTG
		TACCTGGATGAAATCGACAGCATGCCGTTGAGCCTGCAAGCCAAACTGCTGCG
		TGTGTTGGAGAGTCGAGGTATCGAGCGTCTGGGCTCGACCGAATTTATCCCGG
	o 10 11	TGGATCTGCGGATCATTGCCTCGGCCCAGCGGCCACTGGATGAACTGGTGGAA
hrpR	Gene ^{10, 11}	CAAGGACTTTTCCGTCGCGACCTGTTTTTTCGGCTCAACGTGCTGACGCTTCA
		CTTGCCAGCCTTGCGCAAACGTCGTGAACAGATCCTGCCATTGTTCGACCAGT
		TCACCCAGGGTATCGCTGCCGAGTTCGGACGTCCCGCTCCTGCGCTGGACAGC
		GGGCGTGTGCAGCTGCTCAGCCACGACTGGCCGGGCAACATCCGCGAATT
		GAAGTCTGCGGCCAAGCGCTTCGTACTCGGCTTCCCCTTGCTGGGCGCCGACC
		CTGTGGAAGCGCTTGACCCTGCCACGGGGCTGCGCACGCA
		GAGAAAATGCTCATCCAGGATGCCTTGAAGCGGCACAGGCACAATTTCGACGC
		GGTGCTTCAGGAGTTGGAGTTGCCAAGACGCACCCTGTATCACCGCATGAAGG
		AACTGGGAGTTGCAGCGCCGATCGCTGCGACGGCCGGGGTCTAATAA
		ATGAGTCTTGATGAAAGGTTTGAGGATGATCTGGACGAGGAGCGGGTTCCGAA
		TCTGGGGATAGTTGCCGAAAGTATTTCGCAACTGGGTATCGACGTGCTGCTAT
		CGGGTGAGACCGGCACGGGCAAAGACACGATTGCCCGACGGATTCATGAGATG
		TCAGGCCGCAAAGGGCGCCTGGTGGCGATGAATTGCGCGGCCATTCCGGAGTC
		CCTCGCCGAGAGCGAGTTATTCGGCGTGGTCAGCGGTGCCTACACCGGCGCTG
		ATCGCTCCAGAGTCGGTTATGTCGAAGCGGCGCAGGGCGGCACGCTGTACCTG
		GATGAGATCGATAGCATGCCGCTGAGCCTGCAAGCCAAATTGCTGAGGGTGCT
		GGAAACCCGAGCGCTTGAACGGCTGGGTTCGACGTCGACGATCAAGCTGGATA
h was O	$O_{2} = 2^{10} 11$	TCTGCGTGATCGCCTCCGCCCAATGCTCGCTGGACGACGCCGTCGAGCGGGGG
nrpS	Gene ^{10, 11}	CAGTTTCGTCGCGATCTGTATTTTCGCCTGAACGTCCTGACACTCAAGCTTCC
		TCCGCTACGTAACCAGTCTGATCGCATAGTTCCCCTGTTCACACGTTTTACGG
		CCGCCGCCGCGAGGGAGCTCGGTGTTCCCGTTCCCGATGTTTGCCCACTGCTG
		CACAAAGTGCTGCTGGGCCACGACTGGCCCGGCAATATCCGTGAGCTCAAGGC
		GGCAGCCAAACGCCATGTGCTGGGTTTCCCCTTGCTGGGCGCCGAGCCGCAGG
		GCGAAGAGCACTTGGCCTGTGGGCTCAAATCGCAATTGCGAGTGATCGAAAAA
		GCCCTGATTCAGGAGTCGCTCAAGCGCCACGACAATTGTGTGGATTCGGTAAG
		CCTGGAACTGGACGTGCCACGCCGTACGCTCTATCGACGCATCAAAGAATTGC
		AGATCTAATAA
		GCCGGATTATGTCCGCTGAGTGGGTCACGGTCCCGGATCAGTTCCCTTGCGAA
hrpL 1	Promoter ^{10,}	GCTGACCGATGTTTTTGTGCCAAAAGCTGTTGTGGCAAAAAACGGTTTGCGCA
	11	AAGTTTTGTATTACAAAGAATTTCACATTTTAAAATATCTTTATAAATCAATC
		AGTTATTTCTATTTTTAAGCTGGCATGGTTATCGCTATAGGGCTTGTAC

gfpGene12AGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGGTGAAGGTG ATGCAACATACGGAAAACTTACCCTTAAATTTATTGCACTACGGAAAACTA CCTGTTCCATGGCCAACACTTGTCACTACGCTTTTCCAGTGGTGATGCCATGC CCGAAGGTTATGTACGAGAACACTTGTCAACGCATGACCTTTTCCAAGAGTGCCATGC CCGAAGGTTATGTACGAGGAAGACCATTATTTTTCCAAGAGTGCCATGC CCGAAGGTATGTATGTACTGCACGAAACATTCTTGGACACAAATTGG AAGACCGTGCTGAAGTCAAGGTAAGACGAACAATTCTGGACACAAATTGG AATACAACTATAAAGGTATTGATTTTAAAGAAGAGGGGAAACAATTCTGGAAAGAAA			ATGCGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATT
argcAACATACGGAAAACTTACCCTTAAATTTATTTGCACTACTGGAAAACTA CCTGTTCCATGGCCAAGCACTTGTCACTACTTTCGGTTATGGTGTTCAATGCTT TGCGAGATACCCAGGCCAAGCACTTGTCAACGACGTTTTTCAAGAGTGCCATGC CCGAAGGTTATGTACAGGAAAGAACTATATTTTTCAAAGATGACGGGAACTAC AAGACACGTGCTGAAGTCAAGGTTGAAGGAGAACACTTCTTGGACACAAATGG AAGACACGTGCTGAAGTCGAAGCTTGAAGAGGAGAACAATTCTTGGACACAAATGG AATACAACGTATTGATTTAAAGAAGAGAGGAGAAACAATCTTCGGAAAACAAAAGAAT GGAATCAAAGTTAACTCAAAAGTTAACTTCAAAAATTAGACACAACAATGGAAAGAACGATGGAAAGAACGATGGAAAGAACGATGGAAGCGTCCA ACTAGCAGACAACCATTACCAACAATGGCACAAACAAAAGAAAG			AGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTG
gfpGene12CCTGTTCCATGGCCAACACTTGTCACTACTTTCGGTTATGGGTGTTCAATGCTT TGCGAGATACCCAGATCATATGAAACAGCATGACTTTTTCAAAGATGAGGGAACTAC AAGACACGTGCTGAAGTCAAGTTTGAAGATGGAAACATTCTTGGAAGATGACGGGAAACAATGG AAGACACGTGCAGAGTATGATTGAATGAAGAAGGATGGAAACATTCTTGGAACAAAATGG AATACAACTATAACTCACACAAAGTTAACATCATGGCAAGCACAAACAA			ATGCAACATACGGAAAACTTACCCTTAAATTTATTTGCACTACTGGAAAACTA
gfpGene12TGCGAGATACCCAGATCATATGAAACAGCATGACTTTTTCAAAGAGTGCCATGC CCGAAGGTTATGTACAGGAAAGAACTATATTTTTCAAAGATGAGGGAACTAC AAGACACGTGCTGAAGTCAAGTTGAAGAGTGGAAACATTCTTGGACACAAATGG AATACAACTATAAAGGTATGCAACGAAGAACAATCTTGGCAAACAAA			${\tt CCTGTTCCATGGCCAACACTTGTCACTACTTTCGGTTATGGTGTTCAATGCTT}$
gfpGene12CCGAAGGTTATGTACAGGAAAGAACTATATTTTTCAAAGATGACGGGAACTAC AAGACACGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATAGAATCGA GTTAAAAGGTATTGAATTGAATTTGAAGATGGAAACATTCTTGGACACAAATTGG AATACAACTATAACTCACACAAATGTATACATCATGGCAGACAAACAA			TGCGAGATACCCAGATCATATGAAACAGCATGACTTTTTCAAGAGTGCCATGC
gfpGene12AAGACACGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATAGAATCGA GTTAAAAGGTATTGATTTAAAGAAGATGGAAACATTCTTGGACACAAATTGG AATACAACTATAACTCAACAAATGTATACATCATGGCAGACAAACAA			CCGAAGGTTATGTACAGGAAAGAACTATATTTTTCAAAGATGACGGGAACTAC
grpGenericGTTAAAAGGTATTGATTTTAAAGAAGATGGAAACATTCTTGGACACAAATTGG AATACAACTATAACTCAACAAAGTTGATTACATCATGGCAGACAAACAA	a: É:a	\mathbf{O} are \mathbf{a}^{12}	AAGACACGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATAGAATCGA
AATACAACTATAACTCACACAATGTATACATCATGGCAGACAAACAA	grp	Gene'-	GTTAAAAGGTATTGATTTTAAAGAAGATGGAAACATTCTTGGACACAAATTGG
GGAATCAAAGTTAACTTCAAAATTAGACACAACATTGAAGATGGAAGCGTTCA ACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTT TACCAGACAACCATTACCACACACACACACACTGGCCCTTTCGAAAGATCCCAAC GAAAAGAGAGACCACATGGTCCTTCTTGAGTTTGTAACAGCTGGCATGGATTAC ACATGGCATGGATGAACTATACAAATAATAArbs30RBS10TCTAGAGTCACACAGGAAAATACTAGATGrbs33RBS10TCTAGAGTCACACAGGAACTACTAGATGJ114Promoter13TTTATGGCTAGCTCAGGTCCAGGTACAATGCTAGCB0015 (B15)Terminator14CCAGGCATCAAATAAAAAGAAGGCTCAGCTCAGCACAGGACTACTAGATGCTAGCTA			AATACAACTATAACTCACACAATGTATACATCATGGCAGACAAACAA
ACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTT TACCAGACAACCATTACCTGTCCACACAATCTGCCCTTTCGAAAGATCCCAAC GAAAAGAGAGAGACCACATGGTCCTTCTTGAGTTTGTAACAGCTGCTGGGATTAC ACATGGCATGGATGAACTATACAAATAATAArbs30RBS10TCTAGAGTCACACAGGAAAGTACTAGATGrbs33RBS10TCTAGAGTCACACAGGAAAGTACTAGATGJ114Promoter13TTTATGGCTAGCTCAGTCCTAGGTACAATGCTAGCJ115Promoter13TTTATAGCTAGCTCAGCCCTTGGTACAATGCTAGCB0015 (B15)Terminator14CCAGGCATCAAATAAAAGGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGGTTTATAAA			GGAATCAAAGTTAACTTCAAAATTAGACACAACATTGAAGATGGAAGCGTTCA
TACCAGACAACCATTACCTGTCCACACAATCTGCCCTTTCGAAAGATCCCAAC GAAAAGAGAGACCACATGGTCCTTCTTGAGTTTGTAACAGCTGCTGGGATTAC ACATGGCATGGATGAACTATACAAATAATAArbs30RBS10TCTAGAG <i>TCACACAGGAAAG</i> TACTAGATGrbs33RBS10TCTAGAG <i>TCACACAGGAC</i> TACTAGATGJ114Promoter13TTTATGGCTAGCTCAGTCCTAGGTACAATGCTAGCJ015Promoter13CCAGGCATCAAATAAAAAGGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTT ATCTGTTGTTGTCGGTGAACGCTCCTAGGAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTT ATCTGTTGTTGTTGTCGGTGAACGCTCTCTACTAGAGCCCACACGGCCCTTCCGCTTATAAAAACGAAAGGCTCAGCCACACGGCCCTTCCGCTTATAAAAACGAAAGGCTCAACACAGGCTCACACACGGCCCTTCCGCGTGAACGCTCCACACTGGCCCACCTCC			ACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTT
GAAAAGAGAGACCACATGGTCCTTCTTGAGTTTGTAACAGCTGCTGGGATTAC ACATGGCATGGATGAACTATACAAATAATAArbs30RBS10TCTAGAGATTAAAGAGGAGAAATACTAGATGrbs32RBS10TCTAGAGTCACACAGGAAAGTACTAGATGrbs33RBS10TCTAGAGTCACACAGGACTACTAGATGJ114Promoter13TTTATGGCTAGCTCAGTCCTAGGTACAATGCTAGCJ115Promoter13TTTATAGCTAGCTCAGCCCTTGGTACAATGCTAGCB0015 (B15)Terminator14CCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTT GGTGGGCCTTTCTGCGTTATATA			TACCAGACAACCATTACCTGTCCACACAATCTGCCCTTTCGAAAGATCCCAAC
ACATGGCATGGATGAACTATACAAATAATAArbs30RBS10TCTAGAGATTAAAGAGGAGAAATACTAGATGrbs32RBS10TCTAGAGTCACACAGGAAAGTACTAGATGrbs33RBS10TCTAGAGTCACACAGGACTACTAGATGJ114Promoter13TTTATGGCTAGCTCAGCCCTAGGTACAATGCTAGCJ115Promoter13TTTATGCTAGCTCAGCCCTTGGTACAATGCTAGCB0015Terminator14CCAGGCATCAAATAAAACGAAAGGCTCAGTCCAACAGGAGTCACACTGGGCCTTACGGTGAACGCTCACCTCC			GAAAAGAGAGACCACATGGTCCTTCTTGAGTTTGTAACAGCTGCTGGGATTAC
rbs30RBS10TCTAGAGATTAAAGAGGAGAAATACTAGATGrbs32RBS10TCTAGAGTCACACAGGAAAGTACTAGATGrbs33RBS10TCTAGAGTCACACAGGACTACTAGATGJ114Promoter13TTTATGGCTAGCTCAGTCCTAGGTACAATGCTAGCJ115Promoter13TTTATAGCTAGCTCAGCCCTTGGTACAATGCTAGCB0015 (B15)Terminator14CCAGGCATCAAATAAAACGAAAGGCTCAGTCCAGTCGAAAGACTGGGCCTTTCGTTTT ATCTGTTGTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTC GGGTGGGCCCTTCCTGCGTTATA			ACATGGCATGGATGAACTATACAAATAATAA
rbs32RBS10TCTAGAGTCACACAGGAAAGTACTAGATGrbs33RBS10TCTAGAGTCACACAGGACTACTAGATGJ114Promoter13TTTATGGCTAGCTCAGTCCTAGGTACAATGCTAGCJ115Promoter13TTTATAGCTAGCTCAGCCCTTGGTACAATGCTAGCB0015 (B15)Terminator14CCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTT GGGTGGGCCTTTCTGCGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTCG	rbs30	RBS ¹⁰	TCTAGAG ATTAAAGAGGAGAAA TACTAG ATG
rbs33RBS10TCTAGAGTCACACGGACTACTAGATGJ114Promoter13TTTATGGCTAGCTCAGTCCTAGGTACAATGCTAGCJ115Promoter13TTTATAGCTAGCTCAGCCCTTGGTACAATGCTAGCB0015 (B15)Terminator14CCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCCTTCGTTTT GGGTGGGCCTTTCTGCGTTAATAAACGAAAGGCTCACTCGAAAGACTGGGCCCTTCCGCTTATAA	rbs32	RBS ¹⁰	TCTAGAG TCACACGGAAAG TACTAG ATG
J114Promoter13TTTATGGCTAGCTCAGTCCTAGGTACAATGCTAGCJ115Promoter13TTTATAGCTAGCTCAGCCCTTGGTACAATGCTAGCB0015 (B15)Terminator14CCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCCTTTCGTTTT GGGTGGGCCTTTCTGCCGTTATAA	rbs33	RBS ¹⁰	TCTAGAG TCACACAGGAC TACTAG ATG
J115 Promoter ¹³ <u>TTTATAGCTAGCTCAGCCCTTGGTACAAT</u> GCTAGC B0015 (B15) Terminator ¹⁴ CCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTT GGGTGGGCCCTTTCTGCCGTTATA	J114	Promoter ¹³	<u>TTTATG</u> GCTAGCTCAGTCCTAGG <u>TACAAT</u> GCTAGC
B0015 (B15) CCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTT Terminator ¹⁴ ATCTGTTGTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTC GGGTGGGCCCTTTCTGCGTTTATA	J115	Promoter ¹³	<u>TTTATA</u> GCTAGCTCAGCCCTTGG <u>TACAAT</u> GCTAGC
(B15) Terminator ¹⁴ ATCTGTTGTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTC GGGTGGGCCCTTTCTGCGTTATA	D001E		CCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTT
(B15) GGGTGGGCCTTTCTGCGTTTATA	B0015	Terminator ¹⁴	ATCTGTTGTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTC
		renninator	

		TACTAGTAGCGGCCGCTGCAGTCCGGCAAAAAAACGGGCAAGGTGTCACCACCCTGCCC
		TTTTCTTTAAAACCGAAAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTC(
		CTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCA
		AGTCCCGTCAAGTCAGCGTAATGCTCTGCCAGTGTTACAACCAATTAACCAATTCTGATJ
		AGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATA(
		CATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCAT#
		GGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCT#
		TTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACT(
		AATCCGGTGAGAATGGCAAAAGCTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAG(
		CATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTC
		CCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAAJ
		GCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATAT]
		CTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCAI
		CAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTT#
		GTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAAC/
		ACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACAJ
		TATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGC(
		TCGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCCTTGTATTACTGTTTATG
		AAGCAGACAGTTTTATTGTTCATGATGATATATTTTTTATCTTGTGCAATGTAACATCAG
		GATTTTGAGACACAACGTGGCTTTGTTGAATAAATCGAACTTTTGCTGAGTTGAAGGAT(
		AGATCACGCATCTTCCCGACAACGCAGACCGTTCCGTGGCAAAGCAAAAGTTCAAAATC
	Plasmid	CCAACTGGTCCACCTACAACAAAGCTCTCATCAACCGTGGCTCCCTCACTTTCTGGCTGC
-CD2V2	1 - 1 - 1 - 1 - 1 - 1 - 1 - 15	ATGATGGGGCGATTCAGGCCTGGTATGAGTCAGCAACACCTTCTTCACGAGGCAGACCT(
рзвэкэ	backbone ¹¹ ,	AGCGCTAGCGGAGTGTATACTGGCTTACTATGTTGGCACTGATGAGGGTGTCAGTGAAGI
	16	GCTTCATGTGGCAGGAGAAAAAAGGCTGCACCGGTGCGTCAGCAGAATATGTGATACAG(
		ATATATTCCGCTTCCTCGCTCACTGACTCGCTACGCTCGGTCGTTCGACTGCGGCGAGC(
		GAAATGGCTTACGAACGGGGGGGGAGATTTCCTGGAAGATGCCAGGAAGATACTTAACAG(
		GAAGTGAGAGGGCCGCGGCAAAGCCGTTTTTCCATAGGCTCCGCCCCCTGACAAGCAT(
		ACGAAATCTGACGCTCAAATCAGTGGTGGCGAAACCCGACAGGACTATAAAGATACCAG(
		CGTTTCCCCTGGCGGCTCCCTCGTGCGCTCTCCTGTTCCTGCCTTTCGGTTTACCGGTG
		CATTCCGCTGTTATGGCCGCGTTTGTCTCATTCCACGCCTGACACTCAGTTCCGGGTAG
		CAGTTCGCTCCAAGCTGGACTGTATGCACGAACCCCCCGTTCAGTCCGACCGCTGCGCC1
		TATCCGGTAACTATCGTCTTGAGTCCAACCCGGAAAGACATGCAAAAGCACCACTGGCA(
		CAGCCACTGGTAATTGATTTAGAGGAGTTAGTCTTGAAGTCATGCGCCGGTTAAGGCTA
		ACTGAAAAGGACAAGTTTTGGTGACTGCGCTCCTCCAAGCCAGTTACCTCGGTTCAAAGA(
		TTGGTAGCTCAGAGAACCTTCGAAAAACCCGCCCTGCAAGGCGGTTTTTTCGTTTTCAGA(
		CAAGAGATTACGCGCAGACCAAAAACGATCTCAAGAAGATCATCTTATTAAGGGGTCTGA(
		GCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGAT(
		ΤΤ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ
		GGCTTACCATCTGGCCCCAGTGCTGCCAATGATACCGCGAGACCCACGCTCACCGGCTCCZ
		TTATCCGCCTCCATCCAGTCTATTCCATGCCACCTGACGTCTAAGAAACCATTATT
		TCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAA
		CCTTAGCTTTCGCTAAGGATGATTTCTCGGAATTCGCGGCCGCCGCTTTAGAGAG

		TACTAGTAGCGGCCGCTGCAGGAGTCACTAAGGGTTAGTTA
		AAAAGCCTCCGACCGGAGGCTTTTGACTAAAACTTCCCTTGGGGGTTATCATTGGGGCTCA
	CTCAAAGGCGGTAATCAGATAAAAAAATCCTTAGCTTTCGCTAAGGATGATTTCTGCTA	
		GTATTATTAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATI
		ATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCA
		GTTCCAAAGAATGGCAAGGTCCTGGTAACGGTCTGCGATTCCGACCCGTCCAACATCAA
		ACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGI
	GACGACTGAATCCGGTGAGAATGGCAAGAGCTTGTGCATTTCTTTC	
		AGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATGCC
		TGATTGCGCCTGAGCAAGACGAAATACACGATCGCTGTTAAAAGGACAATTACAAACAG
		AATCGAATGTAACCGGCGCAGGAACACGGCCAGCGCATCAACAATATTTTCACCTGAAT(
		AGGATATTCTTCTAATACCTGGAAGGCTGTTTTCCCAGGAATCGCGGTGGTGAGTAACC
		CGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGGAGAGGCATAAACTCCGTCAC
		CCAGTTGAGACGGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTT
	CAGAAACAACTCTGGCGCATCGGGCTTCCCATACAAGCGATAGATTGTCGCACCTGATT(
		CCAAAAACTCGTAAAAGCTCTGATGTATCTTATCTTTTTTACACCCGTTTTCATCTGTGCAT
		ATGGACAGTTTTCCCCTTTGATATGTAACGGTGAACAGTTGTTCTACTTTTGTTTG
		CTTGATGCTTCACTGATAGATACAAGAGCCATAAGAACCTCAGATCCTTCCGTATTTAGC
		CAGTATGTTCTCTAGTGTGGTTCGTTGTTTTTGCGTGAGCCATGAGAACGAAC
		ATCATACTTACTTTGCATGTCACTCAAAAATTTTGCCTCAAAACTGGTGAGCTGAATTT
		TGCAGTTAAAGCATCGTGTAGTGTTTTTCTTAGTCCGTTATGTAGGTAG
	Dlasmid	AATGGTTGTTGGTATTTTGTCACCATTCATTTTTATCTGGTTGTTCTCAAGTTCGGTTAC
	r iasiiiu	GAGATCCATTTGTCTATCTAGTTCAACTTGGAAAATCAACGTATCAGTCGGGCGGCCTCC
pSB4K5	backbone ^{10,}	CTTATCAACCACCAATTTCATATTGCTGTAAGTGTTTAAATCTTTACTTATTGGTTTCA#
	17	AACCCATTGGTTAAGCCTTTTAAACTCATGGTAGTTATTTTCAAGCATTAACATGAACT
		AAATTCATCAAGGCTAATCTCTATATTTGCCTTGTGAGTTTTCTTTTGTGTTAGTTCTT
		TAATAACCACTCATAAATCCTCATAGAGTATTTGTTTTCAAAAGACTTAACATGTTCCAC
		ATTATATTTTATGAATTTTTTTAACTGGAAAAGATAAGGCAATATCTCTTCACTAAAAA(
		TAATTCTAATTTTTCGCTTGAGAACTTGGCATAGTTTGTCCACTGGAAAATCTCAAAGCC
		TTTAACCAAAGGATTCCTGATTTCCACAGTTCTCGTCATCAGCTCTCTGGTTGCTTTAGC
		TAATACACCATAAGCATTTTCCCTACTGATGTTCATCATCTGAGCGTATTGGTTATAAGJ
		GAACGATACCGTCCGTTCTTTCCTTGTAGGGTTTTCAATCGTGGGGTTGAGTAGTGCCA
		ACAGCATAAAATTAGCTTGGTTTCATGCTCCGTTAAGTCATAGCGACTAATCGCTAGTT(
		ATTTGCTTTGAAAACAACTAATTCAGACATACATCTCAATTGGTCTAGGTGATTTTAAT(
		ACTATACCAATTGAGATGGGCTAGTCAATGATAATTACATGTCCTTTTCCTTTGAGTTG
		GGGTATCTGTAAATTCTGCTAGACCTTTGCTGGAAAACTTGTAAATTCTGCTAGACCCT(
		TGTAAATTCCGCTAGACCTTTGTGTGTGTTTTTTTTTTT
		TAGAATAAAGAAAGAATAAAAAAAGAATAGAATAGAATAGAATAGAACCCAGCCCTGTGTATAACT(
		TCCTGCCCTCTGATTTTCCAGTCTGACCACTTCGGATTATCCCGTGACAGGTCATTCAG
		CTGGCTAATGCACCCAGTAAGGCAGCGGTATCATCAACAGGCTTACCCGTCTTACTGTCC
		CTAGTGCTTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAA
		TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAGCTCGT
		AACTTGGTCTGACAGCTCTAGCTCCGGCAAAAAAACGGGCAAGGTGTCACCACCCTGCCC
		TTTTTTTTTAAAACCGAAAAGATTACTTCGCGTTTGCCACCTGACGTCTAAGAAAAGGAA
		TATTCAGCAATTTGCCCCGTGCCGAAGAAAGGCCCACCCGTGAAGGTGAGCCAGTGAGTT(

7. Supplementary References

- [1] Zwietering, M. H., Jongenburger, I., Rombouts, F. M., and van 't Riet, K. (1990) Modeling of the Bacterial Growth Curve, *Appl. Environ. Microbiol. 56*, 1875-1881.
- [2] Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., and Mesirov, J. P. (2011) Integrative Genomics Viewer, *Nat. Biotechnol.* 29, 24-26.
- [3] Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, *Bioinformatics* 26, 139-140.
- [4] Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., and Lempicki, R. A. (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery, *Genome Biol.* 4, R60.
- [5] Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, *Nat. Protocols* 4, 44-57.
- [6] Salgado, H., et al. (2013) RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more, *Nucleic Acids Res. 41*, D203-D213.
- [7] Zhou, K., Zhou, L., Lim, Q. E., Zou, R., Stephanopoulos, G., and Too, H.-P. (2011) Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR, *BMC Molecular Biology* 12, 18-18.
- [8] Luo, H., Lin, Y., Gao, F., Zhang, C.-T., and Zhang, R. (2014) DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements, *Nucleic Acids Res.* 42, D574-D580.
- [9] Wang, B., Barahona, M., and Buck, M. (2015) Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities, *Nucleic Acids Res.* 43, 1955-1964.
- [10] Wang, B., Kitney, R. I., Joly, N., and Buck, M. (2011) Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology, *Nat. Commun.* 2, 508.
- [11] Collmer, A., et al. (2000) Pseudomonas syringae Hrp type III secretion system and effector proteins, *Proc Natl Acad Sci USA* 97, 8770-8777.
- [12] Greem fluorescent protein derived from jellyfish Aequeora victoria, http://parts.igem.org/Part:BBa_E0040
- [13] Constitutive promoter family catalog, http://parts.igem.org/Promoters/Catalog/Anderson>.
- [14] B0015 double terminator, http://parts.igem.org/Part:BBa_B0015>.
- [15] pSB3K3 plasmid backbone, <http://parts.igem.org/Part:pSB3K3>.
- [16] Shetty, R., Endy, D., and Knight, T. (2008) Engineering BioBrick vectors from BioBrick parts, *J. Biol. Eng.* 2, 5.
- [17] pSB4K5 plasmid backbone, <http://parts.igem.org/Part:pSB4K5>.