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eAppendix. Deep Learning and Glossary 

Deep Learning.  

Application of traditional machine learning to medical image analysis typically involved human engineers 

collaborating with physicians to decide what kind of features are needed to recognize lesions or objects of interest in 

the images. These features were then extracted from medical images and fed to an algorithm which would assess 

whether the lesion or object was present in the image. Deep learning changes this in two important ways. The first 

refers to the ‘deep’ part in deep learning; whereas the traditional approach typically consisted of two steps, a deep 

network consists of many steps, or in deep learning terminology, layers. Each of these layers can perform feature 

extraction or classification, and because one layer feeds output into the next, features can hierarchically become 

more complex. The first layers, for example, can identify edges or circles and subsequent layers can combine these 

into more meaningful objects, eventually leading to complex structures such as faces in natural images. The second 

major difference with traditional machine learning is that features are no longer manually engineered, but learned 

automatically by the system. This is done by optimizing deep learning algorithms end-to-end, i.e. given an input, 

optimize the parameters across layers in such a way that the desired output is most likely. Typically this is done with 

an algorithm called backpropagation. 

Most deep learning algorithms are based on artificial neural networks that are mathematical constructs that stack 

together ‘nodes’. Nodes consist of simple multiplications and additions, combined with a non-linear transform and 

multiple nodes form a layer. By selecting how nodes between different layers are connected one can determine how 

features are extracted. Currently the most popular deep learning algorithm is the convolutional neural network 

(CNN). In a CNN nodes are connected in such a way that they model a convolution operation, which allows 

recognition of a single feature (a convolutional filter) across the entire image, making CNNs highly efficient for 

image processing. CNNs have revolutionized the field of computer visions, breaking records and attaining results 

that have eluded the community for years
1-4

. 
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Glossary of deep learning and digital pathology terminology 

Model fine-tuning – using the weights of a model that was trained for one task as an initialization for training a 

model for a different task.  

Model ensembling – combining the output from different models (e.g. by averaging the predictions) with the goal of 

improving the overall performance. 

Hard-negative mining – discovering negative samples (in a detection problem) that are non-trivial to distinguish 

from positive samples. 

Data augmentation – applying transformation to the training samples that create new, plausible training samples 

with the goal of increasing the training set size. 

Staining normalization – modifying the color appearance of whole slide images such that it resembles some 

reference sample with the goal of reducing the appearance variability within a dataset. 

Fully convolutional network – neural network consisting only of convolutional layers, or more generally, consisting 

only of layers that produce outputs for arbitrary input sizes (this enables a model to be trained on small images and 

then applied to larger images such as whole slide images). 

AlexNet
1
 – neural network architecture that was the winner of the ImageNet Large Scale Visual Recognition 

Challenge 2012 for the object detection, localization and classification tasks
5
. 

GoogLeNet
3
 – neural network architecture that was the winner of the ImageNet Large Scale Visual Recognition 

Challenge 2014 for the object detection and classification tasks
5
. 

VGG-net
6
 – neural network architecture that was the winner of the  ImageNet Large Scale Visual Recognition 

Challenge 2014 for the localization task
5
. 

ResNet
4
 – neural network architecture that was the winner of the ImageNet Large Scale Visual Recognition 

Challenge 2015 for the object detection, localization and classification tasks
4,5

. 

U-Net
7
 and SegNet

8
 – neural network architectures that were specifically designed for segmentation of biomedical 

images. 
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eFigure 1. Two example annotated areas of whole-slide images taken from the 

CAMELYON16 dataset 

 

eFigure 1. Two example annotated areas of whole-slide images of hematoxylin and eosin stained lymph node tissue sections taken from the 

CAMELYON16 dataset. (a) and (c) show overviews of two examples of whole-slide images. (b) and (d) are magnified images, corresponding to 
rectangle areas in (a) and (c), with detailed annotation of metastatic regions.  
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eFigure 2. Use of immunohistochemistry staining to generate reference standard 

 

eFigure 2. Side by side visualization of hematoxylin and eosin (H&E) and immunohistochemistry (IHC) staining for generating reference 
standard. (a) and (c) show two example annotations made for two H&E stained images. (b) and (d) show corresponding tissue areas in (a) and (c), 

stained with IHC. Note that IHC was only used for generating the reference standard in our challenge. Neither of the pathologists in our observer 

study nor participants of the challenge had access to this data. Immunohistochemical staining was performed with anti-CK8/18 (anti-cytokeratin 
mouse monoclonal antibody, clone CAM 5.2, BD Biociences, San Jose, USA). Binding of the antibody was visualized with a Brightvision® 

Poly-HRP-Anti Ms/Rb/Rt IgG biotin free detection system using BrightDAB® (Immunologic, Duiven, the Netherlands) as peroxidase-

compatible chromogen and hematoxylin counterstaining. 
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eFigure 3. ROC curves of the panel of the 11 pathologists for task 2 

 

 

eFigure 3. ROC curves of the panel of 11 pathologists and their corresponding AUCs for task 2 (measured on the 129 whole-slide images in the 

test set of which 49 contain metastatic regions). All the pathologists scored whole-slide images using five levels of confidence: definitely normal, 
probably normal, equivocal, not confident, probably tumor, definitely tumor. To ease comparison, the ROC curve of the pathologist without time 

constraint (pathologist WOTC) is shown in all subfigures. 
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eFigure 4. FROC curves of all participating teams for task 1 

 

eFigure 4. FROC curves of all the 32 participating teams and their corresponding FROC true positive fraction scores for task 1 (measured on the 

129 whole-slide images in the test set of which 49 contain metastatic regions). The operating point of the pathologist who scored the slides 
without time constraint (WOTC) is shown as a green diamond. The range on the x-axis is linear between 0 and 0.125 and base-2 logarithmic scale 

between 0.125 and 8. The pathologist did not produce any false positives and achieved a true positive fraction of 0.724 for detecting and 

localizing metastatic regions. To ease comparison, the FROC curve of the best-performing system (HMS & MIT II) is shown in all subfigures. 
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eFigure 5. Example probability maps generated by the top-three performing systems         

 

eFigure 5. Example probability maps generated by the top-three performing systems. (a) Four annotated metastatic lesions in the test set of 

CAMELYON16. (b-d) Probability maps for teams HMS & MIT II, HMS & MGH III, and CULab III, respectively, overlaid on the original 

images.  
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eFigure 6. ROC curves of all participating teams for task 2 

 

eFigure 6. ROC curves of all the 32 participating teams and their corresponding AUCs for task 2 (measured on the 129 whole-slide images in the 

test set of which 49 contain metastatic regions). The operating point of the pathologist who scored the slides without time constraint (WOTC) and 

the operating point of the mean of the panel of 11 pathologists are shown as green diamond and red circle, respectively. To ease comparison, 

ROC curve of the best-performing system (HMS & MIT II) is shown in all subfigures. 
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eTable 1. Classification results by pathologists for the whole-slide image classification 

task (sensitivity and specificity) 

eTable1. Classification results by the panel of 11 pathologists participating in the simulation exercise and the expert pathologist whiteout time 

constraint (WOTC) on the CAMELYON16 test set for the whole-slide image classification task (task 2). The performances are measured in 129 
whole-slide images in the test set of which 49 contain metastatic regions (comprising of 22 macro and 27 micrometastases, and 38 with primary 

tumor histotype of infiltrating ductal cancer (IDC) and 11 non-IDC). We report sensitivity and specificity for different scenarios: 1) 
differentiating all tumor slides from normal slides, 2) differentiating slides with macrometastases from normal slides while excluding 

micrometastases, 3) differentiating slides with micrometastases from normal slides while excluding macrometastases, 4) differentiating slides 

with primary tumor histotype of IDC from normal slides while excluding the rarer primary tumor histotypes (non-IDC), and 5) differentiating 
slides with non-IDC primary histotypes from normal slides while excluding slides with primary tumor histotype of IDC. 

Codename 
All cases 

Metastases Histotype 

Macrometastases Micrometastases IDC Non-IDC 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

Pathologist 1 0.612 1 0.954 1 0.333 1 0.647 1 0.533 1 

Pathologist 2 0.510 0.987 0.909 0.987 0.185 0.987 0.588 0.987 0.333 0.987 

Pathologist 3 0.632 1 0.954 1 0.370 1 0.735 1 0.4 1 

Pathologist 4 0.653 0.987 0.954 0.987 0.407 0.987 0.705 0.987 0.533 0.987 

Pathologist 5 0.755 0.987 1 0.987 0.555 0.987 0.764 0.987 0.733 0.987 

Pathologist 6 0.571 0.975 0.818 0.975 0.370 0.975 0.676 0.975 0.333 0.975 

Pathologist 7 0.469 0.975 0.863 0.975 0.148 0.975 0.529 0.975 0.333 0.975 

Pathologist 8 0.632 0.975 0.954 0.975 0.370 0.975 0.705 0.975 0.466 0.975 

Pathologist 9 0.571 0.987 0.909 0.987 0.296 0.987 0.617 0.987 0.466 0.987 

Pathologist 10 0.734 0.962 0.954 0.962 0.555 0.962 0.794 0.962 0.6 0.962 

Pathologist 11 0.775 1 0.954 1 0.629 1 0.850 1 0.6 1 

Mean  pathologist 0.628 0.985 0.929 0.985 0.383 0.985 0.692 0.985 0.484 0.985 

Pathologist WOTC 0.938 0.987 1 0.987 0.888 0.9875 0.970 0.987 0.866 0.987 
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eTable 2. Classification results by pathologists for the whole-slide image classification 

task (area under the ROC curve) 

eTable2. Classification results by the panel of 11 pathologists participating in the simulation exercise and the expert pathologist without time 

constraint (WOTC) on the CAMELYON16 test set for the whole-slide image classification task (task 2). The performances are measured in 129 
whole-slide images in the test set of which 49 contain metastatic regions (comprising of 22 macro and 27 micrometastases, and 38 with primary 

tumor histotype of infiltrating ductal cancer (IDC) and 11 non-IDC). We report classification AUC for different scenarios: 1) differentiating all 
tumor slides from normal slides, 2) differentiating slides with macrometastases from normal slides while excluding micrometastases, 3) 

differentiating slides with micrometastases from normal slides while excluding macrometastases, 4) differentiating slides with primary tumor 

histotype of IDC from normal slides while excluding the rarer primary tumor histotypes (non-IDC), and 5) differentiating slides with non-IDC 
primary histotypes from normal slides while excluding slides with primary tumor histotype of IDC. We used percentile bootstrapping to construct 

95% confidence interval. The results of the significance test for comparison of the performance of each pathologist for the detection of micro and 

macrometastases as well as for comparison of the performance for the detection of IDC and non-IDC metastases are presented (see the statistical 
analysis section). The p-values were adjusted for multiple comparisons using the Bonferroni correction. 

Codename All cases Metastases Histotype 

Macrometastases Micrometastases Comparis
on of 

detection 
performan

ce 

IDC Non-IDC Comparis
on of 

detection 
performa

nce 

AUC 95% CI AUC 95% CI AUC 95% CI A
U
C 

95% CI AUC 95% CI 

Pathologist 1 0.80
9 

0.732-0.876 0.97
6 

0.918-1.0 0.6
73 

0.577-0.777 p<0.001 0.
81
7 

0.729-0.899 0.791 0.665-0.916 p>0.99 

Pathologist 2 0.75
6 

0.679-0.82 0.94
8 

0.874-1.0 0.5
99 

0.510-0.672 p<0.001 0.
78
5 

0.696-0.858 0.689 0.569-0.831 p>0.99 

Pathologist 3 0.80
7 

0.738-0.876 0.97
6 

0.916-1.0 0.6
69 

0.562-0.757 p<0.001 0.
86
1 

0.779-0.937 0.685 0.566-0.825 p=0.34 

Pathologist 4 0.82
0 

0.744-0.885 0.97
6 

0.915-1.0 0.6
92 

0.590-0.787 p<0.001 0.
84
7 

0.762-0.922 0.758 0.623-0.891 p>0.99 

Pathologist 5 0.87
3 

0.802-0.926 1.0 1.0-1.0 0.7
69 

0.659-0.859 p=0.01 0.
87
8 

0.797-0.949 0.862 0.737-0.969 p>0.99 

Pathologist 6 0.78
6 

0.711-0.854 0.92
4 

0.838-0.993 0.6
74 

0.577-0.76 p=0.03 0.
84
4 

0.758-0.921 0.656 0.543-0.778 p=0.15 

Pathologist 7 0.73
8 

0.663-0.805 0.93
0 

0.843-1.0 0.5
82 

0.502-0.65 p<0.001 0.
77
3 

0.683-0.854 0.658 0.548-0.791 p>0.99 

Pathologist 8 0.79
6 

0.715-0.866 0.96
9 

0.904-1.0 0.6
54 

0.549-0.739 p<0.001 0.
83
5 

0.743-0.91 0.707 0.576-0.854 p>0.99 

Pathologist 9 0.77
9 

0.707-0.845 0.94
8 

0.869-1.0 0.6
42 

0.545-0.72 p<0.001 0.
80
3 

0.710-0.884 0.727 0.599-0.857 p>0.99 

Pathologist 10 0.86
2 

0.796-0.927 0.97
6 

0.917-1.0 0.7
69 

0.651-0.859 p=0.01 0.
89
3 

0.815-0.957 0.793 0.670-0.919 p>0.99 

Pathologist 11 0.88
4 

0.816-0.941 0.97
6 

0.917-1.0 0.8
08 

0.704-0.908 p=0.03 0.
92
4 

0.845-0.983 0.793 0.660-0.919 p=0.25 

Mean  
pathologist 

0.81
0 

0.750-0.869 0.96
4 

0.930-0.997 0.6
85 

0.619-0.746 — 0.
84
2 

0.775-0.907 0.738 0.630-0.846 — 

Pathologist 
WOTC 

0.96
6 

0.927-0.998 0.99
4 

0.977-1.0 0.9
43 

0.868-0.995 p=0.87 0.
97
6 

0.932-1.0 0.943 0.848-1.0 p>0.99 
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eTable 3. Participating teams in CAMELYON16 

eTable3. Teams participating in CAMELYON16. Each method is identified with a codename used in the text. See eMethods for details about 
each method. 

Codename Contributors Institutions Training Model 

HMS & MIT (I & II) Dayong Wang, Aditya Khosla, Rishab Gargeya, Humayun 
Irshad, Andrew H Beck 

Harvard Medical School and 
Massachusetts institute of Technology 

(Models I & II) 
22 layer GoogLeNet3 

HMS & MGH  
(I, II & III) 

Aoxiao Zhong, Quanzheng Li Harvard Medical School and 
Massachusetts General Hospital 

(Model I) 22 layer GoogLeNet3,  
(Model II) 101 ResNet4 
(Model III) 101 fully convolutional 
ResNet4 

ExB Christian Hass, Urko Sanchez, Ivan Vasilev, Tony Mey, 
and Elia Bruni 

ExB Research and Development GmbH 34 layer ResNet4 

CULab (I, II & III) Hao Chen, Huang-Jing Lin, Qi Dou, and Pheng-Ann Heng The Chinese Univ. of Hong Kong (Model I) VGG-166,  
(Model II) cascade of VGG-16

6
 and 

ResNet4-152 
(Model III) VGG-16

6
 

Quincy Wong Quincy Wong Independent participant 37 layer SegNet
8
 

METU Ugur HALICI, Mustafa Ümit ÖNER, and Rengül Çetin 
Atalay 

Middle East Technical Univ. 4 layer CNN 

NLP LOGIX Matt Berseth NLP LOGIX 7 layer AlexNet1 

Smart Imaging  
(I & II) 

Vitali Khvatkov, Alexei Vylegzhanin Smart Imaging Technologies Co. (Model I) SVM9 and Adaboost10, 
(Model II) Combination of model I 
and a 22 layer GoogLeNet3 

U of Toronto (I & II) Oren Kraus Univ. of Toronto (Models I & II) 
10 layer VGG-like6 network 

Warwick-QU Muhammad Shaban, Talha Qaiser, Ruqayya Awan, 
Korsuk Sirinukunwattana, Yee-Wah Tsang, and Nasir 
Rajpoot 

University of Warwick 15 layer U-Net7 

Radboudumc David Tellez Radboud Univ. Medical Center VGG-136 

HTW-Berlin Jonas Annuscheit, Peter Hufnagl HTW-BERLIN CRFasRNN11 

Tampere I Mira Valkonen, Kimmo Kartasalo, Kaisa Liimatainen, 
Leena Latonen, Pekka Ruusuvuori 

Univ. of Tampere Random Forests12 

Osaka University Seiryo Watanabe , Shigeto Seno, Yoichi Takenaka, Hideo 
Matsuda 

Osaka Univ. 22 layer GoogLeNet3 

USF Hady Ahmady Phoulady Univ. of South Florida Random Forests12 

NSS Nandakumar P, Sarath PC, Vishnu Prasad M, 
Yadukrishnan M, and Sreejith Valsan M 

NSS college of Engineering Multiple thresholds  

Tampere II Kaisa Liimatainen, Kimmo Kartasalo, Mira Valkonen, 
Leena Latonen, Pekka Ruusuvuori 

Univ. of Tampere 7 layer CNN 

CAMP-TUM (I & II) Bharti Munjal, Amil George, Shadi Albarqouni, Stefanie 
Demirci, Nassir Navab 

Technical Univ. of Munich (Model I) 5 layer Agg-Net13,  
(Model II) 22 layer GoogLeNet3 

Minsk Team Vassili Kovalev, Alexander Kalinovsky, and Vitali 
Liauchuk 

United Institute of Informatics 
Problems 

22 layer GoogLeNet3 

VISILAB (I & II) M. Milagro Fernandez-Carrobles, Ismael Serrano, Oscar 
Deniz, Gloria Bueno 

Univ. of Castilla-La Mancha (Model I) Random Forests12,  
(Model II) 3 layer CNN 

Anonymous Anonymous Anonymous Random Forests
12

 

LIB R. Venâncio, B. Ben Cheikh, A. Coron, and D. Racoceanu Sorbonne Univ. SVM
9
 

DeepCare Tong Xu DeepCare Inc. 22 layer GoogLeNet
3
 

 

  



© 2017 American Medical Association. All rights reserved. 

eTable 4. Summary of results for the metastasis identification task (task1) 

eTable4. Results of the submitted algorithms on the CAMELYON16 test set for the metastasis identification task. We report the overall FROC 
scores and the true positive fraction at several values for the mean number of false positives per whole-slide image (FPs/WSI). The final FROC 

true positive fraction score (FROC score) that ranked teams in the this task was defined as the mean true positive fraction at 6 predefined false 

positive rates: 1/4, 1/2, 1, 2, 4, and 8 FPs per whole-slide image. Note that the pathologist scoring without time constraint had an overall true 
positive fraction of 72.4% without any false positives.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Codename FROC score True positive fraction at the different false positive values 

 
 ⁄  FPs/WSI  

 ⁄  FPs/WSI 1  FPs/WSI 2  FPs/WSI 4  FPs/WSI 8  FPs/WSI 

HMS & MIT II 0.807 0.773 0.778 0.813 0.827 0.827 0.827 

HMS & MGH III 0.760 0.667 0.707 0.747 0.791 0.818 0.831 

HMS & MGH II 0.729 0.729 0.729 0.729 0.729 0.729 0.729 

CULab III 0.703 0.591 0.640 0.680 0.733 0.769 0.804 

HMS & MIT I 0.693 0.596 0.649 0.693 0.738 0.742 0.742 

HMS & MGH I 0.596 0.556 0.587 0.609 0.609 0.609 0.609 

RadboudUMC 0.575 0.493 0.524 0.569 0.600 0.631 0.631 

CULab I 0.544 0.404 0.471 0.493 0.582 0.631 0.684 

CULab II 0.527 0.440 0.476 0.524 0.560 0.582 0.582 

ExB 0.511 0.458 0.507 0.516 0.520 0.533 0.533 

METU 0.389 0.307 0.333 0.373 0.400 0.444 0.476 

NLP LOGIX 0.386 0.307 0.338 0.364 0.387 0.418 0.502 

U of Toronto I 0.382 0.244 0.293 0.351 0.409 0.467 0.529 

Quincy Wong 0.367 0.333 0.351 0.360 0.378 0.382 0.396 

U of Toronto II 0.352 0.222 0.262 0.324 0.391 0.436 0.476 

Osaka University 0.347 0.289 0.311 0.329 0.356 0.382 0.413 

Smart Imaging II 0.339 0.289 0.338 0.351 0.351 0.351 0.351 

Warwick-QU 0.305 0.262 0.307 0.316 0.316 0.316 0.316 

CAMP-TUM II 0.273 0.213 0.240 0.258 0.276 0.298 0.356 

Tampere I 0.257 0.178 0.196 0.227 0.267 0.311 0.364 

Tampere II 0.252 0.200 0.204 0.240 0.267 0.289 0.311 

DeepCare 0.243 0.000 0.000 0.364 0.364 0.364 0.364 

Minsk Team 0.227 0.178 0.196 0.227 0.253 0.253 0.253 

Smart Imaging I 0.208 0.160 0.169 0.191 0.222 0.240 0.267 

HTW-Berlin 0.187 0.187 0.187 0.187 0.187 0.187 0.187 

CAMP-TUM I 0.184 0.133 0.151 0.173 0.200 0.213 0.231 

USF 0.179 0.151 0.151 0.156 0.182 0.204 0.231 

NSS 0.165 0.160 0.160 0.164 0.169 0.169 0.169 

VISILAB I 0.142 0.062 0.084 0.093 0.142 0.227 0.244 

LIB 0.120 0.031 0.044 0.071 0.133 0.191 0.249 

VISILAB II 0.116 0.058 0.080 0.089 0.111 0.178 0.182 

Anonymous 0.097 0.031 0.058 0.071 0.098 0.142 0.182 
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eTable 5. Summary of results for the whole-slide image classification task (task2) 

eTable 5. Results of the submitted algorithms on the CAMELYON16 test set for the whole-slide image classification task. We report 
classification AUC for different scenarios: 1) differentiating all tumor slides from normal slides, 2) differentiating slides with macrometastases 

from normal slides while excluding micrometastases, 3) differentiating slides with micrometastases from normal slides while excluding 

macrometastases, 4) differentiating slides with primary tumor histotype of infiltrating ductal cancer (IDC) from normal slides while excluding the 
rarer primary tumor histotypes (non-IDC), and 5) differentiating slides with non-IDC primary histotypes from normal slides while excluding 

slides with primary tumor histotype of IDC. 
 

  

Codename All cases Macrometastases Micrometastases IDC Non-IDC 

AUC 95% CI AUC 95% CI AUC 95% CI AUC 95% CI AUC 95% CI 

HMS & MIT II 0.993
5 

0.983-
0.999 

0.99
05 

0.973-1.0 0.99
72 

0.989-1.0 0.99
26 

0.979-1.0 0.99
54 

0.983-1.0 

HMS & MGH 
III 

0.976
3 

0.941-
0.999 

1.0 1.0-1.0 0.95
69 

0.893 – 
0.999 

0.97
85 

0.928-1.0 0.97
12 

0.920-1.0 

HMS & MGH 
I 

0.964
3 

0.928-
0.989 

0.99
32 

0.983-1.0 0.94
07 

0.876-
0.987 

0.97
24 

0.946-
0.993 

0.94
58 

0.857-
0.997 

CULab III 0.940
3 

0.888-
0.980 

0.98
75 

0.961-1.0 0.90
19 

0.812-
0.962 

0.95
29 

0.909-
0.983 

0.91
17 

0.785-
0.991 

HMS & MIT I 0.923
4 

0.855-
0.977 

0.95
96 

0.862-1.0 0.89
39 

0.794-
0.971 

0.90
55 

0.807-
0.978 

0.96
42 

0.915-
0.996 

ExB 0.915
6 

0.858-
0.962 

0.99
48 

0.985-1.0 0.85
09 

0.749-
0.932 

0.92
76 

0.855-
0.981 

0.88
83 

0.777-
0.973 

CULab I 0.908
7 

0.851-
0.954 

0.99
66 

0.989-1.0 0.83
70 

0.742-
0.913 

0.92
90 

0.868-
0.974 

0.86
25 

0.750-
0.960 

HMS & MGH 
II 

0.908
2 

0.846-
0.961 

1.0 1.0-1.0 0.83
33 

0.738-
0.917 

0.91
18 

0.833-
0.968 

0.90 0.795-1.0 

CULab II 0.905
6 

0.841-
0.957 

0.99
26 

0.972-1.0 0.83
47 

0.722-
0.925 

0.93
11 

0.852-
0.983 

0.84
79 

0.720-
0.953 

DeepCare 0.883
3 

0.806-
0.943 

0.97
05 

0.903-1.0 0.81
23 

0.704-
0.895 

0.89
32 

0.808-
0.954 

0.86
08 

0.756-
0.973 

Quincy Wong 0.865
4 

0.789-
0.924 
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21 

0.952-1.0 0.77
03 

0.634-
0.874 
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88 

0.805-
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METU 0.864
2 
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97 

0.982-1.0 0.76
18 
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77 
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08 
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8 

0.742-
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38 
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8 
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18 
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51 
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58 
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0.258-
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eMethods. 

CAMELYON16 evaluation metrics.  

In the lesion-based evaluation, a lesion was deemed to be identified if the location of the identified region was 

within the annotated reference standard lesion. If there were multiple findings for a single reference standard region, 

only the detection with the highest likelihood was considered while the lower likelihood findings were not 

considered false positives. All detections that were not within a specific distance (75 µm) from the reference 

standard annotations were counted as false positives. 

In practice, there can be multiple small tumor regions that lie in the proximity of each other. Pathologists, however, 

consider all of these clusters as a single region. Therefore, it is important to consider them as a single lesion for the 

evaluation. We followed the guideline described by Cserni et al.
14

 for merging these regions. Regions that were two 

or five cells apart (~75µm) were considered as a single entity. Subsequently, we used the following steps to obtain 

the evaluation masks: (1) Applying distance transform on the inverse binary mask of reference standard, (2) 

Thresholding the distance transformed image (T=154), (3) Labeling the connected components in the binary image. 

The resulting evaluation mask was a labeled image in which different tumor regions received different unique labels. 

This evaluation mask was used for the computation of the FROC curve. 

Method descriptions. 

This section contains the descriptions of all methods that were submitted to the CAMELYON16 challenge, 

excluding two teams (Anonymous and NSS) that did not submit sufficient details to be included in this section (The 

scores and ranking of all teams including these two teams are provided in Table 2. For brevity and improved 

readability, each method is presented in a standardized and formatted fashion. All methods follow a similar 

workflow: 1) The whole-slide images are preprocessed, 2) A machine learning model for detection of tumor regions 

is trained, 3) The machine learning model is used to produce a tumor probability map for the slide and 4) The 

probability map is post-processed to produce tumor lesion locations and scores, and a score for the entire slide. This 

general workflow is reflected in the structure of the method description. The Introduction section highlights key 

aspects of the method. The Preprocessing section contains the description of the steps that were taken to separate 

the tissue regions in the slides from the non-relevant background and standardize the tissue appearance (e.g. by 

performing staining normalization). The Deep learning framework section, which is relevant only for methods that 
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use deep learning as the underlying methodology, contains details regarding the neural network architecture, data 

sampling policy and optimization procedure that was used to train the models. The methods that are based on 

conventional machine learning approaches have an analogous Classification framework section that describes the 

classification and feature extraction techniques that were used. The Metastasis identification task section describes 

the steps that were taken to compute the locations of the lesions in the whole-slide images along with corresponding 

probability scores. Finally, the Whole-slide image classification task section describes the steps that were taken to 

compute the probability score for the whole-slide image. 
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METHOD 1 

Team name: Minsk Team 

Authors: Vassili Kovalev, Alexander Kalinovsky, and Vitali Liauchuk 

Affiliation: Department of Biomedical Image Analysis, United Institute of Informatics Problems, Belarus National 

Academy of Sciences, Surganova St., 6, 220012 Minsk, Belarus 

Email: vassili.kovalev@gmail.com 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: two separate CNNs for 

different scanner types and two iterations of hard-negative mining. 

Preprocessing 

 Tissue detection: Color thresholding and morphological operations 

 Preprocessing magnification: Image level 7  pi el si e     .    .   m   

 Staining normalization: None, separate systems were trained for images from different labs 

Deep learning framework 

Architecture:  

 22-layer GoogLeNet
3
 

Patch sampling: 

 Patch size:         

 Level: 0  pi el si e    .    .    m   

 Number of training samples: 150,000 positive and 150,000 negative 

 Patch sampling strategy: Two iterations of hard-negative mining were performed. The training set was 

expanded with patches from regions of non-tumor tissue that the system was initially misclassifying as 

metastasis. 

 Data augmentation: None 

Parameters: 

 Optimization method: Stochastic gradient descent 

 Weight initialization: Random sampling from a uniform distribution 

 Batch size: 32 

 Batch normalization
15

: Yes 

 Regularization: 50% dropout
16

 in final layers 

 Learning rate: Initialized at 0.01 and decreased to 1.0e-5 with exponential decay 

 Activation function: ReLu
17

 

 Loss function: Cross-entropy 

 Number of training epochs/iterations: 280,000 iterations 

Metastasis identification task 

1. The probability map, generated at level 7, was thresholded at 0.99 and post-processed with morphological 

filtering. 

2. Connected components were extracted. 

3. Components smaller than 5 pixels were removed. 

4. The morphological skeletons of the remaining connected components were extracted. 
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5. The center of gravity of the component was calculated. 

6. The point on the skeleton closest to the center of gravity was selected as the lesion coordinate. 

7. The lesion score was calculated as: min 
region si e

  
,   . 

Whole-slide image classification task 

A histogram of the probability map was calculated. Subsequently, a logistic regression model was trained to map 

this histogram to a probability value for the entire image. 

Results 

This method achieved an FROC true positive fraction score of 0.227 for task 1 and an AUC of 0.689 (95% CI, 0.568 

- 0.804) for task 2. The method ranked 23
rd

 and 28
th

 in the first and the second leaderboards, respectively. 
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METHOD 2 

Team name: Radboudumc 

Authors: David Tellez 

Affiliation: Radboud University Medical Center Nijmegen, Geert Grootteplein-Zuid 10, 6525GA Nijmegen, The 

Netherlands 

Email: David.TellezMartin@radboudumc.nl 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: augmentation with 

Gaussian blurring and mapping of the tumor probability maps to slide level scores with a second-stage CNN model. 

Preprocessing 

 Tissue detection: Color thresholding 

 Preprocessing magnification: Image level 2  pi el si e    .    .    m   

 Staining normalization: None 

Deep learning framework 

Architecture:  

 15-layer VGG-like
6
 network 

Patch sampling: 

 Patch size:         

 Level: 2  pi el si e    .    .    m   

 Number of training samples: 150,000 positive and 150,000 negative 

 Patch sampling strategy: Patches were sampled uniformly from positive and negative regions. Normal 

patches were sampled from negative slides as well as non-metastatic regions in tumor slides. 

 Data augmentation: Rotation, vertical and horizontal mirroring and random Gaussian blurring 

Parameters: 

 Optimization method: ADAM
18

 

 Weight initialization: Xavier’s method
19

 

 Batch size: 16 

 Batch normalization
15

: Yes 

 Regularization: L2-regularization (1.0e-6) and 50% dropout
16

 

 Learning rate: Exponential learning rate decay when the validation accuracy plateaued for 2,000 iterations 

 Activation function: Leaky ReLu
20

 

 Loss function: Cross-entropy 

 Number of training epochs/iterations: 20,000 iterations 

Metastasis identification task 

1. The probability maps were eroded and subsequently thresholded. 

2. Connected components were extracted from the thresholded probability map. 

3. Multiple points were uniformly sampled per region as lesion detection points. 

4. The lesion probability was calculated as the mean probability of the pixels inside the connected component.  
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Whole-slide image classification task 

A separate CNN, with the same architecture as the one trained for localizing metastases, was trained taking as input 

the probability map at low resolution to directly predict whether the slide contains metastasis or not. 

Results 

This method achieved an FROC true positive fraction score of 0.575 for task 1 and an AUC of 0.779 (95% CI, 0.694 

- 0.860) for task 2. The method ranked 7
th

 and 17
th

 in the first and the second leaderboards, respectively. 
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METHOD 3 & 4 

Team name: HMS & MIT (I & II) 

Authors: Dayong Wang, Aditya Khosla, Rishab Gargeya, Humayun Irshad, and Andrew Beck 

Affiliation: Harvard Medical School (BIDMC) and Massachusetts Institute of Technology (CSAIL), USA 

Email: dwang5@bidmc.harvard.edu 

Introduction 

Two methods were submitted. Both methods are based on deep convolutional neural networks (CNNs). Key aspects 

include: feature-based post-processing to compute lesion and slide scores and a separately trained model with hard-

negative samples. The main difference between the first and second methods are the use of a whole-slide image stain 

standardization algorithm
21

 and more comprehensive data augmentation strategy in the second method. 

Preprocessing 

 Tissue detection: Conversion to the HSV color space
22

 and subsequent Otsu thresholding
23

 for each 

channel. Final tissue mask is achieved by combining the individual channel masks. 

 Preprocessing magnification: Image level 5  pi el si e    .   .   m   

 (Method I) Staining normalization: None 

 (Method II) Staining normalization: Whole-slide image color standardizer (WSICS)
21

 

Deep learning framework 

Architecture:  

 22-layer GoogLeNet
3
 

Patch sampling: 

 Patch size:         

 Level: 0  pi el si e    .    .    m   

 Number of training samples: Two million for each class 

 Patch sampling strategy: Patches were sampled uniformly from positive and negative regions. Hard-

negative mining was performed after initial classification to augment the training set. 

 (Method I) Data augmentation: Rotation, random cropping 

 (Method II) Data augmentation: Rotation, random cropping and addition of color noise 

Parameters: 

 Optimization method: Stochastic gradient descent 

 Weight initialization: Random sampling from a Gaussian distribution 

 Batch size: 32 

 Batch normalization
15

: No 

 Regularization: L2-regularization (0.0005) and 50% dropout
16

 

 Learning rate: 0.01, multiplied by 0.5 every 50,000 iterations 

 Activation function: ReLu
17

 

 Loss function: Cross-entropy 

 Number of training epochs/iterations: 300,000 iterations 

Metastasis identification task 

1. Obtain probability maps from the initial model (the model without hard-negative mining) and the model 

with hard-negative mining. 



© 2017 American Medical Association. All rights reserved. 

2. Threshold the probability map of the initial model at 0.9. 

3. Extract connected components. 

4. Take the center point of each connected component as the lesion location. 

5. The lesion probability score is calculated as the sum the values in that region in both probability maps. 

6. (Method II only) Each lesion score is additionally weighted by the slide-based score (obtained from the 

whole-slide image classification task). 

Whole-slide image classification task 

A set of global and local features were calculated for the entire slide. The global features are: 

- The ratio between the area of metastatic regions and the tissue area 

- The sum of all cancer metastases probabilities detected in the metastasis identification task, divided by the 

tissue area 

These global features were calculated at 5 different thresholds (0.5, 0.6, 0.7, 0.8 and 0.9) resulting in 10 global 

features. 

Local features were calculated based on the two largest metastatic candidate regions at a threshold of 0.5. In total 9 

features per region were calculated resulting in a total of 18 features. The local features are: 

- Area: The area of connected region 

- Eccentricity: The eccentricity of the ellipse that has the same second-moments as the region 

- Extend: The ratio of region area over the total bounding box area 

- Bounding box area 

- Major axis length: The length of the major axis of the ellipse that has the same normalized second central 

moments as the region 

- Max/mean/min intensity: The maximum/mean/minimum probability value in the region 

- Aspect ratio of the bounding box 

- Solidity: Ratio of region area over the surrounding convex area 

Using the 28-length feature vectors a random forest classifier
12

 was trained to assign the slide level score. 

Results 

The first method (HMS & MIT I) achieved an FROC true positive fraction score of 0.693 for task 1 and an AUC of 

0.923 (95% CI, 0.855 - 0.977) for task 2. This method ranked 5
th

 on both leaderboards. The second method (HMS & 

MIT II) achieved an FROC true positive fraction score of 0.807 for task 1 and an AUC of 0.993 (95% CI, 0.983 - 

0.999) for task 2. This method ranked 1st on both leaderboards. 
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METHOD 5 

Team name: ExB 

Authors: Christian Hass, Elia Bruni 

Affiliation: ExB Research and Development 

Email: bruni@exb.de 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: use of the ResNet
4
 

architecture and varying class balance during training. 

Preprocessing 

 Tissue detection: The image was divided into 5 5 tiles. For each tile, if the mean color difference between 

different RGB channels was lower than a threshold, the tile was considered as background. 

 Preprocessing magnification: Image level 6  pi el si e     .    .   m   

 Staining normalization: None 

Deep learning framework 

Architecture:  

 34-layer ResNet
4
 

Patch sampling: 

 Patch size:         

 Level: 0  pi el si e    .    .    m   

 Number of training samples: 1.6 million 

 Patch sampling strategy: Training was started with a balanced sampling between the positive and negative 

class. As the training proceeded the distribution of positive/negative samples was slowly changed to match 

the original distribution in the images. 

 Data augmentation: Rotation and mirroring 

Parameters: 

 Optimization method: Stochastic gradient descent 

 Weight initialization: MSRA initialization
24

 

 Batch size: 16 

 Batch normalization
15

: Yes 

 Regularization: L2 regularization (0.0001) 

 Learning rate: Initial learning rate of 0.01, which was reduced to 0.001 after 40,000 iterations, and to 

0.0001 after 60,000 iterations 

 Activation function: ReLu
17

 

 Loss function: Cross-entropy 

 Number of training epochs/iterations: 100,000 iterations 

Metastasis identification task 

1. Threshold the probability map at level 0 and remove small positive areas (< 834 pixels at a threshold of 

0.4) from the probability map 

2. Perform regional non-maxima suppression 

3. Extract the center of gravity of the remaining regions 
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4. The lesion score for each region is computed as the maximum probability within the region 

Whole-slide image classification task 

The slide score was computed as the maximum score within the slide. 

Results 

This method achieved an FROC true positive fraction score of 0.511 for task 1 and an AUC of 0.916 (95% CI, 0.858 

- 0.962) for task 2. The method ranked 10
th

 and 6
th

 in the first and the second leaderboards, respectively. 
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METHOD 6 

Team name: HTW-Berlin 

Authors: Jonas Annuscheit, Peter Hufnagl 

Affiliation: HTW Berlin, Berlin, Germany 

Email: Jonas.Annuscheit@student.htw-berlin.de 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: use of a conditional 

random field as recurrent neural network
11

 on top of a fully convolutional network
25

 and the use of a pre-trained 

network for initialization of weights. 

Preprocessing 

 Tissue detection: The difference between the red and green channels from the RGB color space was 

thresholded to identify tissue regions. 

 Preprocessing magnification: Image level 4  pi el si e    .   .   m   

 Staining normalization: None 

Deep learning framework 

Architecture:  

 CRFasRNN
11

 

Patch sampling: 

 Patch size:         

 Level: 4  pi el si e    .   .   m   

 Number of training samples: 400,000 

 Patch sampling strategy: All patches were uniformly sampled from positive slides. 

 Data augmentation: Rotation and mirroring 

Parameters: 

 Optimization method: Stochastic gradient descent 

 Weight initialization: Pre-trained model trained on the Pascal VOC12 dataset
26

 

 Batch size: 1 

 Batch normalization
15

: Yes 

 Regularization: 50% dropout
16

 

 Learning rate: Fine-tuning using a learning rate of 6.0e
-13

 

 Activation function: ReLu
17

 

 Loss function: Cross-entropy 

 Number of training epochs/iterations: 3 epochs 

Metastasis identification task 

1. The probability map was thresholded 

2. The center of gravity of each region was considered as the lesion location and the probability value at that 

location was taken as the lesion score. 

3. For low probability regions the surrounding area was scanned and the highest probability was assigned as 

likelihood for that region to be a metastasis. 
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Whole-slide image classification task 

The slide score was computed as the maximum lesion score within the slide. 

Results 

This method achieved an FROC true positive fraction score of 0.187 for task 1 and an AUC of 0.768 (95% CI, 0.665 

- 0.853) for task 2. The method ranked 25
th

 and 18
th

 in the first and the second leaderboards, respectively. 
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METHOD 7 

Team name: NLP LOGIX 

Authors: Matt Berseth 

Affiliation: NLP LOGIX, LLC. 

Email: matt.berseth@nlplogix.com 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: use of ADAM 

optimization
18

, computation of lesion and slide scores with second-stage random forest classifiers
12

 and use of 

GrabCut
27

 and watershed transform
28

 for lesion segmentation. 

Preprocessing 

 Tissue detection: The image was divided into non-overlapping 256 256 tiles. Patches that had fewer than 

500 unique colors or where the most frequently occurring RGB color code made up more than 90% of the 

patches pixels were considered background. 

 Preprocessing magnification: Image level 0  pi el si e    .    .    m   

 Staining normalization: None 

Deep learning framework 

Architecture:  

 7-layer AlexNet
1
 

Patch sampling: 

 Patch size:          

 Level: 0  pi el si e    .    .    m   

 Number of training samples: 250,000 

 Patch sampling strategy: 15% positive patches, 85% negative patches 

 Data augmentation: Rotation and mirroring 

Parameters: 

 Optimization method: ADAM
18

 

 Weight initialization: Random sampling from a truncated normal distribution 

 Batch size: 50 

 Batch normalization
15

: Yes 

 Regularization: 50% dropout
16

 

 Learning rate: 0.0001 

 Activation function: ReLu
17

 

 Loss function: Cross-entropy 

 Number of training epochs/iterations: 50,000 iterations (the training was stopped when the validation loss 

stopped decreasing) 

Metastasis identification task 

1. Probability map was segmented with GrabCut
27

 and watershed segmentation
28

. 

2. The center of gravity of each region was considered as the location of the lesion candidate. 

3. Summary statistics on cluster size and probability distribution were fed to a random forest classifier
12

 to 

determine the lesion score. 
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Whole-slide image classification task 

Summary metrics from all lesion candidate clusters were calculated and fed to another random forest classifier
12

 to 

determine the slide score. 

Results 

This method achieved an FROC true positive fraction score of 0.386 for task 1 and an AUC of 0.830 (95% CI, 0.742 

- 0.899) for task 2. The method ranked 12
th

 and 13
th

 in the first and the second leaderboards, respectively. 
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METHOD 8 

Team name: Quincy Wong 

Authors: Quincy Wong 

Affiliation: Independent participant 

Email: qwong77@yahoo.ca 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: use of SegNet
8
 

architecture (encoder-decoder network) pre-trained with weights from VGG-16
6
 and good results with only very 

limited additional training data. 

Preprocessing 

 Tissue detection: Tiles containing tissue were selected based on overall intensity value. If the value was too 

high the tile was considered background. 

 Preprocessing magnification: Image level 1  pi el si e    .    .    m   

 Staining normalization: None 

Deep learning framework 

Architecture:  

 37-layer SegNet
8
 (encoder-decoder network) 

Patch sampling: 

 Patch size:         

 Level: 1  pi el si e    .    .    m   

 Number of training samples: Less than 1000 per class 

 Patch sampling strategy: Roughly balanced sampling, manual addition of visually interesting patches 

 Data augmentation: Mirroring of only manually selected visually interesting regions 

Parameters: 

 Optimization method: Stochastic gradient descent 

 Weight initialization: Pre-trained weights of VGG-16
6
 

 Batch size: 2 

 Batch normalization
15

: Yes 

 Regularization: 50% drop out
16

 on selected deeper/middle layers 

 Learning rate: 0.001 

 Activation function: ReLu
17

 

 Loss function: Cross-entropy 

 Number of training epochs/iterations: 50,000 epochs 

 

Metastasis identification task 

1. Candidate lesions were determined by thresholding of the probability map (threshold value of 0.98) and 

morphologic operations. 

2. The regions were downsampled to the resolution of level 4  pi el si e    .   .   m  . 



© 2017 American Medical Association. All rights reserved. 

3. Centroids of remaining regions were calculated. Lesions with an area below 50 pixels received a 

probability penalty of 0.15 for each 4 pixels below 50. Larger centroids were given a bonus but never 

exceeded 1.0. 

Whole-slide image classification task 

The slide score were computed as the maximum lesion score within the slide. 

Results 

This method achieved an FROC true positive fraction score of 0.367 for task 1 and an AUC of 0.865 (95% CI, 0.789 

- 0.924) for task 2. The method ranked 14
th

 and 11
th

 in the first and the second leaderboards, respectively. 
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METHOD 9 

Team name: Osaka University 

Authors: Seiryo Watanabe , Shigeto Seno, Yoichi Takenaka, Hideo Matsuda 

Affiliation: Department of biomedical engineering, Osaka University, Japan 

Email: s-wtnb@ist.osaka-u.ac.jp 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: use of the GoogLeNet
3
 

architecture and use of an averaging filter in the post-processing stage. 

Preprocessing 

 Tissue detection: 300 300 tiles were extracted from the image and saved to disk. If the file size (JPEG 

compressed) was smaller than 18KB the tile was considered background and removed. For the remaining 

tiles, a threshold of 200 was used on the green and blue color channels to identify background pixels. 

 Preprocessing magnification: Image level 0  pi el si e    .    .    m   

 Staining normalization: None 

Deep learning framework 

Architecture:  

 22-layer GoogLeNet
3
 

Patch sampling: 

 Patch size:         

 Level: 0  pi el si e    .    .    m   

 Number of training samples: One million 

 Patch sampling strategy: Balanced sampling from all training slides 

 Data augmentation: None 

Parameters: 

 Optimization method: Stochastic gradient descent 

 Weight initialization: Random sampling from a Gaussian distribution 

 Batch size: 24 

 Batch normalization
15

: No 

 Regularization: None 

 Learning rate: 0.01 

 Activation function: ReLu
17

 

 Loss function: Cross-entropy 

 Number of training epochs/iterations: 10 million iterations 

Metastasis identification task 

1. Probability maps were generated by first dividing the image at level 0 into non-overlapping patches of size 

300 300 and classifying each patch.  

2. Pixels in the probability map with a value lower than 0.1 were suppressed. 

3. The probability maps were filtered with a local 3 3 averaging filter. 

4. The resulting probability map was thresholded (threshold value of 0.5) and the center points of the resulting 

regions were considered candidate lesions. 
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5. The lesion scores were computed as the maximum probability value within the regions. 

Whole-slide image classification task 

The slide score was computed as the maximum lesion score within the slide. 

Results 

This method achieved an FROC true positive fraction score of 0.347 for task 1 and an AUC of 0.732 (95% CI, 0.629 

- 0.824) for task 2. The method ranked 16
th

 and 23
rd

 in the first and the second leaderboards, respectively. 
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METHOD 10 

Team name: METU 

Authors: Ugur Halici, Mustafa Ümit Öner 

Affiliation: Departments of Electrical and Electronics Engineering, GSNAS Neuroscience and Neurotechnology, 

and Graduate School of Informatics, Middle East Technical University, Turkey 

Email: halici@metu.edu.tr 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: use of a custom CNN 

architecture with relatively few layers yet good performance, and custom confidence filtering for post-processing. 

Preprocessing 

 Tissue detection: Otsu thresholding  

 Preprocessing magnification: Image level 7  pi el si e     .    .   m   

 Staining normalization: None 

Deep learning framework 

Architecture:  

 Custom CNN – 2 convolutional layers and 2 fully connected layers 

Patch sampling: 

 Patch size:       

 Level: 2  pi el si e    .    .    m   

 Number of training samples: 240,000 samples per class 

 Patch sampling strategy: Negative samples were sampled only from negative slides 

 Data augmentation: 48 48 random cropping from 64 64 patches 

Parameters: 

 Optimization method: Stochastic gradient descent  

 Weight initialization: Xavier’s method
19

 

 Batch size: 128 

 Batch normalization
15

: No 

 Regularization: L2 regularization (0.0018) 

 Learning rate: Initial learning rate was set to 0.1 and updated at 750,000 iterations to 0.01 

 Activation function: ReLu
17

 

 Loss function: Cross-entropy 

 Number of training epochs/iterations: 1.125 million iterations 

 

Metastasis identification task 

1. The probability map was filtered with Gaussian filters and thresholded. 

2. Connected components were extracted. Each connected component was considered a candidate region. 

3. For each candidate lesion, the point farthest to the boundaries among points that have probability values in 

the interval of  ma (  - . ,ma (    was selected as representative. 

4. The probability value at the representative location was taken as the lesion score. 
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Whole-slide image classification task 

The slide score was computed as the maximum lesion score within the slide. 

Results 

This method achieved an FROC true positive fraction score of 0.389 for task 1 and an AUC of 0.864 (95% CI, 0.786 

- 0.927) for task 2. The method ranked 11
th

 and 12
th

 in the first and the second leaderboards, respectively. 
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METHOD 11 

Team name: Warwick-QU 

Authors: Muhammad Shaban
1
, Talha Qaiser

2
, Ruqayya Awan

1
, Korsuk Sirinukunwattana

2
, Yee-Wah Tsang

2
, and 

Nasir Rajpoot
2
 

Affiliation: 
1
Department of Computer Science and Engineering, College of Engineering, Qatar University 

2
Department of Computer Science, University of Warwick, England 

Email: muhammad.shaban@qu.edu.qa 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: use of a CNN model in 

the preprocessing stage to segment the tissue regions and use of a U-NET-like
7
 architecture for lesion segmentation. 

Preprocessing 

 Tissue detection: Fully convolutional CNN 

 Preprocessing magnification: Image level 2  pi el si e    .    .    m   

 Staining normalization: Reinhard staining normalization
29

 

Deep learning framework 

Architecture:  

 15-layer U-NET
7
 

Patch sampling: 

 Patch size: 428 428 

 Level: 2  pi el si e    .    .    m   

 Number of training samples: 8,000 positive and 12,000 negative 

 Patch sampling strategy: Positive patches were extracted from all metastasis annotations. Negative patches 

were extracted with random sampling. Spectral clustering was applied to find visually distinct patches for 

training for both classes. 

 Data augmentation: None 

Parameters: 

 Optimization method: Adadelta
30

 

 Weight initialization: Random initialization 

 Batch size: 10 

 Batch normalization
15

: No 

 Regularization: 50% dropout
16

 

 Learning rate: initially set to 0.001 

 Activation function: ReLu
17

 

 Loss function: Cross-entropy 

 Number of training epochs/iterations: 120,000 iterations 

Metastasis identification task 

1. Two binary lesion masks were computed using two different thresholds. 

2. Lesion regions with an area ratio of less than 0.2 (computed as the area ratio of the same lesion in the two 

thresholded masks) were removed from further consideration. 

3. The lesion centroid was extracted as the lesion location. 
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4. The lesion score was extracted as the minimum probability within the lesion weighted by its area. 

Whole-slide image classification task 

The probability of the largest tumor region was used as slide probability score. 

Results 

This method achieved an FROC true positive fraction score of 0.305 for task 1 and an AUC of 0.796 (95% CI, 0.711 

- 0.871) for task 2. The method ranked 18
th

 and 16
th

 in the first and the second leaderboards, respectively. 
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METHOD 12 & 13 

Team name: CAMP-TUM (I & II) 

Authors: Bharti Munjal, Amil George, Shadi Albarqouni, Stefanie Demirci, Nassir Navab 

Affiliation: Technische Universitat Munchen, Computer Aided Medical Procedure (CAMP), Munich, Germany 

Email: shadi.albarqouni@tum.de 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Two submissions were made based on two 

different network architectures. Key aspects of the method with better performance include: use of the GoogLeNet
3
 

architecture, hard-negative mining and postprocessing with a random forest classifier
12

 trained with region-level 

features. 

Preprocessing 

 Tissue detection: Otsu thresholding
23

 

 Preprocessing magnification: Image level 3  pi el si e    .    .    m   

 Staining normalization: None 

Deep learning framework 

Architecture:  

 Method (I): 5-layer AggNet
13

 (multi-scale network)  

 Method (II): 22-layer GoogLeNet
3
 

Patch sampling: 

 Patch size: Patches of size       (method I) and         (method II) were extracted from level 3 

 pi el si e    .    .    m   and level 6  pi el si e     .    .   m  , respectively. 

 Number of training samples: 2 million patches for method I and 240,000 patches for method II. 

 Patch sampling strategy: Initially a CNN model was trained with uniformly sampled patches from level 6. 

Subsequently, a new CNN model was trained with patches sampled from level 3 including false positives 

of the first model. Normal patches were sampled from both positive and negative slides.  

 Data augmentation: Rotation and flipping. 

Parameters: 

 Optimization method: Adaptive gradient descent (AdaGrad)
31

 

 Weight initialization: Xavier’s method
19

 

 Batch size: 32 

 Regularization: 50% dropout
16

 

 Learning rate: 0.0001 

 Activation function: ReLu
17

 

 Loss function: Cross-entropy 

 Number of training epochs/iterations: 1.1 million iterations 

Metastasis identification task 

For each slide, a probability map was produced using the CNN model trained with patches from level 3. Candidate 

metastatic regions were detected by smoothing the probability maps with a Gaussian filter and thresholding with a 

threshold value optimized on a validation set. For method II, further postprocessing was performed. For each 

candidate in the resulting probability map, the area, orientation, major/minor axis length ratio, and probability map 
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statistics (max, min, and mean) were extracted. The final probability score for each candidate was produced with a 

random forest classifier
12

 trained with these features.  

Whole-slide image classification task  

For each slide, a probability score was produced by averaging the probability values of the top three candidate 

metastases. 

Results 

The first method (CAMP-TUM I) achieved an FROC true positive fraction score of 0.184 for task 1 and an AUC of 

0.691 (95% CI, 0.580 - 0.787) for task 2. This method ranked 26
th

 and 27
th

 on the first and second leaderboards, 

respectively. The second method (CAMP-TUM II) achieved an FROC true positive fraction score of 0.273 for task 1 

and an AUC of 0.737 (95% CI, 0.633 - 0.819) for task 2. This method ranked 19
th

 and 22
nd

 on the first and second 

leaderboards, respectively.  
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METHOD 14 

Team name: TAMPERE II 

Authors: Kaisa Liimatainen, Kimmo Kartasalo, Mira Valkonen, Leena Latonen, Pekka Ruusuvuori 

Affiliation: BioMediTech, University of Tampere, Finland 

Email:  kaisa.liimatainen@tut.fi 

Introduction 

This method is based on deep convolutional neural networks (CNNs). A key aspect of this method is the use of a 

VGG-like
6
 CNN model. 

Preprocessing 

 Tissue detection: Otsu thresholding
23

 applied to the S component of the HSV color space
22

 and 

morphological operations to remove spurious regions. 

 Preprocessing magnification: Image level 5  pi el si e    .   .   m   

 Staining normalization: None 

Deep learning framework 

Architecture:  

 7-layer VGG-like
6
 architecture with five convolutional and two fully connected layers 

Patch sampling: 

 Patch size:        

 Level: 5  pi el si e    .   .   m   

 Number of training samples: 32,000 from both classes 

 Patch sampling strategy: Normal patches were uniformly sampled from both negative and positive slides. 

 Data augmentation: Translation and flipping 

Parameters: 

 Optimization method: Stochastic gradient descent with momentum
32

 

 Weight initialization: Random sampling from a uniform distribution  

 Batch size: 16 

 Regularization: None 

 Learning rate: Initial learning rate of 0.01 with momentum of 0.9 

 Activation function: ReLu
17

 

 Loss function: Cross-entropy 

 Number of training epochs/iterations: 20,000 iterations 
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Metastasis identification task 

For each slide, a probability map at image level 6 was produced with the trained CNN model. Candidate metastatic 

regions were detected by max-filtering of the probability map with 3 3 kernel, thresholding, and removal of small 

connected components. The remaining connected components in the thresholded probability map were considered 

candidate regions with probability scores equal to the maximum probability value within the region. 

Whole-slide image classification task  

The slide score was computed as the maximum lesion score within the slide. 

Results 

This method achieved an FROC true positive fraction score of 0.252 for task 1 and an AUC of 0.713 (95% CI, 0.612 

- 0.801) for task 2. The method ranked 21
st
 and 26

th
 in the first and the second leaderboards, respectively. 
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METHOD 15 & 16 

Team name: VISILAB (I & II) 

Authors: M. Milagro Fernandez-Carrobles, Ismael Serrano, Oscar Deniz, Gloria Bueno 

Affiliation: VISILAB, E.T.S.I.I, University of Castilla-La Mancha, Ciudad Real, Spain 

Email: Gloria.Bueno@uclm.es 

Introduction 

This method is based on a random forest classifier
12

 using texture features. The authors performed a comparative 

analysis with a CNN-based method (method II). 

Preprocessing 

 Tissue detection: Color thresholding 

 Preprocessing magnification: Level 6  pi el si e     .     .    m   

 Staining normalization: None 

Classification framework: 

Classifier:  

 Method I: Random forest classifiers
12

 with 50 decision trees 

 Method II: 3-layer CNN with two convolutional layers 

Features for metastasis identification (method I): 

 Haralick texture features
33

 

Features for whole-slide image classification (method I): 

 Morphometric features: Area, convex area, convex hull, Euler number, extent, fill area, major axis length, 

minor axis length, perimeter, solidity. 

 Geometric features: Bounding box, centroid, eccentricity, equivalent diameter, orientation, extrema. 

Patch sampling: 

 Patch size: For method I, patches of size 400 400 from level 0 were extracted. These patches were 

resampled to a size of 40 40 for the CNN used in method II. 

 Number of training samples: 90,000 positive samples and 8.5 million negative samples 

 Patch sampling strategy: Uniform sampling. Normal patches were sampled from both negative and positive 

slides. 

Parameters (method II): 

 Optimization method: Stochastic gradient descent with momentum
32

 

 Weight initialization: Xavier’s method
19

 

 Batch size: 64 

 Regularization: L2 regularization (0.0005) 

 Learning rate: 0.0005 with momentum 0.9 

 Activation function: ReLu
17

 

 Loss function: Cross-entropy 

 Number of training epochs/iterations: 480 iterations 
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Metastasis identification task 

For method I, for each slide, all non-overlapping regions of size 400 400 from level 0 were classified as metastasis 

or non-metastasis using the random forest classifier and Haralick texture features. For method II, the probability 

maps were generated using the trained CNN. In both methods, the resulting probability map was thresholded with a 

threshold value of 0.7, and post-processed with morphological operators to connect neighboring regions using a 

dilation operation with a disk-shaped structuring element with radius 10. 

Whole-slide image classification task  

For each region, several morphometric and geometric features (in the probability map) were extracted such as: area, 

bounding box, centroid, convex area, convex hull, eccentricity, equivalent diameter, Euler number, extent, filled 

area, major axis length, minor axis length, orientation, perimeter, extrema and solidity (features from the MATLAB 

regionprops function). Subsequently, for each slide, these region-based features were summarized by calculating the 

mean, standard deviation, sum, minimum, maximum, median, mode, variance, covariance, kurtosis and skewness of 

each feature. Finally an SVM classifier was used to compute a score for each slide. 

Results 

The first method (VISILAB I) achieved an FROC true positive fraction score of 0.142 for task 1 and an AUC of 

0.653 (95% CI, 0.551 - 0.748) for task 2. This method ranked 29
th

 on both leaderboards. The second method 

(VISILAB II) achieved an FROC true positive fraction score of 0.116 for task 1 and an AUC of 0.651 (95% CI, 

0.549 - 0.742) for task 2. This method ranked 31
st
 and 30

th
 on the first and second leaderboards, respectively. 
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METHOD 17 & 18 

Team name: U of Toronto (I & II) 

Authors: Oren Kraus 

Affiliation: University of Toronto, Electrical and Computer Engineering, Canada 

Email: oren.kraus@mail.utoronto.ca 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: use of multiple CNN 

models trained at different magnification levels and use of learned deconvolutional layers for upsampling. Two 

different approaches for merging the results from multiple CNNs were investigated, which resulted in two 

submissions. 

Preprocessing 

 Tissue detection: Otsu thresholding
23

 

 Preprocessing magnification: Image level 5  pi el si e    .   .   m   

 Staining normalization: None 

Deep learning framework 

Architecture:  

 10-layer VGG-like
6
 fully convolutional neural network

25
 

Patch sampling 

 Patch size: 300 300 tiles from levels 2  pi el si e    .    .    m  , 3  pi el si e    .   .   m  , 4 

(pi el si e    .   .   m   and 5  pi el si e    .   .   m  . 

 Number of training samples: 18,432 

 Patch sampling strategy: For positive slides, one third of the patches were sampled from positive regions, 

one third from metastasis border regions, and one third from negative regions. The number of patches 

sampled from each slide was proportional to the tissue area. 

 Data augmentation: Rotation, translation, and flipping 

Parameters: 

 Optimization method: Adam
18

 

 Weight initialization: Xavier’s method
19

 

 Batch size: 16 

 Regularization: 50% dropout
16

 

 Learning rate: 0.0003 

 Activation function: ReLu
17

 

 Loss function: Cross-entropy 

 Number of training epochs/iterations: 3.6 million iterations 

Metastasis identification task 

Two different approaches were used for computing probability maps. The first method took the mean across 

different scales as the final probability map. In the second method, the outputs of the CNNs trained at different 

magnification were used as inputs to another CNN model that produced a merged probability map. The final 

probability map was thresholded and postprocessed with morphological operators to identify positive regions. The 

probability score of each region was defined as the maximum value of the probability map within the region. 
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Whole-slide image classification task  

The probability score for each whole-slide image was produced with a logistic regression classifier trained with 

features describing the detected metastatic regions: mean, min., max. probability score and size features. 

Results 

The first method (U of Toronto I) achieved an FROC true positive fraction score of 0.352 for task 1 and an AUC of 

0.815 (95% CI, 0. 0.722 - 0.886) for task 2. This method ranked 15
th

 on both leaderboards. The second method (U of 

Toronto II) achieved an FROC true positive fraction score of 0.382 for task 1 and an AUC of 0.762 (95% CI, 0.659 - 

0.846) for task 2. This method ranked 13
th

 and 19
th

 on the first and second leaderboards, respectively. 
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METHOD 19 

Team name: USF 

Authors: Hady Ahmady Phoulady 

Affiliation: University of South Florida, Tampa, USA 

Email: parham.ap@gmail.com 

Introduction 

This method is based on a random forest classifier
12

 using color and texture features. A key aspect of this method is 

the use of a lymphocyte probability map in the preprocessing step to exclude non-tumor regions. 

Preprocessing 

 Tissue detection: Thresholding of a lymphocyte probability map using a hierarchical multilevel 

thresholding method
34

 to exclude non-tumor regions 

 Preprocessing magnification: Level 4 (pi el si e    .   .   m   

 Staining normalization: None 

Classification framework: 

Classifier:  

 Random forest classifier
12

 

Features: 

 Grayscale intensity histogram  

 Gray-level concurrence features
33

 

 Local binary patterns
35

 

Patch sampling: 

 Patch size: 101 101  

 Level: 1 (pi el si e    .     .    m   

 Number of training samples: 500,000 positive samples and one million negative samples 

 Patch sampling strategy: Patches were sampled with higher frequency in metastatic regions. Normal 

patches were sampled from both negative and positive slides. 

Metastasis identification task 

The random forest classifier was used to produce a probability map that was post-processed with Gaussian filtering 

and thresholded to obtain metastatic regions. Each region was assigned a probability score equal to the mean of the 

probability of the region.  

Whole-slide image classification task  

The probability score for each whole-slide image was computed as the weighted arithmetic mean (with weights 3 

and 1) of the two metastatic regions with the highest probability scores. 

Results 

This method achieved an FROC true positive fraction score of 0.179 for task 1 and an AUC of 0.727 (95% CI, 0.611 

- 0.823) for task 2. The method ranked 27
th

 and 24
th

 in the first and the second leaderboards, respectively. 
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METHOD 20 

Team name: TAMPERE I 

Authors: Mira Valkonen, Kimmo Kartasalo, Kaisa Liimatainen, Leena Latonen, Pekka Ruusuvuori 

Affiliation: BioMediTech, University of Tampere, Finland 

Email: valkonen.mira@gmail.com; 

Introduction 

This method is based on a random forest classifier
12

 using texture features. A key aspect of this method is the use of 

nuclei density features. 

Preprocessing 

 Tissue detection: Otsu thresholding
23

 applied to the S component from the HSV color space
22

 and 

morphological operations to remove spurious regions. 

 Preprocessing magnification: Image level 5  pi el si e    .   .   m   

 Staining normalization: Histogram matching 

Classification framework: 

Classifier:  

 Random forest classifier
12

 with 50 classification trees 

Features: 

 Gray-level concurrence features
33

 

 SIFT descriptors
36

  

 Local binary patterns
35

 

 Histogram of oriented gradients (HOG)
37

 

 The independent elements of the co-variance matrix of the ellipses fitted to the extracted maximally stable 

extremal regions (MSER)
38

 and number of MSER regions. 

 All texture features were extracted from both the hematoxylin and eosin channels obtained with color 

deconvolution
39

. 

 Nuclei density descriptors (mean inter-nuclei distance and number of nuclei) from watershed-based nuclei 

segmentation.  

Patch sampling: 

 Patch size: 200 200  

 Level: 5  pi el si e    .   .   m   

 Number of training samples: 200,000 positive samples and 200,000 negative samples  

 Patch sampling strategy: Normal patches were randomly sampled from both negative and positive slides, 

including metastatic region borders. 

 

Metastasis identification task 

For each slide, a probability map was produced with the trained random forest classifier. Candidate metastatic 

regions were detected by max. filtering of the probability map, thresholding, and connected component analysis. The 

connected components in the thresholded probability map were considered candidate regions with probability scores 

equal to the mean probability value within the region. 
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Whole-slide image classification task  

The slide score was computed as the maximum score within the slide. 

Results 

This method achieved an FROC true positive fraction score of 0.257 for task 1 and an AUC of 0.761 (95% CI, 0.662 

- 0.837) for task 2. The method ranked 20
th

 on both leaderboards. 
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METHOD 21 & 22 

Team name: SMART IMAGING (I & II) 

Authors: Vitali Khvatkov, Alexei Vylegzhanin 

Affiliation: Smart Imaging Technologies Co., US 

Email: vitali.khvatkov@simagis.us 

Introduction 

This team submitted two methods for evaluation. The first method uses a conventional machine learning approach, 

while the second method is based on a combination of deep learning and conventional machine learning using 

handcrafted features. Key aspects include: multiscale analysis, use of nuclei density features and use of the 

GoogLeNet
3
 architecture. The proposed solution is available on the Simagis Live platform (http://web-

pathology.net). 

Preprocessing 

 Tissue detection: Ensemble of SVM classifiers with 27 color and texture features 

 Preprocessing magnification: Image level 1 (pi el si e    .    .    m    

 Staining normalization: Transform color coordinates to modified HSV color space
22

 as follows, (1) 

transform color to HSV space; (2) shift Hue by 160 by subtracting/adding 160 from/to H value , (3) trim 

white color by removing pixels with V (value) above 0.9 threshold, (4) cluster to 3 phase system by K-

mean clustering of pixel colors in modified HSV color system. Normalized images have been used in all 

detection/classification steps of the algorithm. 

Classification framework (method I): 

Classifier:  

 Ensemble of SVM classifiers
9
 used to classify patches at 3 different resolutions. 

 Candidate regions produced by the SVM classifiers were further processed using multiscale cascade of 

AdaBoost
10

 models. 

Features: 

 Combination of rotation-invariant local binary patterns
35

 and color features (features selection and 

optimization was done using the caret package in R). 

Patch sampling: 

 Patch sampling strategy: Normal patches were sampled from both positive and negative slides. The patch 

sizes for the different resolutions are given in the table below. 

Level Pixel Size (μm) Patch Size 

(pixels) 

Patches from 

“tumor” class 

Patches from 

“negative” class 

Level 1  .    .    m  16x16 12630 11449 

Level 2  .    .    m  64x64 6296 7907 

Level 3  .    .    m  128x128 6296 7907 

 

Deep learning framework (method II) 

Architecture:  

 22-layer GoogLeNet
3
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Patch sampling: 

 Patch size: 128 128 from  

 Level: 1  pi el si e    .    .    m   

 Number of training samples: 14,000 

 Patch sampling strategy: Equal number of positive and negative patches were randomly sampled. Normal 

patches were sampled from both negative and positive slides.  

 Data augmentation: Translation, rotation, and flipping 

Parameters: 

 Optimization method: Stochastic gradient descent 

 Weight initialization: Xavier’s method
19

 

 Batch size: 128 

 Regularization: 50% dropout
16

 

 Learning rate: 0.01 

 Activation function: ReLu
17

 

 Loss function: Cross-entropy 

 Number of training epochs/iterations: 420,000 iterations 

Metastasis identification task  

The probability maps for the first method were computed using the Adaboost classifier. The probability maps for the 

second method were produced with a combination of the Adaboost and CNN classifiers. Candidate lesions were 

localized with the geographic clustering algorithm
40

. Geographic clustering algorithm identified geographic clusters 

of tiles and center of cluster on slide. The composite probability for each candidate was computed as weighted mean 

of probability of tiles in the cluster. The weights for each cluster member (tile) was computed using the measure of 

“compactness”. 

Whole-slide image classification task  

The slide scores were produced with a SVM classifier that uses features that summarize the distribution of the 

candidate lesions in the slide. 

Results 

The first method (SMART IMAGING I) achieved an FROC true positive fraction score of 0.208 for task 1 and an 

AUC of 0.757 (95% CI, 0. 0.663 - 0.839) for task 2. This method ranked 24
th

 and 21
st
 on the first and second 

leaderboards, respectively. The second method (SMART IMAGING II) achieved an FROC true positive fraction 

score of 0.339 for task 1 and an AUC of 0.821 (95% CI, 0.753 - 0.894) for task 2. This method ranked 17
th

 and 14
th
 

on the first and second leaderboards, respectively. 
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METHOD 23, 24 & 25 

Team name: CULab (I, II & III) 

Authors: Hao Chen, Huang-Jing Lin, Qi Dou, and Pheng-Ann Heng 

Affiliation: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Sha Tin, 

Hong Kong 

Email: jackie.haochen@gmail.com 

Introduction 

This method is based on deep convolutional neural networks (CNNs). There are three submissions by this team, 

each employing a different CNN architecture. A key aspect of the best performing method is the use of a fully 

convolutional architecture for dense predictions. 

Preprocessing 

 Tissue detection: Color thresholding 

 Preprocessing magnification: Image level 5  pi el si e    .   .   m   

 Staining normalization: None 

Deep learning framework 

Architecture:  

 Method I: VGG-16
6
 

 Method II: Cascade of two CNNs
41

. The first CNN (VGG-16) works with lower magnification images 

(level 1), has very high sensitivity and quickly eliminates many negative regions. The second CNN, a 152-

layer ResNet architecture
4
, refines the results from the first model. 

 Method III: Fully convolutional network adapted from VGG-16
6
 for dense predictions 

Patch sampling: 

 Patch size: 224 224 for second CNN of method II; 244x244 for other networks. 

 Level: 0 (pi el si e   .    .    m   used for method III and the second CNN of method II. Level 1 

(pi el si e    .    .    m   used for method I and the first CNN of method II. 

 Number of training samples: 15 million (5% positive) 

 Patch sampling strategy: Uniform sampling 

 Data augmentation: Translation and flipping 

Parameters: 

 Optimization method: Stochastic gradient descent 

 Weight initialization: Pre-trained with the ImageNet dataset
5
 

 Batch size: 10 for ResNet-152, and 50 for the other architectures 

 Regularization: L2 regularization (0.0005) 

 Learning rate: Initially set at 0.001 and decreased by a factor of 10 every 100,000 iterations. 

 Activation function: ReLu
17

 

 Loss function: Cross-entropy 

 Number of training epochs/iterations: 300,000 iterations 

Metastasis identification task 

For each slide, a probability map was produced using the trained CNN model (at level 0 with a stride of 32). 

Candidate metastatic regions were detected by filtering the probability map with a median filter (kernel size of 3 3) 
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and thresholding. Each connected component in the resulting probability map was considered a candidate detection 

with a probability score equal to the maximum probability value within the region. This procedure was used for all 

three methods. 

Whole-slide image classification task  

The slide score was computed as the maximum score within the slide. 

Results 

The first method (CULab I) achieved an FROC true positive fraction score of 0.544 for task 1 and an AUC of 0.909 

(95% CI, 0.851 - 0.954) for task 2. This method ranked 8
th

 and 7
st
 on the first and second leaderboards, respectively. 

The second method (CULab II) achieved an FROC true positive fraction score of 0.527 for task 1 and an AUC of 

0.906 (95% CI, 0.841 - 0.957) for task 2. This method ranked 9
th

 on both leaderboards. The third method (CULab 

III) achieved an FROC true positive fraction score of 0.703 for task 1 and an AUC of 0.942 (95% CI, 0.888 - 0.980) 

for task 2. This method ranked 4
th

 on both leaderboards. 
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METHOD 26 

Team name: DeepCare 

Authors: Tong Xu 

Affiliation: DeepCare Inc. 

Email: txu@deepcare.com 

Introduction 

This method is based on deep convolutional neural networks (CNNs). Key aspects include: the use of the pre-trained 

GoogLeNet
3
 architecture and a second-stage SVM classifier for computing slide scores. 

Preprocessing 

 Tissue detection: Multi-thresholding in the HSV
22

 color space. 

 Preprocessing magnification: Image level 3 (                            

 Color normalization: None 

Deep learning framework 

Architecture: 

 22-layer GoogLeNet
3
 

Patch sampling: 

 Patch size:          

 Level : 0  pi el si e    .    .    m   

 Number of training samples: 700,000 

 Patch sampling strategy: Patches were uniformly sampled from positive and negative regions. Negative 

samples were taken from both positive and negative slides. For positive slides, additional negative samples 

were taken from regions bordering metastatic regions. 

 Data augmentation: Mirroring and rotation of the positive samples 

Parameters: 

 Optimization method: Stochastic gradient descent 

 Weight initialization: Pretrained GoogLeNet model with the ImageNet dataset
5
  

 Batch size: 64 

 Batch normalization
15

: Yes 

 Regularization: L2 regularization (0.0005) 

 Learning rate: Initialized at 0.01 and decreased every 100,000 iterations by a factor of 0.1 

 Activation function: ReLu
17

 

 Loss function: Cross-entropy 

 Number of training epochs/iterations: 120,000 iterations 

Metastasis identification task 

Using the trained GoogLeNet model, a probability map was generated for each slide. Candidate regions were 

produced with connected component analysis. Regions with an area smaller than 20 pixels were rejected as false 

positives. The lesion scores were computed as the mean of the probability values within the region. The center of 

gravity and the probability score of the lesions with a probability higher than 0.85 were reported. 
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Whole-slide image classification task  

For each whole-slide image, five binary masks containing metastatic connected components were generated by 

applying multiple thresholds of 0.5, 0.6, 0.7, 0.8 and 0.9 on the probability map. Subsequently, two types of features 

including 5 shape and 3 statistics-based probability features were extracted from the five multi-thresholded regions. 

These features include: 

 Area 

 Eccentricity 

 Major and minor axis length of the ellipse that has the same normalized second central moments as the 

region 

 Ratio of pixels in the region to the pixels in the total bounding box 

 The mean, maximum, and variance of the probability values inside the multi-thresholded regions of each 

candidate 

Overall, a 40-dimensional feature vector was extracted from each candidate region. The normalized 40-

dimensional feature vectors were then fed into a SVM classifier
9
 to discriminate between tumor and non-tumor 

regions. The trained SVM classifier was used to discriminate annotated metastases in positive slides from 

candidate findings in negative whole-slide images. The probability score for the whole-slide images were 

computed as the weighted mean of the detected tumor regions present in the whole-slide images. 

Results 

This method achieved an FROC true positive fraction score of 0.243 for task 1 and an AUC of 0.883 (95% CI, 0.806 

- 0.943) for task 2. The method ranked 22
nd

 and 10
th

 on the first and second leaderboards, respectively. 
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METHOD 27 

Team name: LIB 

Authors: R. Venâncio, B. Ben Cheikh, A. Coron, and D. Racoceanu 

 ffiliation   orbonne  niversite ,       niv  aris   ,  N  ,  N    ,  aboratoire d’ magerie  iom dicale 

(LIB), Paris, France 

Email: rui.venancio.t@gmail.com 

Introduction 

This method is based on a SVM
9
 classifier using color and texture features for automated detection of metastatic 

cancer from whole-slide images of sentinel lymph nodes. 

Preprocessing 

 Tissue detection: K-means clustering 

 Preprocessing magnification: Level 4 (pi el si e    .   .   m   

 Staining normalization: Reinhard staining normalization
29

 

Classification framework: 

Classifier:  

 SVM
9
 

Features: 

 Haralick texture features
33

 

  aw’s te ture energy measures
42

 

 Features were selected with sequential forward selection 

Patch sampling: 

 Patch size:          

 Level: 0  pi el si e    .    .    m   

 Number of training samples: 1,100 positive and 1,130 negative 

 Patch sampling strategy: Patches were sampled uniformly from positive and negative regions. Negative 

samples were taken from both positive and negative slides. 

Metastasis identification task 

The slides were divided in rectangular patches. Each patch was classified as positive or negative. The centroids of 

regions larger than four connected positive patches were selected as candidate lesion locations. The lesion scores 

were calculated as the mean of the probability values of all patches within the region. 

Whole-slide image classification task  

If the number of positive patches in a whole-slide image was larger than 11, the mean of the probabilities of all 

positive patches was calculated and reported as the whole-slide score. 

Results 

This method achieved an FROC true positive fraction score of 0.120 for task 1 and an AUC of 0.556 (95% CI, 0.434 

- 0.654) for task 2. The method ranked 30
th

 and 32
nd

 on the first and second leaderboards, respectively. 
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METHOD 28, 29 & 30 

Team name: HMS-MGH (I, II & III) 

Authors: Aoxiao Zhong, Quanzheng Li 

Affiliation: Gordon Center for Medical Imaging, Clinical Data Science Center, Harvard Medical School, 

Massachusetts General Hospital 

Email: zhongaoxiao@gmail.com 

Introduction 

Three methods were submitted. The first two submissions are similar to the methods of the Harvard & MIT team, 

based on patch-wise classification using GoogLeNet
3
 and ResNet-101

4
, respectively. The third submission is based 

on dense prediction using fully convolutional ResNet-101 architecture with atrous convolution and atrous spatial 

pyramid pooling
43

. 

Preprocessing 

 Tissue detection: Otsu thresholding
23

 

 Preprocessing magnification: Image level 5  pi el si e    .    .    m   

 Staining normalization: None 

Deep learning framework 

Architecture:  

 Method I: GoogLeNet
3
 

 Method II: ResNet-101
4
 

 Method III: Fully convolutional ResNet-101 architecture with atrous convolution and atrous spatial 

pyramid pooling (deeplab v2
43

)  

Patch sampling: 

 Patch size:         for methods I and II, and         for method III 

  Level: 0  pi el si e    .    .    m ) for methods I and II, and level 1 (pi el si e    .    .    m   for 

method III 

 Number of training samples: 400,000 with 25% of positive patches for methods I and II. On-line sampling 

with approximately 25% positive samples for method III. 

 Patch sampling strategy: Negative patches were sampled from both negative slides and normal regions in 

positive slides. 

 Data augmentation: Mirroring and random cropping for all methods 

Parameters: 

 Optimization method: Stochastic gradient descent 

 Weight initialization: Pre-trained model with the ImageNet dataset
5
 for methods I and II, and pre-trained 

model with the MS-COCO dataset
44

 for method III. 

 Batch size: 64 for method I, 128 for method II, 10 for method III 

 Regularization: L2 regularization was used for all methods. The regularization coefficients were 0.0002, 

0.0001, and 0.0005 for methods I, II and III, respectively. 

 Learning rate: The learning rate was initialized at 0.001 and divided by 10 when the error plateaued for 

method I and II. The learning rate was initialized at 2.5e-4 and multiplied by 0.9 every 40,000 iterations for 

method III. 

 Activation function: ReLu
17

 

 Loss function: Cross-entropy 
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 Number of training epochs/iterations: 150,000 iterations for method I, 180,000 iterations for method II and 

40,000 iterations for method III 

Metastasis identification task 

1. Perform connected component analysis of the thresholded probability map (the threshold was set to 0.9 for 

methods I and II and 0.95 for method III). 

2. The centroids of the connected components were used as candidate location. 

3. The mean probability values of the connected components were used as the lesion scores. 

4. Regions with major-axis length smaller than 200 µm were removed as false positives. 

Whole-slide image classification task  

Higher level features were extracted from the tumor heatmaps (computed using the regionprops function in 

skimage
45

) with thresholds of 0.5 and 0.9 for methods I and II, and thresholds of 0.5 and 0.95 for method III. All 

these features are computed for the largest detected candidate in the whole-slide image: 

 The major axis length 

 The ratio between the area of the candidate region and the total bounding box area 

 Eccentricity of the ellipse that has the same second-order moments as the region 

 Total area 

 Mean intensity  

A random forest classifier
12

 was trained with these features and subsequently used to produce the probability score 

for each slide. 

Results 

The first method (HMS-MGH I) achieved an FROC true positive fraction score of 0.596 for task 1 and an AUC of 

0.965 (95% CI, 0.928 - 0.989) for task 2. This method ranked 6
th

 and 3
rd

 on the first and second leaderboards, 

respectively. The second method (HMS-MGH II) achieved an FROC true positive fraction score of 0.729 for task 1 

and an AUC of 0.908 (95% CI, 0.846 - 0.961) for task 2. This method ranked 3
rd

 and 8
th

 on the first and second 

leaderboards, respectively. The third method (HMS-MGH III) achieved an FROC true positive fraction score of 

0.760 for task 1 and an AUC of 0.976 (95% CI, 0.941 - 0.999) for task 2. This method ranked 2
nd

 on both 

leaderboards. 
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eResults 

Stratification according to metastasis size and primary tumor histotype in task 2 

The pathologists’ results were further analy ed in two subcategories  analysis according to metastasis si e and 

primary tumor histotype (eTable 1 and eTable 2 in the Supplement). Pathologist without time constraint achieved a 

better sensitivity and AUC for detecting macrometastases (sensitivity of 100% and AUC of 0.994 (95% CI, 0.977-

1.0)) and metastases originating from infiltrating ductal carcinoma (IDC) (sensitivity of 97.0% (95% CI, 89.7%-

100%) and AUC of 0.976 (95% CI, 0.932-1.0)) compared to micrometastases (sensitivity of 88.8% (95% CI, 75.0%-

100%) and AUC of 0.943 (95% CI, 0.868-0.995)) and non-IDC cases (sensitivity of 86.6% (95% CI, 66.7%-100%) 

and AUC of 0.943 (95% CI, 0.848-1.0)), respectively (no statistically significant difference for comparison of 

AUCs, p=0.87 (Bonferroni corrected) for comparison of the performance for the detection of micro and 

macrometastases, and p>0.99 for comparison of the performance for the detection of IDC and non-IDC cases). For 

all 11 pathologists in the simulated routine diagnostic setting, the performance was significantly higher (See eTable 

2 for individual p-values) for detection of macrometastases (mean sensitivity of 92.9% (95% CI, 90.5%-95.8%) and 

mean AUC of 0.964 (range, 0.924-1.0)) compared to micrometastases (mean sensitivity of 38.3% (95% CI, 32.6%-

52.9%) and mean AUC of 0.685 (range, 0.582-0.808)). We also observed that metastases originating from IDC 

(mean sensitivity of 69.2% (95% CI, 65.4%-77.4%) and mean AUC of 0.842 (range, 0.773-0.924)) were more often 

detected compared to non-IDC cases (mean sensitivity of 48.4% (95% CI, 43.2%-59.7%) and mean AUC of 0.738 

(range, 0.656-0.862)) (but not significantly, see eTable2 for the p-values for each pathologist). 

The top-ranking systems performed similarly to the best performing pathologists in detecting macrometastases. The 

performance of the algorithms in detecting micrometastases, however, was considerably more variable. Many of the 

top-ranked algorithms achieved better AUCs than the best pathologist in the panel of 11 (best pathologist AUC = 

0.808 (95% CI, 0.704-0.908) versus best algorithm AUC = 0.997 (95% CI, 0.989-1.0)) in detecting micrometastases. 

The AUC of the two leading algorithms (AUC = 0.997 (95% CI, 0.989-1.0) and 0.957 (95% CI, 0.893-0.999), 

respectively) even surpassed that of the pathologist without time constraint (AUC = 0.9430 (95% CI, 0.868-0.995)). 

With regard to the primary tumor histotype, the majority of the algorithms had higher AUCs for detecting IDC 

metastases than metastases of other types. The top-four performing algorithms achieved higher AUCs than the panel 

of 11 pathologists in detecting metastases of both IDC and non-IDC histotypes (see eTables 2 and eTable5). 
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eDiscussion 

Potential reasons for large variability in CNN performance 

The modest performance of some of the algorithms based on convolutional neural networks (CNN), in many cases, 

could be attributed to choosing a low magnification to process the slide, or selecting a very small patch size for 

training. Consequently, the system either lacks the detailed information present in the higher magnifications or loses 

the contextual information that could be captured by a larger patch size. Despite using the right magnification, patch 

size and state-of-the-art CNN architectures, achieving satisfactory results can be challenging. Training deep learning 

models can involve many hyperparameter settings (e.g. learning rate, regularization strength, mini-batch size, etc.). 

Successful and efficient training and debugging of large scale CNNs requires careful selection and adjustment on 

these hyperparameters, and finding out the relation between hyperparameters and validation errors.  

Properties of the top-performing algorithms 

We can summarize the main properties of the high-ranked teams based on 4 main characteristics: network 

architecture, patch-sampling strategy, preprocessing and data augmentation, and network ensemble.  

One common property of the leading teams is that they all used very deep state-of-the-art CNN architectures such as 

GoogLeNet
3
, VGG-Net

6
, and ResNet

4
. The leading team, HMS & MIT (II), trained a 22-layer GoogLeNet model 

and enriched the training data by adding false positive findings produced by an initial model. By doing this, the 

network becomes more knowledgeable on recognizing the more difficult normal regions. The CNNs used in systems 

HMS & MGH (III), HMS & MGH (II), and CULab (III) were ResNet-101, GoogLeNet-22 and VGG-Net-16, 

respectively, all initialized by weights from pre-trained networks and fine-tuned with the challenge data. ResNet-101 

was pre-trained on the MS-COCO dataset
44 

and the other two models were pre-trained on the large scale 1000-class 

ImageNet dataset
5
. The high performance of these methods is in accordance with previous studies which have 

validated the efficacy of transfer learning strategies
46-48

. Some of the key factors contributing to the outstanding 

performance of the HMS & MIT (II) system were the use of the whole-slide image color standardizer (WSICS) 

algorithm
21

 to normalize the appearance of whole-slide images, and the incorporation of a more rigorous data 

augmentation strategy including rotation, flipping, random cropping, and the addition of random offsets to each 

RGB color channel. The ResNet-101 model used in the system of HMS & MGH (III) used very large image patches 

of size 512 512 that were more than double the input size of all the other systems used in this challenge. On top of 
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that, the use of atrous convolution (dilated convolution) and spatial pyramid pooling
43

 enabled the system to capture 

objects as well as image context at multiple scales.  

Another factor contributing to the success of some of the top-ranking algorithms is the use of network ensembles. 

The winning team used an ensemble of a network trained on standardized whole-slide images and a network trained 

on original whole-slide images to report the probabilities for each finding. The first submission of this team, HMS & 

MIT (I), ranking fifth, used an ensemble of two networks (networks trained before and after hard-negative mining).  

To generate a slide based score for the second task, the majority of the teams assigned the maximum probability 

among the detected lesions in the whole-slide image as the confidence score for that slide. Prior to this assignment, 

they mostly removed small areas of positive findings, and/or applied Gaussian/median filtering. Although this 

approach worked well for many of the teams, including CU-Lab (III) and ExB research that were ranked fourth and 

sixth in the image classification task, it may not take into account metastases characteristics (e.g. slides containing 

multiple high-score findings or slides containing larger metastases could have increased chance of containing 

metastases). In contrast, the systems HMS & MIT (I & II) used a random forest classifier employing a variety of 

geometrical and morphological features extracted from each probability map. Details of these features can be found 

in eMethods. The use of a learning-based algorithm to produce a confidence score from a whole-slide image 

probability map is likely the centerpiece of this algorithm that makes it the top-performing system for the first task.  

Finally, one interesting property of the top-performing system HMS & MIT (II) in the metastasis identification task 

is that it uses the output of the discriminative classifier that produces a slide-based confidence score, to weigh the 

score of each finding in the second task. This top-down analysis reduces the number of false-positives, particularly 

in normal slides. 
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