Supplementary Information

Visualisation of DCP, a nerve agent mimic, in Catfish brain by a simple chemosensor

Himadri Sekhar Sarkar¹, Ayndrila Ghosh¹, Sujoy Das¹, Pulak Kumar Maiti², Sudipta Maitra³, Sukhendu Mandal² & Prithidipa Sahoo¹

¹Department of Chemistry, Visva-Bharati University, Santiniketan, 731235, India. ²Department of Microbiology, University of Calcutta, Kolkata-700019, India. ³Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India. Correspondence and requests for materials should be addressed to P.S. (email: prithidipa@hotmail.com)

Analytes	Sensor type	Detection limit	Medium	Detection method	Detection Detection method state		References
DCP	Rhodamine	5.6 nM	Basic medium	Naked-eye, UV-Vis, Fluorescence	Liquid/Vapour state	Yes	Present manuscript
DCP, DCNP	Triaryl methane dye	2.1-3.2 mmol dm ⁻³	Acidic medium	Naked-eye, UV-Vis	Liquid state	No	<i>Tetrahedron</i> 68 , 8612-8616 (2012)
DCP	Rhodamine	0.2 μΜ	Basic medium	Naked-eye, UV-Vis, Fluorescence	Vapour state	No	<i>RSC</i> <i>Adv.</i> 4 , 21984- 21988 (2014)
DFP, DCNP	BODIPY	0.36 and 0.40 ppm	-	Naked-eye, UV-Vis	Liquid/Vapour state	No	Org. Biomol. Chem. 12 , 8745-8751 (2014)
DCP	Rhodamine- thiourea	0.14 µM	Basic medium	Naked-eye, UV-Vis, Fluorescence	Liquid/Vapour state	No	Sensors and Actuators B: Chemical 235 , 447 (2016)
DCP	Napthothiazolium conjugated benzothiazole derivative (NTBT)	17 nM	-	Naked-eye, UV-Vis, Fluorescence	Liquid/Vapour state	No	Chem. Commun. 51 , 9729-9732 (2015)
DFP	Organo silyl ether	5.4 ppm	Basic medium	Naked-eye, UV-Vis, Fluorescence	Liquid state	No	<i>Chemistry Open</i> 3 , 142 (2014)
DCP	Rhodamine- hydroxamate	ND	Basic medium	Naked-eye, UV-Vis, Fluorescence	Liquid state	No	<i>Chem.</i> <i>Commun.</i> 46 , 8413–8415 (2010)
DCP	Rhodamine- deoxylactam	ND	Basic medium	Naked-eye, UV-Vis, Fluorescence	Liquid state	No	<i>Chem.</i> <i>Commun.</i> 47 11468–11470. (2011)
DCP	Hydroxynaphthal ene- hemicyanine dye	18.86 nM	Basic medium	Naked-eye, UV-Vis, Fluorescence	Liquid/Vapour state	No	Org. Biomol. Chem. 15 , 5959 (2017)

Table S1. Performance comparison of existing methods and present method for detection of DCP.

2. NMR Studies

¹H NMR of ARC in DMSO-d₆:

Figure S1. ¹H NMR of ARC in DMSO-d₆ (400 MHz).

¹³C NMR of ARC in DMSO-d₆:

Figure S2. ¹³C NMR of ARC in DMSO-d₆ (400 MHz).

Mass spectrum of ARC:

Figure S3. HRMS of ARC.

Measurement of fluorescence quantum yields¹:

The fluorescence quantum yield (QY) of **ARC** was determined relative to a reference compound of known QY. Rhodamine B ($\Phi_F = 0.69$ in ethanol) as a reference compound because it has emission profile between 500-600 nm similar to **ARC**. As shown in **Table S2**, the quantum yield of **ARC** increased upon addition of **DCP**. Almost 100-fold fluorescence intensity increased upon addition of **DCP**.

Table S2.	Comparison	of quantum	yields of ARC	and ARC-DCP	complex
-----------	------------	------------	---------------	-------------	---------

Sample	Quantum yield at 585 nm*		
ARC	0.006 ± 0.001		
ARC-DCP complex	0.58 ± 0.03		

*Average value of three determinations.

Evaluation of the association constants for the formation of ARC-DCP complex:

By Fluorescence Method:

Binding constant of the chemosensor **ARC** was calculated through emission method by using the following equation:

$$1/(I - I_0) = 1/K(I_{max} - I_0) [G] + 1/(I_{max} - I_0)$$
(ii)

Where I_0 , I_{max} , and I represent the emission intensity of free **ARC**, the maximum emission intensity observed in the presence of added **DCP** at 585 nm (λ_{ex} = 520 nm), [G] is the concentration of the guest **DCP** and the emission intensity at a certain concentration of the **DCP**, respectively. [H] is the concentration of the host **ARC**.

Binding constant calculation graph (Fluorescence method):

Figure S4. Linear regression analysis $(1/[G] \text{ vs } 1/\Delta I)$ for the calculation of association constant value by fluorescence titration method.

The association const. (K_a) of **ARC** for sensing **DCP** was determined from the equation: $K_a = \text{intercept/slope}$. From the linear fit graph we get intercept = 0.00891, slope = 1.1292×10^{-9} . Thus we get, $K_a = 0.00891 / (1.1292 \times 10^{-9}) = 7.89 \times 10^6 \text{ M}^{-1}$.

Calculation of limit of detection (LOD) of ARC with DCP:

The detection limit of the chemosensor **ARC** for **DCP** was calculated on the basis of fluorescence titration. To determine the standard deviation for the fluorescence intensity, the emission intensity of four individual receptors without **DCP** was measured by 10 times and the standard deviation of blank measurements was calculated.

The limit of detection (LOD) of **ARC** for sensing **DCP** was determined from the following equation²⁻³:

$$LOD = K \times SD/S$$

Where K = 2 or 3 (we take 3 in this case); SD is the standard deviation of the blank receptor solution; S is the slope of the calibration curve.

Figure S5. Linear fit curve of ARC at 585 nm with respect to DCP concentration.

For ARC with DCP:

From the linear fit graph we get slope = 1.37938×10^8 , and SD value is 0.26037. Thus using the above formula we get the Limit of Detection = 0.56×10^{-8} M, i.e 5.6 nM. Therefore **ARC** can detect **DCP** up to this very lower concentration by fluorescence technique.

Selectivity studies:

Comparative UV-vis studies of ARC with various organophosphates:

Figure S6. UV-vis spectra of **ARC** (1 μ M) upon addition of different organophosphates in H₂O-CH₃CN (10:1, v/v) at neutral pH (Guests conc. = 10 μ M). [From left to right: **ARC**, **ARC** with-**DCP**, diethylcyanophosphonate (DCNP), diethyl(1-phenylethyl)phosphonate (DPEP), diethyl(methylthiomethyl)phosphonate (DMTMP), diethyl-(2-oxopropyl)phosphonate (DOPP), Ethyl methylphosphonate (EMP), Diethyl methylphosphonate (DEMP)].

Competitive fluorescence studies of ARC with various organophosphates:

Figure S7. Fluorescence emission spectra of **ARC** (1 μ M) upon addition of different organophosphates at 585 nm (λ_{ex} = 520 nm) in H₂O-CH₃CN (10:1, v/v) at neutral pH (Guests conc. = 10 μ M).

Figure S8. Histogram representing competitive fluorescence spectra of **ARC** with different organophosphates at 585 nm (λ_{ex} = 520 nm) in H₂O-CH₃CN (10:1, v/v) at neutral pH. Error bars represent standard deviations (n = 3).

Competitive fluorescence studies of ARC with various interfering substances and metal ions:

Figure S9. Histogram representing competitive fluorescence spectra of **ARC** with various interfering substances and metal ions at 585 nm (λ_{ex} = 520 nm) in H₂O-CH₃CN (10:1, v/v) at neutral pH. [From left to right: **ARC**, **ARC** with- **DCP**, dimethylmethylphosphate (DMMP), Zn²⁺, Cu²⁺, Co²⁺, Hg²⁺, NaOCl, ^tBuOOH, H₂O₂, CH₃COCl, PhCOCl, benzene hexachloride (BHC), phorate and chlorothalonil]. Error bars represent standard deviations (n = 3).

Kinetic study:

Figure S10. The fluorescence intensities at 585 nm vary in a time range of 40 s. The excitation wavelength was set at 520 nm. Each point of the plot represents the average of at least 3 independent kinetic experiments.

Figure S11. Pseudo first-order kinetic plot for the reaction of **ARC** (1 μ M) with **DCP** (10 μ M). Each point of the plot represents the average of at least 3 independent kinetic experiments.

Vapour phase detection of DCP by ARC:

Figure S12. Display of vapour phase sensing of **DCP** using an **ARC** coated paper strip in visual (top) and under a UV lamp (bottom): (a) only an **ARC** coated filter paper; (b) after 15 seconds of incubation of **DCP**; (c) after 30 seconds of incubation of **DCP**; d, e and f are the UV-photographic images of a, b and c respectively.

pH titration study:

Figure S13. Effect of pH on the fluorescence intensity of **ARC** (1 μ M) in the absence of **DCP** (black line) and in the presence of **DCP** (10 μ M, red line).

Figure S14. ¹H NMR titration [400MHz] of **ARC** in DMSO-d₆ at 25° C and the corresponding changes after the addition of 1 equiv. of **DCP** in D₂O from (i) only **DCP**, (ii) **ARC** + 1 equiv. of **DCP**, (iii) only **ARC**.

¹³C NMR titration spectrum of ARC with DCP:

Figure S15. ¹³C NMR titration [400MHz] of **ARC** in DMSO-d₆ at 25⁰C and the corresponding changes after addition of one equiv. of **DCP** in D₂O from (i) only **DCP**, (ii) **ARC** + 1 equiv. of **DCP**, (iii) only **ARC**. The red spot indicates the shifting of the spiro cyclic carbon peak from 67 ppm to 143 ppm in the open form.

³¹P NMR titration spectrum of ARC with DCP:

Figure S16. ³¹P NMR titration [400MHz] of **ARC** in DMSO-d₆ at 25^{0} C and the corresponding changes after addition of one equiv. of **DCP** in D₂O from (I) only **DCP**, (II) **ARC** + 1 equiv. of **DCP**.

DFT Study:

Binding of **ARC** and **DCP** has been investigated by quantum chemical calculations at the TDDFT level 6-31G+(d,p) method basis set implemented at Gaussian 09 program. Solvent effects were incorporated using CPCM solvent model. Geometry optimization resulted in conformational changes at the spiro-lactam position of **ARC**, while **DCP** takes part to accommodate a probe molecule to get the stable complex stucture. This theoretical study strongly correlates the experimental findings.

Figure S17. HOMO and LUMO distributions of ARC and ARC-DCP complex.

Table S3. Selected electronic excitation energies (eV), oscillator strengths (f), main configurations of the low-lying excited states of all the molecules and complexes. The data were calculated by TDDFT//B3LYP/6-31G+(d,p) based on the optimized ground state geometries.

Molecules Electronic Transition		Excitation Energy ^a	f^b	Composition ^c (%)
ARC	$S_0 \to S_{12}$	4.0183 eV 308 nm	0.1688	$H \rightarrow L+1 \ (69.1\%)$
	$S_0 \rightarrow S_9$	3.6297 eV 341.58 nm	0.0839	H -2 → L (36.8%)
	$S_0 \rightarrow S_1$	2.7695 eV 553.03 nm	0.7625	H -1 → L (73.4%)
акс-дср	$S_0 \rightarrow S_7$	3.7707 eV 329 nm	0.1048	$H \rightarrow L+1 (49.5\%)$ H -6 $\rightarrow L (35.4\%)$

^aOnly selected excited states were considered. The numbers in parentheses are the excitation energy in wavelength. ^bOscillator strength. ^cH stands for HOMO and L stands for LUMO.

Table S4. Energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO).

Species	Е _{НОМО} (a.u)	E _{LUMO} (a.u)	ΔE(a.u)	ΔE(eV)	∆E(kcal/mol)
ARC	-0.19073	-0.02106	0.16967	4.61	106.46
ARC-DCP	-0.29294	-0.18240	0.11054	3.01	69.36

Live Cell Imaging:

Figure S18. Confocal microscopic images of A549 cells (Human cell A549, ATCC No CCL-185) treated with **ARC** and **DCP** (a) Cells treated with **ARC** at 1 μ M concentration. (b) Bright field image of (a). (c) Cells treated with **ARC** and **DCP** at concentration 10 μ M. (d) Bright field image of (c). All images were acquired with a 60x objective lens with the applied wavelengths: E_{ex} = 534 nm, E_{em} = 572 nm. Filter used: POPO-3.

Cytotoxicity Assay:

Figure S19. MTT assay to determine the cytotoxic effect of ARC, DCP and ARC-DCP complex on A549 cells (Human cell A549, ATCC No CCL-185).

References:

- 1. Williams, A. T. R., Winfield, S. A. & Miller, J. N. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. *Analyst* **108**, 1067-1071 (1983).
- 2. Long, L. *et al.* A fluorescence ratiometric sensor for hypochlorite based on a novel dual-fluorophore response approach. *Anal. Chim. Acta.* **775**, 100 (2013).
- 3. Zhu, M. *et al.* Visible Near-Infrared Chemosensor for Mercury Ion. *Org. Lett.* **10**, 1481 (2008).
- 4. Nath, P. & Maitra, S. Role of two plasma vitellogenins from Indian major carp (Cirrhinus mrigala) in catfish (Clarias batrachus) vitellogenesis. *General and Comparative Endocrinology* **124**, 30-44 (2001).