1 Supplementary Materials

- 2 Title: Development of a high-throughput assay for rapid screening of butanologenic strains
- 3 Authors: Chidozie Victor Agu, Stella M. Lai, Victor Ujor, Pradip K. Biswas, Andy Jones, Venkat Gopalan and Thaddeus
- 4 Chukwuemeka Ezeji
- 5
- 6 **Table S1:** Overview of *Th* ADH n-butanol assay protocols highlighting improvements in protocol using microtiter plates.

Step	Time-course assay protocol for initial velocity determination	End-point assay protocol for endpoint measurements using microtiter PCR plates
1.	Prepare reaction mix on ice as follows: 15 µL unknown sample, 50 µL CAPS (500 mM, pH 11.6), 12.5 µL each	Prepare reagent master mixes. Master mix $1 = 25 \ \mu L \text{ of } 500 \ mM \text{ CAPS (pH 11.6), } 6.25 \ \mu L \text{ each of } 10 \ mM \text{ DTT and } 1 \ mM$
	of 10 mM DTT and 1 mM FeCl ₂ , 30 μ L 2 mM NADP ⁺ , and 5 μ L <i>Th</i> ADH (10 μ M).	FeCl _{2.} Master mix 2 = 15 μ L 2 mM NADP ⁺ and 1.5 μ L 10 μ M <i>Th</i> ADH.
2.	Label five 1.5-mL eppendorf tubes: 0, 20, 40, 60, or 80 s. Aliquot 7.5 μ L of unknown samples and butanol standards (10 to 25 mM) + 1 μ L distilled water into microtiter PCR plate.	
3.	Aliquot 25-µL reaction mix into each tube.	Add 37.5 µL of master mix 1 and 16.5 µL master mix 2.
4.	Incubate each tube on a heat block for the time indicated.	Incubate at 80°C for 80 s. A thermocycler is used for this step.
5.	After each incubation, quench reaction with 25 μ L 1 M	Transfer reactions into wells of a flat-base microtiter plate.
	NaOAc + 1 mM EDTA, pH 4.5.	
6.	Read Abs ₃₄₀ immediately.	Read absorbance at 340 nm.
7.	Repeat steps 3 to 6 for each time point.	Interpolate unknown concentration from standard curve.
8.	Prepare reaction mixes for each butanol standard as in (1) above.	
9.	Repeat steps 2 to 6 for each standard reaction mix.	
10.	Transfer each 50 μ L reaction left on ice as in (6) above into wells of a flat-base microtiter plate.	
11.	Read absorbance at 340 nm.	
12.	Interpolate unknown concentration from standard curve.	

8 Table S2: List of primers and PCR protocols used to generate inserts.

S/N	Insert	Primers (5' to 3') and PCR strategy
1.	[dhaD1+gldA1]	dhaD1-F: ATAGGGCCCAGGAGGTATCCATGGATGAGAAAAGCATTTATTT
		dhaD1-R: ACCACCACCACC TTTACACATCCTCTTTTTCC
		gldA1-F: AAA GGTGGTGGTGGTGGTATGAGTTATAGTGTTTTTTACCAAG
		gldA1-R1: TAAAAAAATAAGAGTTACCATTTATTAGACAGCTTTCACAGGC
		gldA1-R2:
		CGAC <u>CTCGAGAATTC</u> ACTATGAAACAATATTAAAAAAAAAAGAGTTACCATTTATTAGA
		PCR strategy: (1) <i>dhaD1</i> was amplified from <i>C. pasteurianum</i> genomic DNA using nested PCR with primer pair dhaD1-F & R (AT1 = 54°C, AT2 = 71°C) (2) <i>gldA1</i> was also amplified from <i>C. pasteurianum</i> genomic DNA with primer pair gldA1-F & gldA1-R1 (AT1 = 54°C, AT2 = 66°C), then re-amplified the resulting amplicon with gldA1-F & R2 (AT1 = 52°C, AT2 = 67°C). (3) <i>dhaD1</i> and <i>gldA1</i> amplicons were fused via two step SOE-PCR, Step 1: <i>dhaD1</i> and <i>gldA1</i> served as both primers and template (forward and reverse templating fragments, respectively) AT of overlap region = 59°C. In Step 2 SOE-PCR, the amplicon from step 1 was used as template for normal PCR using primers dhaD1-F and gldA1-R2 (AT = 67°C).
2.	[gldA1+dhaK]	gldA1-F: ATAGGGCCCAGGAGGTATCCATGGATGAGTTATAGTGTTTTTTTACCAAG gldA1-R: ACCACCACCACCACC GACAGCTTTCACAGGCTCATTAC dhaK-F5: GTCGGTGGTGGTGGTGGTGGTATGAAAAAGATAATAAAACCAG dhaK-R1: TAAAAAAATAAGAGTTACCATTTACTACTTTATAACCTCTGAAATC dhaK-R2: CGACCTCGAGAATTCACTATGAAACAATATTAAAAAAAAA
		<i>pasteurianum</i> genomic DNA using primer set dhaK-F5 and dhaK-R1 (AT1 = 50°C, AT2 = 62°C), then re-amplified using primers dhaK-F5 and dhaK-R2 (AT1 = 50°C, AT2 = 67°C). (3) Amplicons from (1) and (2) above were spliced by two-step SOE PCR. Step 1: AT = 63° C; Step 2: AT = 67° C.