Deep learning based tissue analysis predicts
outcome in colorectal cancer
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Figure 1 — Model performance on different tile orderings for 1D-LSTM. We tested row-wise,
column-wise as well as random tile ordering within individual TMA spots. The pairplot suggest that
predictions are highly correlated. This means that on our dataset the order in which tiles are fed to the
LSTM is not significant. AUCs and Hazard rations were also on the same level.
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Figure 2 — Performance of the deep learning model on held out 181 patients not used in cross-
validation. As most of the cases (128/181) are survivors, Kaplan-Meier curves appear high on the

plot.
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Figure 3 — Performance of the deep learning model based on different clinicopathological
characteristics: Histological grade (upper row) and Dukes’ stage (bottom row). We can see that
predictions are consistent and that model performance is approximately the same across different
patient subgroups.



