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Multivariate Conditional Granger Causality theory

We use a multivariate Granger causality MATLAB toolbox to calculate the

conditional granger causality magnitudes. Algorithms and functions of this tool-

box are describe in Lionel Barnett’s paper [1]. The following parts describe the

mathematical theory and processes needed behind Granger causality. Geweke

[2] describes the measure of the Granger causality as follows:

FY→X ≡ ln
|Σ′xx|
|Σxx|

(1)

In this equation, Σ′xx is variance of the prediction error (residuals) of Xt ex-

cluding the possible causal influence of Yt, and Σxx is variance of the prediction

error of Xt including the possible causal influence of Yt. To measure these vari-

ances, the vector autoregressive model (VAR) [3, 4, 5] is applied. This model is

defined as

Ut =

p∑
k=1

Ak ·Ut−k + εt (2)

here, U t is a time series, Ak - regression coefficients, ε - the residuals and p

- the model order representing the number of past lags taken into account.

This model order is calculated from time series using the Akaike Information

Criterion (AIC) [6, 7]. If U t is a multivariate vector composed if two time series

X and Y , the VAR model can be developed as shown in Eq. (4).

Ut =

Xt

Yt

 (3)

Xt

Yt

 =

p∑
k=1

Axx,k Axy,k

Ayx,k Ayy,k

Xt−k

Yt−k

 +

εx,t

εy,t

 (4)

with the covariance matrix of residuals expressed as

Σ ≡ cov

εx,t

εy,t

 =

Σxx Σxy

Σyx Σyy

 (5)
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By applying the Morf’s variant of the Locally Weighted Regression (LWR) al-

gorithm [8], which is very efficient for likelihood-based model selection such as

AIC [9], we estimate the VAR parameters. If we consider the X-component of

the regression (4), we obtain the following expression:

Xt =

p∑
k=1

Axx,k ·Xt−k +

p∑
k=1

Axy,k ·Yt−k + εx,t (6)

and if we suppose no conditional dependence between X and the past of Y

(Axy,1 = Axy,2 = ... = Axy,p = 0), we obtain the reduced regression:

Xt =

p∑
k=1

A′xx,k ·Xt−k + ε′x,t (7)

We finally get from (5) the following: Σxx = cov(εx,t) and Σ′xx = cov(ε′x,t).Hence,

we get the Geweke measure of the Granger causality FY→X (1).

In our case, we have more than two time series, thus the Granger causality

between one signal and another is depending on the information added by the

past of the other signals. Let us now illustrate this conditional pairwise G-

causality. Suppose we have

Ut =


Xt

Yt

Zt

 , (8)

where Zt is a third set of variables. We aim at eliminating any joint effect of Z

on the inference of the G-causality Y to X. Thus, analogously to (4), the full

and reduced regression for the X-component becomes respectively

Xt =

p∑
k=1

Axx,k ·Xt−k +

p∑
k=1

Axy,k ·Yt−k +

p∑
k=1

Axz,k · Zt−k + εx,t (9)

and

Xt =

p∑
k=1

A′xx,k ·Xt−k +

p∑
k=1

A′xz,k · Zt−k + ε′x,t (10)

which corresponds to (6) and (7) but with the inclusion of conditioning vari-

ables Z in both regressions. We can finally quantify the conditional G-causality

as the log-likelihood ratio:

FY→X|Z ≡ ln
|Σ′xx|
|Σxx|

(11)
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which can be defined as “the degree to which the past of Y helps predict X over

and above the degree of which X is already predicted by its own past and the

past of Z” [1].
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Supporting information of no between-group difference in spatial RSN connec-

tivity

Table S 1. FWE-corrected P-values of the first voxels (≥ 1) showing a between-

group RSN spatial difference.

Network p-value (corrected)

Con > ASD ASD > Con Con > ASD adj* ASD > Con adj*

Default-mode 0.93 0.54 0.85 0.58

Fronto-parietal R 0.94 0.13 0.59 0.23

Salience-executive 0.39 0.36 0.65 0.66

Visual system 0.33 0.83 0.38 0.74

Fronto-parietal L 0.29 0.60 0.10 0.38

Auditory system 0.97 0.59 0.79 0.61

Precuneus 0.39 0.94 0.13 0.82

Sensorimotor 1 0.20 0.71 0.60 0.43

Sensorimotor 2 0.55 0.21 0.78 0.18

Ventral attention 0.12 0.90 0.26 0.96

Cerebellum 0.77 0.76 0.78 0.76

No voxels survived at the threshold P = 0.05. P-values are FWE-corrected for

multiple comparison.

adj*: statistical maps adjusted for subjects’ ages, IQ levels and gray matter volumes.
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Fig. S 1. Group mean effect per network. Red-yellow = Control group; Blue-lightblue

= ASD group; Green = Overlapping of both groups; thresholded at p < 0.05 FWE corrected.
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