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Supplementary Methods 

Public data collection and preprocessing 

Microarray data sets were searched from the National Center for Biotechnology 

Information Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) 

[1] using keywords ‘lung cancer’, ‘lung adenocarcinoma’, or ‘adenocarcinoma’. We searched 

for studies analyzed by single platform (Affymetrix HG-U133A Plus 2.0) in order to obtain 

high proportion of overlapping genes. In total, eleven microarray data sets were included and 

raw gene expression data were downloaded from the GEO data repository for preprocessing 

step [2-10]. We selected two microarray data sets with survival information (accession 

number GSE31210 [9] and GSE30219 [10]) as independent test sets, and the others [2-8] 

with or without survival information as the training set. For those microarray data sets 

containing multiple histologic types of lung cancer, only the samples from adenocarcinoma 

were extracted. Detailed information of data source used in this study can be found in 

Supplementary Table 1. All available clinico-pathological variables (age, sex, smoking 

status, stage, and molecular subtypes) and survival information (survival status and duration) 

were compiled from each microarray data sets using ‘GEOquery’ package [11] (Table 1). 

We generated the training set by assembling nine microarray data sets through stepwise 

preprocessing method described below. The raw gene expression data from microarray data 

sets were called and normalized using robust multichip average method using the ‘affy’[12] 

package. On a study-by-study basis, we removed invalid and duplicated probe sets by 

‘featureFilter’ function in ‘genefilter’ package [13] and mapped array probe sets for the 

respective gene symbols. In addition, to remove poor quality probes, we filtered out probe 

sets with low expression level (signal intensity < log2(100) in at least 5% of samples within at 

least one study) and low variability (interquartile range < 0.5). As we combined microarray 

https://www.ncbi.nlm.nih.gov/geo/


 

3 

 

data from different studies, we performed additional normalization using Combat algorithm 

[14] in order to eliminate potential batch effects. Lastly, we detected the outliers by 

calculating the inter-array correlation based on Pearson’s correlation coefficient for all 

samples, and removed them. As a result, the training set contained 4615 probe sets from 510 

lung adenocarcinoma samples including 273 samples with available survival information. 

The raw gene expression data of both test sets were called and normalized as the same 

method with the training set. One outlier sample was removed from the test set 2; 

consequently, the test set 1 and 2 included 226 and 84 lung adenocarcinoma samples 

respectively. 

 

Functional annotation and network visualization of survival-related network modules 

The enrichment of the gene ontology terms in each module were evaluated based on the 

hypergeometric test using ‘clusterProfiler’[15] package. The gene ontology biological 

process terms at false discovery rate under < 0.05 in each survival-related module were 

regarded as significantly enriched terms. The network of two common survival-related 

network modules (red and turquoise) was visualized with Cytoscape Software 3.4.0 [16].  

 

Representative genes selection for risk stratification model construction 

Representative genes of the survival-related network modules were selected to construct 

risk stratification model. Degree of representativeness of genes in each module was 

calculated by gene module membership (GMM), a correlation coefficient between gene 

expression profile and module eigengene. Additionally, the relationship between GMM and 

prognostic significance (p-value) of an individual gene was tested. Prognostic significance of 

gene was measured by univariate Cox regression analysis for overall survival. Pearson 
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correlation analysis was performed between GMM and prognostic significance for every 

gene. We selected top 10 genes according to the GMM from the modules which showed 

significant correlation between GMM and prognostic significance. Accordingly, expression 

levels of the selected genes in the same network module were highly correlated to each other, 

and they could be also highly associated with prognosis because of strong correlation 

between GMM and prognostic significance. The expression levels of selected genes were 

used for risk stratification model based on deep learning (DL).  

 

Comparison of predictability between DL-based model and conventional Cox 

proportional hazard model 

Expression level of all selected genes was fitted into multivariate Cox regression model 

and the predictive value of the Cox model was evaluated by C-index as in DL-based model. 

C-index of Cox model was measured by 5-fold cross validation in the training set, and it was 

calculated in two test sets. C-index of Cox model was compared with that of DL-based model 

in each cohort [17].  

 

Convolutional neural network for risk stratification 

DL framework was based on a nonlinear proportional hazard model, which assumed 

hazard function (𝜆), a product of a time-dependent baseline hazard function (𝜆0) and a risk 

function determined by covariates: 𝜆(𝑥, 𝑡) =  𝜆0(𝑡) × 𝑒ℎ(𝑥). Conventional Cox model for the 

risk stratification using multiple covariates (𝑥1, 𝑥2, … , 𝑥𝑛) estimates the risk function ℎ(𝑥) 

by a combination of linear functions. 

ℎ𝛽(𝑥) =  𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ +  𝛽𝑛𝑥𝑛 
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DL-based risk stratification modeling also adopts proportional hazard model, however, 

replaces linear risk function with the output of neural network [18]. We designed a simple 

convolutional neural network (CNN) to estimate risk function, ℎ𝜃(𝑥). Firstly, 1-dimensional 

convolutional filters were applied. Filter size was same as the input length, 10. Thus, the 

number of the output of the first layer was same as the number of convolutional filters. Genes 

in different modules were inputted as different channels. We set the number of filters were 24. 

The outputs of convolutional layer were hierarchically connected to three fully-connected 

(FC) layers. Each FC layer had 24 nodes except final output layer. For FC layers, a dropout 

function was applied to reduce overfitting and learn more robust features. This function 

randomly drops the connections with predefined probability. We set the probability as 0.5. 

The final output of CNN, ℎ𝜃(𝑥), was a single node. 

The CNN model was trained by the RMSprop algorithm [19]. The model was optimized 

to minimize the loss function, negative log partial likelihood.  

𝐿(𝜃) = − ∑ ( ℎ𝜃(𝑥) − 𝑙𝑜𝑔 ∑ 𝑒ℎ𝜃(𝑥)

𝑗∈𝑅(𝑇𝑖)

)

𝑖:𝐸𝑖=1

 

𝐸𝑖=1 represents that the event has occurred in individual i at event time Ti. 𝑗 ∈ 𝑅(𝑇𝑖) 

represents that another patient j is still at risk of the event at time Ti.  

5-fold cross validation was performed to determine parameters of DL model. A randomly 

selected subset was used as an internal validation set and converging loss value C-index was 

monitored. Our framework was trained by initial learning rate with 1x10-4 and took 500 

epochs for the training. The CNN was implemented using a deep learning library, Keras (ver. 

1.0.4) with the Theano (ver. 0.8.2) backend [20]. 
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Supplementary Figures 

 

 

Supplementary Figure 1. Gene co-expression network topology analysis for various soft 

threshold powers. (A) Scale-free fit index was changed according to various powers of the 

correlation matrix of genes. The red line represents the cutoff value for the power (R2 = 0.95) 

(B) We chose the smallest soft threshold power where the scale-free topology and mean 

connectivity seems to reach plateau. 
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Supplementary Figure 2. The relationship between co-expression network modules. 

Module eigengene, the first principal component of each module, was calculated. The 

adjacency between modules was measured based on module eigengene and visualized by 

hierarchical clustering dendrogram (left panel) and heatmap (right panel).  
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Supplementary Figure 3. Representative genes selected from the red and turquoise 

modules. Genes membered in each module was ordered according to the gene module 

membership (GMM). Genes in the red and turquoise modules showed strong correlation 

between GMM and the statistical significance (p-value) for the association with overall 

survival. Top 10 representative genes from each red and turquoise module according to GMM 

were selected for risk stratification model construction.  
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Supplementary Figure 4. Subgroup analysis using NetScore in the training set. Kaplan-

Meier survival curve for overall survival according to the risk group dichotomized by the 

median value of NetScore: Female or male (A, B), old or young-aged group (older or 

younger than 60; C, D), current, ex- or never-smokers (E, F, G), and stage I or II (H, I). The 

statistical significance was tested by log-rank test. 
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Supplementary Figure 5. Subgroup analysis using NetScore in the test set 1. Kaplan-

Meier survival curve for overall survival according to the risk group dichotomized by the 

median value of NetScore: Female or male (A, B), old or young-aged group (older or 

younger than 60; C, D), ever- or never-smokers (E, F), stage IA, IB, or II (G, H, I), and 

EGFR mutation positive, KRAS mutation positive or all negative tumors (J, K, L). The 

statistical significance was tested by log-rank test. 
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Supplementary Figure 6. Subgroup analysis using NetScore in the test set 2. Kaplan-

Meier survival curve for overall survival according to the risk group dichotomized by the 

median value of NetScore: Female or male (A, B), old or young-aged group (older or 

younger than 60; C, D), T1 or T2 stage (E, F) and N0 stage (G). The statistical significance 

was tested by log-rank test. 
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Supplementary Figure 7. Comparison of predictability between deep neural network 

and conventional Cox regression models. Both risk stratification models were generated 

using 20 representative genes. Our model was generated by a nonlinear proportional hazard 

model for the survival data based on deep convolutional neural network. The conventional 

model was generated by Cox proportional hazard model. Prediction accuracy of two models 

was statistically compared by concordance index (C-index). Our model based on deep neural 

network showed a trend of higher C-index than the conventional model in all cohorts. Red 

bars represent 95% confidence interval of C-indices.  
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Supplementary Figure 8. Association of gene network prognostic score (NetScore) with 

clinico-pathological variables. The relationship between NetScore and clinico-pathological 

variables was tested in test set 1 (A-D) and 2 (E, F). (A) NetScore was significantly higher in 

male than female (1.06 ± 0.13 vs. 1.02 ± 0.11; t = 2.50; p = 0.01) and (B) ever-smoker than 

never-smoker (1.06 ± 0.12 vs. 1.01 ± 0.11; t=3.29; p = 0.001). (C) NetScore of stage IA, IB 

and II groups was significantly different (1.00 ± 0.11, 1.04 ± 0.12, and 1.11 ± 0.09, 

respectively; p < 0.001). (D) Subgroups according to the molecular subtypes showed 

significantly different NetScore (1.04 ± 0.10 for ALK fusion positive group, 1.01 ± 0.11 for 

EGFR mutation group, 1.11 ± 0.08 for KRAS mutation group and 1.07 ± 0.12 for all negative 
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group; p < 0.001). (E) In test set 2, NetScore of male and female patients was not 

significantly different (0.99 ± 0.17 for female and 1.00 ± 0.14 for male patients; t= 0.26; p = 

0.79). (F) NetScore of pathological T2 or higher stage group was significantly higher than 

that of T1 stage group (1.14 ± 0.14 for T2 and 0.97 ± 0.13 for T1; t= 4.26; p < 0.001).  
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Supplementary Tables 

Supplementary Table 1. Microarray data sets from Gene Expression Omnibus used in this study 

Purpose 
Accession 

number 

Total  
sample 

size 

Adenocarcinoma  
samples 

Survival data  
availability 

Survival data  
in adenocarcinoma 

Training GSE50081 181 127 yes 127 

Training GSE19188 156 45 yes 40 

Training GSE31546 17 17 yes 16 

Training GSE37745 196 106 yes 106 

Training GSE10245 58 40 no   

Training GSE33532 100 40 no   

Training GSE28571 100 50 no   

Training GSE27716 40 40 no   

Training GSE12667 75 68 no   

Test set 1 GSE31210 246 226 yes 226 

Test set 2 GSE30219 307 85 yes 85 
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Supplementary Table 2. Demographic and baseline clinical characteristics of patients 

Variables   Training set (n = 533)   Test set 1 (GSE31210, n = 226)   Test set 2 (GSE30219, n = 85) 

        Available data         
Sex  Female : Male   229:209 (52.3%:47.7%) 438    121:105 (53.5%:46.5%)   19:66 (22.4%:77.6%) 
                  
Age     65.46 ± 10.14 313    59.58 ± 7.40   61.49 ± 9.28 
                  
Smoking Current   52 (29.1%) 

179  

  111(49.1%)     

Ex-smoker   92 (51.4%)         

Never   35 (19.5%)   115 (50.9%)     
                  
T stage T1   79 (43.2%) 

183  

      71 (83.5%) 

T2   99 (54.1%)       12 (14.1%) 

T3   4 (2.2%)       2 (2.4%) 

T4   1 (0.5%)         
                  
N stage N0   136 (78.2%) 

174  

      82 (96.5%) 

N1   34 (19.5%)       3 (3.5%) 

N2   4 (2.3%)         
                  
M stage M0   127 (100%) 127        85 (100%) 
                  
Stage IA   91 (29.1%) 

313  

  114 (50.4%)   

 IB   127 (40.6%)   54 (23.9%)   

 II   73 (23.3%)   58 (25.7%)   

 III   18 (5.7%)       

 IV   4 (1.3%)         
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Mutation All negative         68 (30.1%)     

ALK fusion         11 (4.9%)     

EGFR mutation         127 (56.2%)     

KRAS mutation         20 (8.8%)     
                  

Status Death : Alive   106:183 (36.7%:63.3%) 289    35:191 (15.5%:84.5%)   45:40 (52.9%:47.1%) 

                  

Survival time 
  

52.08 months 
 (0.20 - 190.40) 

289    58.150 months 
(7.37 - 128.80) 

  68.00 months  
(0.00 - 221.00) 
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Supplementary Table 3. Significantly enriched gene ontology biological process terms of five survival-related network modules 

Module Description p-value (FDR adjusted) 

Black  extracellular matrix organization 2.83E-34 

   extracellular structure organization 2.83E-34 

   extracellular matrix disassembly 2.13E-19 

   collagen metabolic process 1.18E-17 

  
 multicellular organismal macromolecule 

metabolic process 
2.34E-17 

  
 

  

Lightgreen  interferon-gamma-mediated signaling pathway 4.66E-17 

  

 antigen processing and presentation of 

exogenous peptide antigen via MHC class I, 

TAP-dependent 

3.05E-16 

  
 antigen processing and presentation of 

exogenous peptide antigen via MHC class I 
3.82E-16 

   type I interferon signaling pathway 3.82E-16 

   cellular response to type I interferon 3.82E-16 

  
 

  

Magenta  mitochondrial translation 1.02E-02 

   mitochondrial translational initiation 1.02E-02 

   mitochondrial translational elongation 1.02E-02 

   mitochondrial translational termination 1.02E-02 

  
 

  

Turquoise 
 DNA strand elongation involved in DNA 

replication 
7.59E-10 
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   mitotic cell cycle phase transition 7.59E-10 

   DNA-dependent DNA replication 1.07E-09 

   cell cycle G1/S phase transition 1.63E-09 

   DNA strand elongation 4.21E-09 

  
 

  

Red  organic acid catabolic process 6.10E-03 

   carboxylic acid catabolic process 6.10E-03 

   small molecule catabolic process 9.60E-03 

   fatty acid metabolic process 1.03E-02 

   branched-chain amino acid catabolic process 1.03E-02 
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