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Figure A: Inclusion/exclusion criteria for the data set of hypothermia studies. The CAMARADES 
database contains a total of 277 comparisons between a control and a hypothermia treated group. 
We included only comparisons where the outcome variable was infarct volume (N=223) with a 
known author for correspondence (N=215), derived from a peer-reviewed article (N=192) and for 
which an infarct was present (i.e. induction of the lesion was successful. N=190). In order to ensure 
that comparisons were independent (i.e. they came from different laboratories), we classified 
comparisons by corresponding author and applied an additional set of inclusion criteria to obtain 
only one comparison per corresponding author. The 190 comparisons were published by 50 different 
corresponding authors. When more than one comparison was published by the same author, we 
selected the comparison with the largest sample size in the treatment group. If more than one study 
had shared maximum sample size, the study with the largest sample size in the control group was 
selected. When more than one study had the same sample sizes for both groups, we selected the 
comparison for which the lowest hypothermia temperature was used. Finally, if there were still more 
than one comparison by corresponding author, we selected the first comparison on the list. 

  



 Intervention Outcome Species restrict N Power: Median Quartiles 
0 hypothermia Infarct volume Rat Yes 50 0.95 0.82-0.99 
1 tPA Infarct volume Rat Yes 57 0.14 0.12-0.17 
2 Trastuzumab Tumour volume ratio Mouse No 58 0.77 0.55-0.87 
3 FK506 Infarct volume Rat Yes 31 0.95 0.92-0.96 
4 Rosiglitazone 2 Infarct volume Rodent No 21 0.93 0.83-0.96 
5 IL-1RA Infarct volume Rodent No 37 0.42 0.34-0.57 
6 Cardiosphere DC EF (%) Rodent Yes 35 0.98 0.97-0.99 
7 Estradiol Infarct volume Rat Yes 24 0.57 0.37-0.63 
8 Human MSC Infarct volume Rat No 26 0.56 0.56-0.78 
9 MK-801 Infarct volume Rat Yes 30 0.80 0.64-0.89 
10 TMZ Infarct volume Rodent No 26 0.96 0.84-0.99 
11 c-kit CSC EF (%) Rodent Yes 20 0.54 0.41-0.68 
12 Rat BMSC Infarct volume Rat No 25 0.33 0.24-0.36 

Table A: Descriptors and selection criteria for 12 additional replicate study pools. We searched the 
CAMARADES database for all drugs or treatments for which we found more than 25 contrasts for the 
same outcome measure. Outcome measures that were collective terms for various measures or tests 
(spec. ‘neuro-behavioural score’, ‘memory’, and ‘learning’) were not considered. Contrasts where 
one of the following data was missing were excluded: sample size, mean outcome, and standard 
deviation for control and treatment group. Studies done with non-rodent species were excluded. If 
the majority of studies were done with a single species, only studies with the predominating species 
were included (indicated by “Mouse” and “Rat” in the column Species), otherwise all species were 
included (“Rodent” in column Species). If species were excluded this is indicated in the column 
‘restrict’. From all contrasts which stem from the same publication only one was selected following 
the following selection rules: 1. The contrast with the largest overall sample size was selected. 2. If 
more than one study had shared maximum sample size, the study with the larger sample size in the 
treatment group was selected. 3. If more than one study shared the maximum number of subjects in 
the treatment group, one study was selected randomly using a random number generator. Only 
treatments where 20 or more contrasts remained, after applying the exclusion criteria, entered into 
the final study pool. N: final number of studies after application of inclusion/exclusion criteria. For 
each study power was estimated for two-sided mean difference tests; expected effect size and 
standard deviation were based on mean values for each intervention, sample sizes as reported in the 
studies. Median power and interquartile range are given for each intervention. A full list with the 
CAMARADES identifiers of the included studies is given in the supplementary data set ‘S1_Data.csv’. 



 

 Intervention N ES S.E. z p CIL CIU Q p(Q) dev τ2 I2 H2 
0 Hypothermia 50 0.48 0.037 12.99 <0.0001 0.41 0.55 667.5 <0.0001 5.86 0.05 91.4 11.56 
1 tPA 57 0.20 0.050 3.40 <0.0001 0.10 0.29 276.6 <0.0001 54.77 0.10 84.8 6.56 
2 Trastuzumab 58 0.46 0.046 10.05 <0.0001 0.37 0.55 1071.9 <0.0001 46.30 0.09 94.6 18.37 
3 FK 506 31 0.39 0.038 10.31 <0.0001 0.32 0.46 186.5 <0.0001 -8.21 0.03 81.9 5.52 
4 Rosiglitazone 2 21 0.47 0.039 12.20 <0.0001 0.40 0.55 84.4 <0.0001 -12.22 0.02 73.0 3.70 
5 IL-1RA 37 0.34 0.029 11.91 <0.0001 0.29 0.40 114.3 <0.0001 -23.17 0.01 54.5 2.20 
6 Cardiosphere DC 35 -0.52 0.036 -14.50 <0.0001 -0.59 -0.45 248.5 <0.0001 -2.44 0.03 91.9 12.43 
7 Estradiol 24 0.36 0.064 5.61 <0.0001 0.23 0.48 127.4 <0.0001 14.34 0.07 84.7 6.54 
8 Human MSC 26 0.25 0.037 6.56 <0.0001 0.17 0.32 414.4 <0.0001 -9.93 0.03 97.2 35.91 
9 MK 801 30 0.36 0.038 9.41 <0.0001 0.28 0.43 116.5 <0.0001 -6.30 0.03 80.7 5.19 

10 TMZ 26 0.51 0.044 11.72 0.0109 0.43 0.60 176.3 <0.0001 -0.64 0.03 86.1 7.21 
11 c-kit CSC 20 -0.30 0.028 -10.79 <0.0001 -0.36 -0.25 36.7 0.0078 -15.89 0.01 41.7 1.71 
12 Rat BMSC 25 0.19 0.048 3.94 <0.0001 0.10 0.29 955.9 <0.0001 -3.34 0.05 94.6 18.41 

Table B: Results of random effects meta-analyses with REML estimators using the R-package metafor 1.9-9. N: number of studies in the final 
study pool, ES: effect size estimate, S.E.: standard error of the effect size estimate, Q: Q-statistic for homogeneity of effect sizes, τ2: between-
study variance, dev: deviance, I2: fraction of total heterogeneity divided by total variability, H2: fraction of total variability divided by sampling 
variability. Meta-analyses were performed after scaling. 



Supporting Text:  

For estimating the true effect for a treatment we employed fixed effect meta-analyses. Here we will 
briefly discuss the reasoning of this choice. Historically, clinical multi-centre studies have been 
analysed in different ways: by simply pooling the data from different centres or by treating centre as 
a fixed or random variable. Pooling the data from different laboratories and performing a t-test or F-
test on the pooled data is a problematic approach, because it clearly violates the assumption of 
independence of the data. This problem has been discussed at length [S1-S3] and the pitfalls of 
pseudo-replication by ignoring statistical dependencies are extensively treated in almost all 
textbooks on experimental design and statistics. We do not recommend this approach, yet we have 
to note that comparing the diagnostic odds ratios for pooled t-tests, 2-way ANOVAs and mixed-effect 
models, we see—for the 13 interventions analysed in this study—only marginal differences in the 
performance of the test methods (Fig. D). Having agreed on accounting for statistical dependencies, 
which arise from testing multiple animals in the same laboratory, we face the decision whether to 
treat lab-membership as a fixed or random factor. With respect to this question there seems to be no 
overall agreement [S4-S6]. We would argue that, conceptually, laboratory is clearly a random factor, 
as the laboratories, which participated in the multi-lab study, are a random sample from the set of all 
existing—or potentially existing—laboratories. Arguably, it is not a true random sample (amongst 
other reasons, national laws and regulations and regional research cultures create spatial 
correlations), but this might be an issue that cannot be resolved. More importantly, we have to note 
that this random factor will only have a very limited number of levels—from 2 to 4 in our simulations 
and perhaps, under rare conditions, up to 5 or 6 for large multi-lab studies. For practical and 
organizational reasons multi-lab studies in pre-clinical research with even higher numbers of 
participating laboratories seem rather unrealistic and we are not aware of any attempts at achieving 
that. With only a few levels of the random factor, the estimation of the hyper-parameters might be 
rather poor [S7]. Several authors suggested rules-of-thumb for a minimum number of levels for 
treating a factor as random. These rules-of-thumb typically suggest between 5 and 15 levels as a 
minimum. This is clearly more than the number of laboratories in a multi-lab study and, following this 
line of reasoning, one should better treat the factor ‘laboratory’ as a fixed factor. On the other side, 
Gellman and Hill [S7] have argued that, even in the extreme case of only two levels, the mixed-effect 
model does not perform worse than a fixed effect model and, therefore, it might even be 
appropriate in cases, where there are only very few levels of the random variable. Apart from this 
issue, there is the question how many degrees of freedom one should attribute to the random factor. 
While some authors suggest that this number can at least be approximated [S8-S10], others disagree 
and recommend forgoing the reporting of p-values and inferential hypothesis testing [S11]. The 
question of degrees of freedom is relevant because the estimation of the ratio psa requires repeated 
hypothesis testing. Therefore, we didn’t want to dismiss this potential problem light-heartedly. 
However, we must again note that for the examined range of sample sizes and number of 
participating laboratories, inference based on random effect models leads to very similar results as 
inference based on fixed effect models (Fig. D), suggesting that both approaches can be equally 
feasible. 
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Figure B. (a) False positive rate and (b) diagnostic odds ratio (DOR) based on 105 simulated samples 
based on 50 studies on hypothermia treatment of stroke for overall sample sizes of N=12 (blue), N=24 
(orange) and N=48 (grey) animal subjects and k= 1 to 4 participating laboratories. Inference was based 
on fixed effects 2-way ANOVA (Y= Treatment + Lab). The thin red line in panel (a) indicates the 0.05 
probability threshold. The diagnostic odds ratio is the ratio of the positive likelihood ratio and the 
negative likelihood ratio, i.e. DOR= (true positive rate / false positive rate) / (false negative rate / true 
negative rate). 
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Figure C. False negative rate (a), false positive rate (b) and diagnostic odds ratio (c) for the 12 
replicate data sets (from left to right: row 1: D1-D6, row 2: D7-D12), based on 105 simulations for 
overall sample sizes of N=12 (blue), N=24 (orange) and N=48 (grey) animal subjects. 

  



 

Figure D. False negative rate and diagnostic odds ratio for the 12 replicate data sets (D1-D12) with 
103 simulations per data set. Inference based on: inclusion of zero by the parametric 95% confidence 
interval (yellow), t-test on pooled data (green), ANOVA with main effects treatment and laboratory 
only (red), ANOVA with main effects and interaction term (violet), general linear mixed model 
Y~treatment+(1|lab) with lab as random effect (blue). In almost all cases diagnostics based on all 5 
inference techniques showed very similar behaviour, showing that the findings are not specific to the 
method of statistical analysis. 

  



 

Figure D cont. 

 

  



Pseudocode for simulating multi-lab studies 

k = number of laboratories 
n = total number of animals 
 
REPEAT the following 100.000 times: 

create a list of k laboratories by sampling without replacement from the study pool 
FOR each laboratory 

control = sample n/(2k) values from a normal distribution with mean and standard deviation  
as reported for the control group and divide those values by the reported mean 
value for the control group 

treatment = sample n/(2k) values from a normal distribution with mean and standard  
deviation as reported for the treatment group and divide those values by the 
reported mean value for the control group 

ENDFOR 
perform a two-way fixed effect ANOVA on the simulated data 
pool the control values of all laboratories 
pool the treatment values of all laboratories 
calculate the means difference and 95% confidence interval for the pooled data 
test whether confidence interval includes the estimate for the means difference of the meta-analysis  

ENDREPEAT 
 
  



Mathematica Code for simulating multi-lab studies 
(Effect size estimate, CI95, and 2-way ANOVA) 
 
getOneES[labslist_] := Module[ 

{nplc, controls, treatments, se, meansdiff, lower, upper, ci, anovap}, 
   nplc = totalsamplesize/(k*2);   (* k is the number of labs and    *) 

(* nplc is the number of animals per lab per condition *) 
   controls = Flatten[Table[RandomReal[NormalDistribution[data[[labslist[[i]], 4]],  

                   data[[labslist[[i]],11]]], nplc]/data[[labslist[[i]], 4]], {i, k}]]; 
   treatments = Flatten[Table[RandomReal[NormalDistribution[data[[labslist[[i]], 7]],  
             data[[labslist[[i]], 12]]], nplc]/data[[labslist[[i]], 4]], {i,k}]]; 
     (* this generates values sampled from normal distributions *) 
     (* with parameters as reported in the original studies *)   
   se = Sqrt[(StandardDeviation[treatments]^2 + StandardDeviation[controls]^2)/(totalsamplesize/2)]; 
     (* se is the standard error for the mean difference  *) 
   meansdiff = Mean[controls - treatments]; (* this is the mean difference   *) 
     anovap =    (* the p-value of a fixed effect ANOVA   *) 
    If[k == 1,  
      ANOVA[Transpose[{Join[Table[0, { totalsamplesize/2}], Table[1, { totalsamplesize/2}]],  
           Join[controls, treatments]}]][[1, 2, 1, 1, 5]],  
     (* for the one-lab condition a one-way ANOVA is made  *) 
     (* and the p-value is assigned to the variable anovap *) 
      ANOVA[Transpose[{Join[Table[0, {{ totalsamplesize/2}], Table[1, {{ totalsamplesize/2}]],  
           Flatten[Join[Table[Table[i, {nplc}], {i, k}], Table[Table[i, {nplc}], {i, k}]]],  
           Join[controls, treatments]}], {x, y}, {x, y}][[1, 2, 1, 1, 5]] 
     (* for more than one lab a two-way ANOVA is made  *) 
     (* and the p-value is assigned to the variable anovap *) 

]; 
   lower = meansdiff - zvalue*se; (* this gives the lower 95% CI    *) 
   upper = meansdiff + zvalue*se; (* this gives the upper 95% CI    *) 
   {truees >= lower && truees <= upper, lower > 0 || upper < 0, anovap, anovap < 0.05} 
 (* this gives a list with: the first entry giving True if the true effect size lies within the 95% *) 

(* confidence interval, and False otherwise, the second entry gives True if the 95% confidence *) 
(* interval is not including zero and False otherwise, the third entry is the p-value estimate*) *) 
(* from the ANOVA, and the fourth entry is True if the p-value of the ANOVA is less than 0.05 *) 
(* and False otherwise         *) 

  ] 
 
results = Table[getOneES[RandomSample[Range[numberofstudies], k]], {100 000}]; 
(*this repeats the simulation 100.000 times. The number of labs (k) and the true effect size (truees) *) 
(* and the number of studies in the data matrix (numberofstudies) must be specified before executing *) 
(* the function. The data of the original studies must be provided as matrix with the observed mean *) 
(* of the control group in column 4, the mean of the treatment group in column 7, the standard  *) 
(* deviation of the control group in column 11 and the standard deviation for the treatment group in *) 
(* column 12.           *) 
 
  



R-code for meta analyses 
 
library("metafor") 
 
data<-read.table("dataset_meta.csv", header=TRUE, sep=';') 
ncontrol<-data$Number.in.Control.Group 
mcontrol<-data$Reported.Mean.in.Control.Group/data$Reported.Mean.in.Control.Group 
sdcontrol<-data$Calculated.SD.in.Control.Group/data$Reported.Mean.in.Control.Group 
ntreatment<-data$Number.in.Treatment.Group 
mtreatment<-data$Reported.Mean.in.Treatment.Group/data$Reported.Mean.in.Control.Group 
sdtreatment<-data$Calculated.SD.in.Treatment.Group/data$Reported.Mean.in.Control.Group 
# This block reads in observed values from data for reported sample size of the control 
# group (ncontrol), reported mean of the control group (mcontrol), reported standard deviation 
# for the control group (sdcontrol), reported sample size of the treatment group (ntreatment), 
# reported mean of the treatment group (mtreatment), and reported standard deviation for 
# the treatment group (sdtreatment).  
 
result.meta <- rma(m1=mcontrol, m2=mtreatment, 
                   sd1=sdcontrol, sd2=sdtreatment, n1= ncontrol, n2=ntreatment, 
                   method="REML", measure="MD")   # ”MD” indicates means difference 
 
summary(result.meta) 


