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S.1. Asymptotic Properties

Let © denote the parameter space of 8, which is a bounded open set in the interior of the
domain of 8, and let F denote the space of the joint distributions of (X, Z). Let 6, € ©
and Fy € F denote the true values of 8 and F, respectively. We impose the following
regularity conditions:

(C.1) The set of covariates (X, Z, W) has bounded support.

(C.2) If there exist two sets of parameters (61, F) and (65, F,) such that
P01(Y|X7Z7 W)Fl(Xaz) = P92<Y|X7Z7 W)F2(Xaz)7

where (Y, X,Z, W) € C = {(y,z,z,w): P(R = 1|y, z,w) > 0}, then 6; = 65 and

I} = F,. In addition, if there exists a constant vector v such that
[a log{Pgo(y1|a:, z, wl)/Peo(y2’a:7 z, w2)}/ae]T’v =0

for any (y;, ¢, z,w;) € C,i=1,2, then v = 0.

(C.3) The density function of Fj is positive in its support and g-times continuously dif-
ferentiable with respect to a suitable measure.

(C.4) The function E(R|X, Z) is g-times continuously differentiable with respect to X
and Z.

(C.5) As n — o0, s, — 00, and n'/2s,7% 0.

Remark S.1 The first part of Condition (C.2) pertains to model identifiability with
complete data. For commonly used regression models, the set C, where P(R = 1|y, z, w) >
0, does not necessarily need to cover the entire support of (Y, X, Z, W). For example,
in linear regression, C can consist of data points with extremely large or small values of
Y only. The second part of Condition (C.2) ensures that the score functions for 0 are
of full rank on C. For linear regression, this condition follows from the linear indepen-
dence of the covariates (1, X T, ZT WT)T. Condition (C.3) pertains to the smoothness

of the joint distribution function of (X, Z). Condition (C.4) holds for all commonly used
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two-phase designs, including the extreme-tail design adopted by the NHLBI ESP. Under
Condition (C.5), the order of the B-spline basis ¢ is greater than d, /2. Thus, when d, = 1,
we can choose ¢ = 1 and use the histogram basis {B}(z)}?f{l to estimate P(X|Z2).

We state the asymptotic results in two theorems and provide the proofs.

Theorem S.1. Under Conditions (C.1)—(C.5), Hé\—OOH—I—supm,z\ﬁ(m, z)—Fy(x,z)| =0
almost surely.

Proof. Because 6 is bounded and F (x, z) is a distribution function with bounded
support, it follows from Helly’s selection theorem that, for any subsequence of 6 and
a (x, z), there exists a further subsequence, still denoted as 0 and F (x, z), such that 0
converges almost surely to some vector 8* and F (x, z) converges weakly to some function
F*(x, z). Because Fj is a continuous function under Condition (C.3), Theorem S.1 will
hold if we can show that 8* = 6, and F* = Fj,.

Because py; maximizes expression (2), differentiating expression (2) with respect to

pr; yields
= x1) B} (Z))

ZR

J
A(Y|wk7zi= W)Bq(Z> ~
+Z s — 7ij, (S.1)
Py(Yilzw, Zi, W) B} (Z:)pr

]/1 k’l

where [i; is the Lagrange multiplier for the constraint that >, | pr; = 1. By multiplying

both sides of equation (S.1) with py; and then summing over k, we have

- - D= L Ps(Yilxw, Zi, W;) B (Z;)pr;
pp =) RBj(Zi)+ ) (1- R 5 . (82
; J( ) ;( ) n (Y|-’13k/ Zw W)Bq (Zz')pk’j’ ( )

]/1 k’l

It then follows from equation (S.1) that

5 Yoy Ril(X; = =) B} (Z;)
ki = n Py(Yi|@1.,2:,W,)BX(Z;)
Hj — Zi:l(l - R;) > Zﬁzl P§(Yi|:ck/,Zi,Wi)B?,(Zi)ﬁk/j/

(S.3)

By replacing fi; in equation (S.3) with the right-hand-side of equation (S.2), we obtain

ﬁ( —iL‘k|Z ZB pk]



=) B2 ZZ” ( ) 5,(Z) . (S4)
. n ) . ) 7;: PA(}fikl}k/,Zi,Wi)ﬁk/ ‘—PA(Y;'|:B]€,ZZ',W1') q )
i=1 > {Rz (= R s S P iew 2 Wb oy } B;j(Z)
Because the B-spline basis functions have local support, we have
1Bj(2) = Bj(2)I(||Z — 2| S &) S & J=1,--, 50, (S.5)

where &, = (b, + 1)7!, and “<” means less than or equal to up to a constant. It follows
from equation (S.4) and inequality (S.5) that P(X = x;|z) is asymptotically equivalent

to

Dot 2o Bl (X =y, || Z; — 2| < &) Bj(2)
Sn n Sviy Ps(Yiley . Z; Wi)py i —Py(Yilek, Zi,W5)
21 iz {Ri + (L= R S S e 2 W0 B, ooy } (12 - 21l < &) Bj(2)
Do iy Ril(Xi = @, | Z; — 2| < &) B](2)
Sn n P"(}/Zlm »ZhWi) ‘
Dt D i {1 - (1- Ri)zjf;t:l m é\(n‘mkkhzi,wi)B;?,(Zi)ﬁk,j, } I(||1Z; — z|| < &.)Bj(2)

(S.6)

By combining equations (A.2) and (S.6), we conclude that the distribution function

~

F(x, z) is asymptotically equivalent to

n—l ii[(a‘:k <@y . 7Z < Z) Zjll ZZ:l Rz/[<X1/ = Ty, HZz’ — Zz“ < é‘n)B;Z(ZZ)
kil 7,:1 - ’ - gln(wk,Z’L’O’F) Y
where
o~ o~ Sn n PA(}/Z’CC7Z17.W;L)
gin(@, 26, F) = 1= (1= B) o2 _
7=1 =1 Zj’:l k=1 Pg(Y;’wk” Z,L-7 M)Bj/<Zz)pk/]/
x 1(|Z; — || < &)Bl(z). (S.7)

We wish to show that (ns,) g1, (x, z; (9\, F ) is bounded away from zero for sufficiently
large n. By the approximation theory of B-splines (Schumaker 1981) and Glivenko-

Cantelli theorem,

n! Z Z Py(ylxy, z, w)Bj,(2)pr;
§'=1 k=1
- / Py(y|F, 2, w)F(dF, ) — / Py (4], 2, w) F* (dZ, 2) (S.8)
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o~

uniformly in (y, z,w). It follows from equations (S.7) and (S.8) that (ns,) 'gi.(x, 2;0,

~

F) converges to ¢i(x, z; 0*, ['*) for (x, z) in the support of (X, Z), where

Po-(Yx,Z,W) [ F*(dx, Z) -
[ Po- (Y2, Z, W)F*(dx, Z) } z<Z>’Z = z] >0,

(S.9)

g1z, 2,0°, F*) = E {{1 —(1-R)

and f,(-) is the density function of Z. Thus, it follows from equations (S.6), (S.7), and

(S.9), and the approximation theory of B-splines (Schumaker 1981) that
T D 2 Rl (X =y, | 20 — 2|| < &) Bj(2)

1:Z]3(X:a:k\z) :Z

k=1 gln(mk7z;07F)

E{Rf.(Z)|Z = z}
_>/ gi(x, z; 0%, F*) i

If g1(x, z; 0%, F*) is not bounded away from zero, then there exists @y € D,,, where D, is
the support of X, such that g;(xo, z; 0%, F*) = 0. Because gi(xo, z; 0%, F*) is a smooth
function of the continuous components of x, there exists a positive constant ¢ such that

for any € > 0,
o [BREDIZ =D, [ BULDEZ=),
gl(waz;0*7F*) +e ||z—xo||<d \gl(a:,z,H*,F*)l t€

L[ EmEize),
lz—zoll<s 11T — ol + €

x, (S.10)

where “2” means greater than or equal to up to a constant. Because wa_%HS&(l/Hw —
Xo||)dx is infinite, the last integration in expression (S.10) also goes to co when € — 0,
which is a contradiction. Thus, ¢;(xo, z; 0*, F*) is bounded away from zero for (x, z) in
the support of (X, Z). The same conclusion holds for (ns,) gi,(x, z; 5, ﬁ) when n is
sufficiently large.

The final step is to prove that 8* = 6y and F* = Fy through the Kullback-Leibler
inequality. Let

> iy Ril(X; = =) Bj(Z;)/ P(R; = 1|Y;, Z;, W)

Prj =

and let F(x,z) =n"" Dbt 2o Ly <@, 2 < 2) 370" Bi(Z;)pk;. By the approxima-



tion theory of B-splines (Schumaker 1981), F(x, z) — Fy(, z) uniformly. Furthermore, it
follows from the definitions of F and F that F is absolutely continuous with respect to F.
Thus, dF /dF converges uniformly to dF*/dFy. By Condition (C.3), F* is continuously
differentiable with respect to « and z.

By the definitions of 8 and {py;}, we have n=20,(0, {Di;}) > n~ (60, {Pr;}), i.e

Y’-Xz Zz m _ pk
—n" R;log — NRY IX, =z B}(Z;)log =
o G ) Y I = a0 3 Bz s B
. Py }/’L 7Zi7‘/‘/i F(d 7Zi
—n 3 (1 - Ry)log J FpVifa )F(d, Z) <0. (S.11)
1 [ Po,(Yilz, Z;, Wi) F (dz, Z;)
The first term in expression (S.11) converges to
Po-(Y|X,Z, W)
—E<JRI . S.12
(e i 7 7w o2

By the approximation theory of B-splines (Schumaker 1981), >°°", B(z) log(pk;/Dx;) is
asymptotically equivalent to

> ity Bi(2)Dr; dF(z, z)
> it B (z)Du; dF (z, 2)

=T

Thus 37", Bj(2) log(Pk;/Pr;) converges uniformly to log{dF*(zx, z)/dFy(x, 2) } =w,. As

a result, the second term in expression (S.11) converges to

—E{Rlog%} : (S.13)

The third term in expression (S.11) converges to

[ Po-(Y|z, Z, W>F*(dwaz>}. (8.14)

_E{(l ~ R)log [ Poy(Y|z, Z, W) Fo(da, Z)

By combining expressions (S.12), (S.13), and (S.14), we conclude that the Kullback-
Leibler information of the density indexed by 8* and F™* with respect to the true density is
nonpositive and thus must be zero. Therefore, the two densities are identical almost surely.
For R = 1, this implies that Pe«(Y|X,Z, W)F*(X,Z) = Pp,(Y| X, Z,W)Fy(X, Z). 1t

follows from Condition (C.2) that 8* = 6y and F'* = F,. Thus, Theorem S.1 holds. W



Theorem S.2. Under Conditions (C.1)~(C.5), n'/2(6 — 8,) converges in distribution to
a zero-mean normal random vector whose covariance matrix attains the semiparametric
efficiency bound.

Proof. Let lg denote the score function for €y and [z(h) denote the score function along
the submodel {1 + eh(x, z)}dFy(x, z) based on one complete observation (Y, X, Z, W),
where h € Ly(P), P is the probability measure indexed by (6o, Fy), and E{h(X, Z)} = 0.
We have lg = 0log Py, (Y| X,Z,W)/00 and lp(h) = h. For two-phase studies, the score
operators are l§ = Rlg + (1 — R)E(lg|Y, Z,W) and 19 = Rlp + (1 — R)E(Ip|Y, Z,W).
The information operator is

lg'ls 157l%
lply 15"lE
where [g" and 9" are the adjoint operators of I§ and (%, respectively. We calculate the

information operator as

15715 = E{Rlp™ + (1 — R)E(lo|Y, Z,W)¥*} ,
lg" i (h) = 13" 15(h)" = E[E{Rlg + (1 — R)E(le|Y, Z, W)|X, Z} h(X, Z)], and

19°1%.(h) = E(R|X, Z)WX, Z) + E{(1 - R)E(W(X,Z)|Y,Z,W)|X,Z}.

This information operator is the sum of an invertible operator and a compact operator
from the space M = R? x BV (D, ) to itself, where d is the dimension of 8, and BV (D, .)
is the space of functions with bounded total variation in the support of (X, Z). By
Theorem 4.7 of Rudin (1973), the information operator is invertible if it is one to one, or
equivalently, the Fisher information along any nontrivial submodel is nonzero.

Suppose that the Fisher information is zero along some submodel [@y+cv, dFy(x, z) {1+
eh(x, z)}]. Then, the score function along this submodel, i.e., (3T v + (%(h), is zero. We

set R = 1 to obtain ljv + lp(h) = 0 for any (Y, X,Z , W) € C. Specifically, for any



(yi,x, z,w;) € C, i = 1,2, we have

0 * 0 *
{%logpgo(yﬂw,z,wl)} v+ h(zx, z) = {%logpgo(yﬂw,z,wg)} v+ h(x, z),

which can be rewritten as a linear equation on v, i.e.,

) ) T
{% log Pa, (y1|x, 2z, w1) — %log Po, (y2|z, z,wg)} v=0.

By Condition (C.2), v = 0 and h = 0 with probability one. Thus, the information
operator is invertible. Consequently, there exists a function h such that (%*1%(h) = %713,

E(R|X,Z)h+E{(1 - R)E(h|Y,Z,W)|X, Z}

—E{RIg + (1 — R)E(lg]Y, Z, W)| X, Z} . (S.15)

This means that the least favorable direction for 6, exists. In addition, by using the
arguments in the proof of Theorem 3.4 of Zeng (2005) and Conditions (C.3) and (C.4),
we can show that h is g-times continuously differentiable.

Because (6, F) maximizes expression (2), the derivatives of the log-likelihood function
with respect to € along the submodel (§+ €v, dﬁ) for any v and the submodel {5, dﬁ(l +
¢hy,)} must be zero, where h, is the projection of h onto the tangent space of the sieve
space. By the approximation theory of B-splines (Schumaker 1981), we have ||h, —h| L, S
sn "% Therefore, (é\, F\) is the solution to the functional ¥, (0, F') = 0, where ¥, (0, F) =

qjln(aaF) - \D2n(0>F)>

01,(0, F) = P, {Rf;ielog P(YIX. Z, W)}

+ Pn {(1 o R) %IOgPO(Y’.’D, ZaW)QQ(Ya Z7W7w707F)F<dw7Z)} )

Uy, (0, F) =P, {Rh,(X,Z)}

4Py {(1 _R) /gg(Y, Z. W, 2:0, F)h,(x, Z)F(dx, Z)} ,



P,, is the empirical measure of the sample, and

[Py(Y|z, Z, W)F(di, Z)

0V, Z, W x:0,F) =

Let W(O, F') be the same as V,,(0, F') except that P, is replaced by P. Clearly, 0 satisfies

the following equation:
nl/? {mn(é, F) — (8, z?)} — nl29(@, F). (S.16)
We wish to use Theorem 2.11.22 of van der Vaart and Wellner (1996) to show that
/2 {\pn(é, F) — (8, ﬁ)} = 2P, — P) {13 — 1%(hy)} + 0,(1). (S.17)

Note that the left-hand side of equation (S.17) is an empirical process of the following

two classes of functions indexed by (é, F )E

Fin :{R%long(YLX ZW)+(1-R /—logPo(Y!w,Z,W)

X go(Y,Z,W,x;0, F)F(dx,Z) : |0 — 0y| + || F — Fo|| < eo};
7 ={Rhn(X,Z> L _R)/g2<y, Z,W . 2.0, F)h,(z, Z)F(dz, Z) -
66l 4117~ Fll <.

where ||F — Fpl| is the supreme norm in D, .. By Theorem S.1 and the approximation

theory of B-splines (Schumaker, 1981), it is straightforward to verify that

(9
89 logP3(Y|X,Z,W)+(1-R /80 log P5(Y|x, Z, W)

xgg(YZWwGF) F(dz, Z)

0 log Py, Y|z, Z, W)

%Rglongo(Y]X,Z,W)—i-(l—R) 20

00
PBO(Y|:B’ Za W)FO(dmv Z)
IPOO(YL’B? Z> W)Fo(dw, Z)

= Rlg + (1 - R)E{l9|y7 Z7 W} = lg7



and

Rh,(X,Z)+ (1 — R) /92(1/, Z.W,x,0, F)h,(x, Z)F(dx, Z)

h(z, Z) P, (Y |x, Z, W) Fy(dzx, Z)
f P90 (Y|w7 Za W)Fo(diB, Z)

— RW(X,Z)+ (1 - R)f
= Rh(X,Z)+ (1 - RE{h(X,Z)|Y,Z, W} = 15(h)

uniformly in (Y, X, Z, W).

Clearly, all functions in the classes Fi, and JF3, are uniformly bounded. We wish to
verify the conditions in Theorem 2.11.22 of van der Vaart and Wellner (1996). We first
show that the classes of functions F;,, and JF», satisfy the uniform entropy condition. Pick
any two functions from Fi,, say fi; and fy, which are indexed by (61, F1) and (69, F3),

respectively. The difference between the two functions is bounded from above by

’—longl YIX.ZW)~ o5

0
log P, (Y| X, Z W)‘

+‘ 70 log Po,(Y|x, Z, W)ga(Y, Z, W ,x; 01, Fy)(F; — FQ)(dQZ‘,Z)‘
‘/{ log Po,(Y|x,Z, W) — (980 log Po,(Y|x, Z W)}

x (Y, Z, W x; 01, F1)F5(dex, Z)‘

‘/ log P, (V[2, 2, W){0:(Y, 2, W, 2,01, )

— Y, Z, W,z 0,, Fg)}FQ(dw, Z)‘

(i) + (it) + (44) + (iv).
By the mean-value theorem, (i) < ||61 — 6:||. Because the denominator in the expression

of go(Y, Z,W ,x;0, F) is bounded away from zero, we obtain that

(17) 5/\F1(a:,Z) — Fy(x,Z)|dx g/]Fl(zc,z) — Fy(z, z)| dedz.
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By the mean-value theorem,
(ii) S (|61 — 62| /92(5/, Z,W,x;6,, F1)Fy(de, Z) < |61 — 62
Likewise,
(iv) < |01 — 6o + / |Fi(x, z) — Fy(x, z)|dedz.
Combining the above inequalities for (i), (i7), (i), and (iv), we have
£~ 21 5180 6al + [ IFi(a,2) - Fa(e, 2)ldwdz

Thus, the Cauchy-Schwartz inequality implies that, for any finite measure Q,

1/2
I~ fllio) <160 = 60l + { [ 1Fi(e.2) - Fale. )P}
=101 — 62 + [|[F1(X, Z) — F»(X, Z)|[1,(5), (S.18)
where é is the uniform measure on D, .. We conclude that

NA{e, Fin, L2(Q)) SN(€/2,(0: (6 — 6o < o), |-}

% N(e/2,(F : ||F — Fyllw <€), L2(O)}, (S.19)

where N(-,-,-) denotes the covering number. On the right-hand side of (S.19), the first
covering number is O(1/¢?). The second covering number is Olexp{e~2"/(V+2}] where V
is some positive index. To see the latter result, we observe that (F : ||F' — Fyllo < €) is in
the symmetric convex hull of a Vapnik-Chervonenkis class [[{a < (XT, Z")T < b}: a,b €
Ré=*4=] where d, denotes the dimension of X. The result follows from Theorem 2.6.9 of
van der Vaart and Wellner (1996). Therefore, expression (S.19) implies that Fi,, satisfies
the uniform entropy condition in Theorem 2.11.22 of van der Vaart and Wellner (1996).
By similar arguments and the fact that ||h,||z, < ||h]|z,, we can show that F, also
satisfies the uniform entropy condition.

If we replace measure Q by P, then expression (S.18) implies that the functions in
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Fin and Fy, are Lipschitz continuous with respect to (6, F) in the metric defined as

p{(01, F1), (02, Fo)} = |01 — Oa]| + || F1 — Fa|| L, 0p)-

As a result, condition (2.11.21) in Theorem 2.11.22 of van der Vaart and Wellner (1996)
holds. In addition, the total boundedness of the index set (0, F') holds due to the precom-
pactness of (0, F') under the uniform metric. We have now verified all of the conditions
in Theorem 2.11.22 of van der Vaart and Wellner (1996). Thus, equation (S.17) follows
from that theorem.

By combining equations (S.16) and (S.17), we have
/2 {w,(8, F) = (8, F) } = n2(P, = P){lg — l5:(ha)} + 0y(1), (S.20)

where Wy(0,F) and Wy(0, F) are the same as W,(0,F) and W,y,(0, F), respectively,
except that P, is replaced by P. The left-hand side of equation (S.20) can be linearized

around (6, Fp). Specifically,

2

o~ o .
\Ifl(g,F) = \Ifl(eo,Fo) + P{Rm log Pg* (YV|)(7 Z7 W)(O - 90)}

—i-P[(l—R)/%{{%long*(Ykn,Z,W)gQ(Y,Z,W,w;O*,F*)}

x (6 — 6)) F(de, Z)}
+P (1—R)/31 Po-(Y|x, Z, W) 9 Y, Z, W, x; 0" F*)
00 0g g+ T, 4, 8Fg2 ) & y L3 0,
X F*(dm,Z)}(ﬁ - Fo)],

where 0/0F denotes the pathwise derivative, and (6%, F*) lies between (5, F ) and (6y, Fp).
Similar expansions can be obtained for \112((9\, F ). By the approximation theory of B-

splines (Schumaker 1981), we can show that the left-hand side of (S.20) equals

=02 {1+ 0p(1)} B {159(8 — 80) + g (F = Fo) = L5g(10)(0 = 0) = U, F = Fy) |

—n1/2 {\Ijl(eo,Fo) - \Ilg(eo,Fo)}, (821)
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where 1§, is the derivative of [§ with respect to 0, 15,(h) is the derivative of [§ with
respect to I along the direction h, (%4 (h) is the derivative of [%(h) with respect to 8, and
195(h1, ho) is the derivative of (%.(hy) with respect to F' along the direction hs.

Because we have chosen h to be the least favorable direction for 8y and ||h,, — h|z, <

sn % we have E{%p(hn, F—F)} = E{I5(F—Fy)}+O0(s2 ") and E{1%(h,,)(0—6,)} =
E{l%e(h>(§—00>}+0(5;q/dz). Thus, by Condition (C.5), the first term in expression (S.21)
is nl/zE(é—Oo)—i—O(nl/zs;q/dz) = n}/2%(6—6y)+o0(1), where & = —E{l§—1%¢(h)}, which
is an invertible matrix due to the invertibility of the information operator for (6y, Fp).

Because P {Rdlog Pp,(Y|X,Z,W)/06} = 0 and

73{(1 —R)/%logpoomw,zm P0°(Y’m’Z’W)FO(dw7Z)>} -0

f PHO(Y|x7 Z7 W)FO(dwa zZ

the last term in (S.21) equals zero. It follows from equation (S.20) that
n2{1+ 0,(1)} (60 — 8y) + 0,(1) = n/2(P, — P) {lg — 15:(h)} .

Thus, we have established the asymptotic normality in Theorem S.2. Because X 1{l§ —
19:(h)} is the efficient influence function for 6y, its limiting covariance matrix attains the
semiparametric efficiency bound. M

For a given 6, we define Fy as the joint distribution function of (X, Z) that maximizes
1,(6,{pk;}). By the arguments in the proof of Theorem S.1, we can show that for any
0 — 6 in probability, the estimator ﬁg — Fp uniformly. Furthermore, given the existence
of the least favorable directions, we can construct the least favorable model. These two
facts imply that the profile likelihood theory in Murphy and van der Vaart (2000) holds
for our approach. Thus, the inverse of the negative Hessian matrix of the profile likelihood

function is a consistent estimator for the limiting covariance matrix of n'/2(8 — ).
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S.2. Supplementary Figures and Tables
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Figure S1. Plots of {N/(2)}__,,, for ¢ = 1, 2, and 3. The functions in each B-spline

basis are distinguished by different colors.
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Figure S2. Quantile-quantile plots for the analysis of age, gender, and cohort indicators
in the DPR group.
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Figure S3. Quantile-quantile plots for the analysis of the BP study in the NHLBI ESP
using the SMLE method with different numbers of sieve regions.
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Figure S4. Quantile-quantile plots for the analysis of the LDL study in the NHLBI ESP
using the SMLE method with different numbers of sieve regions.
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Table S1. Additional Simulation Results Under the Model Y = 0.5X 4+ 0.5Z + 0.5W + ¢
With the Second-Phase Sample Selection Depending Only on Y

SMLE MLE,
n r  Covariate Bias SE SEE CpP RE Bias SE

4000 0.0 X 0.006 0.099 0.094 0.942 1.048 0.008 0.102
Z 0.002 0.062 0.062 0.951 2.728 0.006 0.103

W -0.001 0.055 0.055 0.949 3.380 0.006 0.102

0.1 X 0.008 0.100 0.095 0.940 1.040 0.008 0.102
Z 0.006 0.062 0.062 0.949 2.820 0.006 0.104

W -0.001 0.055 0.055 0.950 3.422 0.006 0.103

0.2 X 0.006 0.100 0.094 0.941 1.099 0.008 0.104
Z 0.007 0.061 0.061 0.949 2.973 0.006 0.105

W -0.001 0.055 0.055 0.950 3.480 0.007 0.103

0.3 X 0.003 0.099 0.095 0.941 1.155 0.008 0.107
Z 0.006 0.061 0.061 0.950 2.971 0.006 0.105

W -0.001 0.056 0.055 0.949 3.509 0.006 0.104

6000 0.0 X 0.005 0.096 0.093 0.937 1.061 0.006 0.099
Z 0.002 0.054 0.054 0.954 3.387 0.008 0.099

W 0.000 0.045 0.045 0.952 4.740 0.007 0.098

0.1 X 0.008 0.097 0.092 0.936 1.047 0.006 0.100
Z 0.008 0.053 0.053 0.951 3.540 0.007 0.099

W 0.000 0.045 0.045 0.951 4.790 0.007 0.099

0.2 X 0.003 0.095 0.090 0.936 1.131 0.006 0.102
Z 0.007 0.052 0.052 0.949 3.782 0.007 0.101

W 0.000 0.045 0.045 0.951 4.926 0.007 0.100

0.3 X -0.001 0.095 0.089 0.936 1.217 0.006 0.104
Z 0.007 0.052 0.052 0.948 3.785 0.007 0.101

W 0.000 0.045 0.045 0.952 5.004 0.007 0.101

NOTE: Bias and SE are, respectively, the empirical bias and standard error
of the parameter estimator; SEE is the empirical mean of the standard error
estimator; CP is the coverage probability of the 95% confidence interval; RE
is the empirical variance of MLE( over that of SMLE. Each entry is based on
10,000 replicates.
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Table S2. Simulation Results When Z is Misclassified as Being Independent of X

r  Covariate Bias SE SEE CP
0.00 0.002 0.108 0.108 0.948
0.000 0.078 0.078 0.949
-0.001 0.078 0.078 0.952

0.009 0.108 0.108 0.948
0.009 0.078 0.078 0.948
-0.001 0.078 0.078 0.953

0.016 0.108 0.108 0.947
0.017 0.077 0.078 0.944
-0.001 0.078 0.078 0.953

0.023 0.108 0.108 0.947
0.025 0.077 0.078 0.940
-0.001 0.078 0.078 0.953

0.030 0.108 0.108 0.943
0.034 0.077 0.078 0.931
-0.001 0.078 0.078 0.953

0.037 0.109 0.108 0.939
0.042 0.077 0.078 0.919
-0.001 0.078 0.078 0.953

0.053 0.108 0.108 0.923
0.061 0.076 0.077 0.879
-0.001 0.078 0.078 0.952

0.069 0.109 0.108 0.907
0.080 0.076 0.077 0.826
-0.001 0.078 0.078 0.953

NOTE: See the Note to Table S1.

0.02

0.04

0.06

0.08

0.10

0.15

0.20

S TN TN OSINX SNX SN SINX SN

20



Table S3. Simulation Results Under the Model Y = 0.5X +0.52; +0.52Z; + ¢

Second-phase sampling r  Covariate Bias SE SEE CP

Depend only on Y 0.0 X 0.006 0.094 0.091 0.945
Z; -0.001 0.080 0.079 0.949
Zy 0.001 0.079 0.079 0.950

0.1 X 0.015 0.094 0.092 0.940
Z; 0.002 0.079 0.079 0.948
Zy 0.004 0.078 0.079 0.948

0.2 X 0.020 0.096 0.094 0.940
Z; 0.002 0.078 0.079 0.949
Zy 0.004 0.078 0.079 0.948

0.3 X 0.022 0.100 0.098 0.934
Z; 0.001 0.078 0.079 0.954
Zy 0.002 0.078 0.079 0.951

Depend on (Y, Z1,7;) 0.0 X 0.006 0.091 0.089 0.943
Z; -0.001 0.079 0.079 0.950
Zy 0.000 0.079 0.079 0.951

0.1 X 0.006 0.091 0.089 0.944
Z; 0.003 0.079 0.079 0.950
Zy 0.004 0.079 0.079 0.950

0.2 X 0.005 0.093 0.092 0.946
Z;  0.005 0.079 0.079 0.948
Zy 0.006 0.078 0.079 0.952

0.3 X 0.000 0.096 0.095 0.943
Zy 0.006 0.079 0.079 0.951
Zy 0.008 0.079 0.079 0.951

NOTE: See the Note to Table S1.
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