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S.1. Asymptotic Properties

Let Θ denote the parameter space of θ, which is a bounded open set in the interior of the

domain of θ, and let F denote the space of the joint distributions of (X,Z). Let θ0 ∈ Θ

and F0 ∈ F denote the true values of θ and F , respectively. We impose the following

regularity conditions:

(C.1) The set of covariates (X,Z,W ) has bounded support.

(C.2) If there exist two sets of parameters (θ1, F1) and (θ2, F2) such that

Pθ1(Y |X,Z,W )F1(X,Z) = Pθ2(Y |X,Z,W )F2(X,Z),

where (Y,X,Z,W ) ∈ C ≡ {(y,x, z,w): P (R = 1|y, z,w) > 0}, then θ1 = θ2 and

F1 = F2. In addition, if there exists a constant vector v such that

[∂ log{Pθ0(y1|x, z,w1)/Pθ0(y2|x, z,w2)}/∂θ]Tv = 0

for any (yi,x, z,wi) ∈ C, i = 1, 2, then v = 0.

(C.3) The density function of F0 is positive in its support and q-times continuously dif-

ferentiable with respect to a suitable measure.

(C.4) The function E(R|X,Z) is q-times continuously differentiable with respect to X

and Z.

(C.5) As n→∞, sn →∞, and n1/2s
−q/dz
n → 0.

Remark S.1 The first part of Condition (C.2) pertains to model identifiability with

complete data. For commonly used regression models, the set C, where P (R = 1|y, z,w) >

0, does not necessarily need to cover the entire support of (Y,X,Z,W ). For example,

in linear regression, C can consist of data points with extremely large or small values of

Y only. The second part of Condition (C.2) ensures that the score functions for θ are

of full rank on C. For linear regression, this condition follows from the linear indepen-

dence of the covariates (1,XT,ZT,W T)T. Condition (C.3) pertains to the smoothness

of the joint distribution function of (X,Z). Condition (C.4) holds for all commonly used
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two-phase designs, including the extreme-tail design adopted by the NHLBI ESP. Under

Condition (C.5), the order of the B-spline basis q is greater than dz/2. Thus, when dz = 1,

we can choose q = 1 and use the histogram basis {B1
j (z)}bn+1

j=1 to estimate P (X|Z).

We state the asymptotic results in two theorems and provide the proofs.

Theorem S.1. Under Conditions (C.1)–(C.5), ‖θ̂−θ0‖+supx,z|F̂ (x, z)−F0(x, z)| → 0

almost surely.

Proof. Because θ̂ is bounded and F̂ (x, z) is a distribution function with bounded

support, it follows from Helly’s selection theorem that, for any subsequence of θ̂ and

F̂ (x, z), there exists a further subsequence, still denoted as θ̂ and F̂ (x, z), such that θ̂

converges almost surely to some vector θ∗ and F̂ (x, z) converges weakly to some function

F ∗(x, z). Because F0 is a continuous function under Condition (C.3), Theorem S.1 will

hold if we can show that θ∗ = θ0 and F ∗ = F0.

Because p̂kj maximizes expression (2), differentiating expression (2) with respect to

pkj yields

n∑
i=1

Ri

I(Xi = xk)B
q
j (Zi)

pkj

+
n∑
i=1

(1−Ri)
Pθ̂(Yi|xk,Zi,Wi)B

q
j (Zi)∑sn

j′=1

∑m
k′=1 Pθ̂(Yi|xk′ ,Zi,Wi)B

q
j′(Zi)pk′j′

= µ̂j, (S.1)

where µ̂j is the Lagrange multiplier for the constraint that
∑m

k=1 p̂kj = 1. By multiplying

both sides of equation (S.1) with pkj and then summing over k, we have

µ̂j =
n∑
i=1

RiB
q
j (Zi) +

n∑
i=1

(1−Ri)

∑m
k′=1 Pθ̂(Yi|xk′ ,Zi,Wi)B

q
j (Zi)pk′j∑sn

j′=1

∑m
k′=1 Pθ̂(Yi|xk′ ,Zi,Wi)B

q
j′(Zi)pk′j′

. (S.2)

It then follows from equation (S.1) that

p̂kj =

∑n
i=1RiI(Xi = xk)B

q
j (Zi)

µ̂j −
∑n

i=1(1−Ri)
P
θ̂
(Yi|xk,Zi,Wi)B

q
j (Zi)∑sn

j′=1

∑m
k′=1 Pθ̂(Yi|xk′ ,Zi,Wi)B

q

j′ (Zi)p̂k′j′

. (S.3)

By replacing µ̂j in equation (S.3) with the right-hand-side of equation (S.2), we obtain

P̂ (X = xk|z) =
sn∑
j=1

Bq
j (z)p̂kj

3



=
sn∑
j=1

Bq
j (z)

∑n
i=1RiI(Xi = xk)B

q
j (Zi)∑n

i=1

{
Ri + (1−Ri)

∑m
k′=1 Pθ̂(Yi|xk′ ,Zi,Wi)p̂k′j−Pθ̂(Yi|xk,Zi,Wi)∑sn

j′=1

∑m
k′=1 Pθ̂(Yi|xk′ ,Zi,Wi)B

q

j′ (Zi)p̂k′j′

}
Bq
j (Zi)

. (S.4)

Because the B-spline basis functions have local support, we have

|Bq
j (z̃)−Bq

j (z)I(‖z̃ − z‖ ≤ ξn)| . ξn, j = 1, . . . , sn, (S.5)

where ξn = (bn + 1)−1, and “.” means less than or equal to up to a constant. It follows

from equation (S.4) and inequality (S.5) that P̂ (X = xk|z) is asymptotically equivalent

to ∑sn
j=1

∑n
i=1RiI(Xi = xk, ‖Zi − z‖ ≤ ξn)Bq

j (z)∑sn
j=1

∑n
i=1

{
Ri + (1−Ri)

∑m
k′=1 Pθ̂(Yi|xk′ ,Zi,Wi)p̂k′j−Pθ̂(Yi|xk,Zi,Wi)∑sn

j′=1

∑m
k′=1 Pθ̂(Yi|xk′ ,Zi,Wi)B

q

j′ (Zi)p̂k′j′

}
I(‖Zi − z‖ ≤ ξn)Bq

j (z)

=

∑sn
j=1

∑n
i=1RiI(Xi = xk, ‖Zi − z‖ ≤ ξn)Bq

j (z)∑sn
j=1

∑n
i=1

{
1− (1−Ri)

P
θ̂
(Yi|xk,Zi,Wi)∑sn

j′=1

∑m
k′=1 Pθ̂(Yi|xk′ ,Zi,Wi)B

q

j′ (Zi)p̂k′j′

}
I(‖Zi − z‖ ≤ ξn)Bq

j (z)

.

(S.6)

By combining equations (A.2) and (S.6), we conclude that the distribution function

F̂ (x, z) is asymptotically equivalent to

n−1
m∑
k=1

n∑
i=1

I(xk ≤ x,Zi ≤ z)

∑sn
j=1

∑n
i′=1Ri′I(Xi′ = xk, ‖Zi′ −Zi‖ ≤ ξn)Bq

j (Zi)

g1n(xk,Zi; θ̂, F̂ )
,

where

g1n(x, z; θ̂, F̂ ) =
sn∑
j=1

n∑
i=1

{
1− (1−Ri)

Pθ̂(Yi|x,Zi,Wi)∑sn
j′=1

∑m
k′=1 Pθ̂(Yi|xk′ ,Zi,Wi)B

q
j′(Zi)p̂k′j′

}

× I(‖Zi − z‖ ≤ ξn)Bq
j (z). (S.7)

We wish to show that (nsn)−1g1n(x, z; θ̂, F̂ ) is bounded away from zero for sufficiently

large n. By the approximation theory of B-splines (Schumaker 1981) and Glivenko-

Cantelli theorem,

n−1
sn∑
j′=1

m∑
k=1

Pθ̂(y|xk, z,w)Bq
j′(z)pkj′

=

∫
x̃

Pθ̂(y|x̃, z,w)F̂ (dx̃, z)→
∫
x̃

Pθ∗(y|x̃, z,w)F ∗(dx̃, z) (S.8)
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uniformly in (y, z,w). It follows from equations (S.7) and (S.8) that (nsn)−1g1n(x, z; θ̂,

F̂ ) converges to g1(x, z;θ∗, F ∗) for (x, z) in the support of (X,Z), where

g1(x, z;θ∗, F ∗) = E

[{
1− (1−R)

Pθ∗(Y |x,Z,W )
∫
x̃
F ∗(dx̃,Z)∫

x̃
Pθ∗(Y |x̃,Z,W )F ∗(dx̃,Z)

}
fz(Z)

∣∣∣∣Z = z

]
≥ 0,

(S.9)

and fz(·) is the density function of Z. Thus, it follows from equations (S.6), (S.7), and

(S.9), and the approximation theory of B-splines (Schumaker 1981) that

1 =
m∑
k=1

P̂ (X = xk|z) =
m∑
k=1

∑sn
j=1

∑n
i′=1Ri′I(Xi′ = xk, ‖Zi′ − z‖ ≤ ξn)Bq

j (z)

g1n(xk, z; θ̂, F̂ )

→
∫

E {Rfz(Z)|Z = z}
g1(x, z;θ∗, F ∗)

dx.

If g1(x, z;θ∗, F ∗) is not bounded away from zero, then there exists x0 ∈ Dx, where Dx is

the support of X, such that g1(x0, z;θ∗, F ∗) = 0. Because g1(x0, z;θ∗, F ∗) is a smooth

function of the continuous components of x, there exists a positive constant δ such that

for any ε > 0,

1 ≥
∫

E {Rfz(Z)|Z = z}
g1(x, z;θ∗, F ∗) + ε

dx ≥
∫
‖x−x0‖≤δ

E {Rfz(Z)|Z = z}
|g1(x, z;θ∗, F ∗)|+ ε

dx

&
∫
‖x−x0‖≤δ

E {Rfz(Z)|Z = z}
‖x− x0‖+ ε

dx, (S.10)

where “&” means greater than or equal to up to a constant. Because
∫
‖x−x0‖≤δ(1/‖x −

x0‖)dx is infinite, the last integration in expression (S.10) also goes to ∞ when ε → 0,

which is a contradiction. Thus, g1(x0, z;θ∗, F ∗) is bounded away from zero for (x, z) in

the support of (X,Z). The same conclusion holds for (nsn)−1g1n(x, z; θ̂, F̂ ) when n is

sufficiently large.

The final step is to prove that θ∗ = θ0 and F ∗ = F0 through the Kullback-Leibler

inequality. Let

p̃kj =

∑n
i=1RiI(Xi = xk)B

q
j (Zi)/P (Ri = 1|Yi,Zi,Wi)∑n

i=1RiB
q
j (Zi)/P (Ri = 1|Yi,Zi,Wi)

,

and let F̃ (x, z) = n−1
∑m

k=1

∑n
i=1 I(xk ≤ x,Zi ≤ z)

∑sn
j=1B

q
j (Zi)p̃kj. By the approxima-
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tion theory of B-splines (Schumaker 1981), F̃ (x, z)→ F0(x, z) uniformly. Furthermore, it

follows from the definitions of F̂ and F̃ that F̂ is absolutely continuous with respect to F̃ .

Thus, dF̂ /dF̃ converges uniformly to dF ∗/dF0. By Condition (C.3), F ∗ is continuously

differentiable with respect to x and z.

By the definitions of θ̂ and {p̂kj}, we have n−1ln(θ̂, {p̂kj}) ≥ n−1ln(θ0, {p̃kj}), i.e.,

− n−1
n∑
i=1

Ri log
Pθ̂(Yi|Xi,Zi,Wi)

Pθ0(Yi|Xi,Zi,Wi)
− n−1

n∑
i=1

Ri

m∑
k=1

I(Xi = xk)
sn∑
j=1

Bq
j (Zi) log

p̂kj
p̃kj

− n−1
n∑
i=1

(1−Ri) log

∫
Pθ̂(Yi|x,Zi,Wi)F̂ (dx,Zi)∫
Pθ0(Yi|x,Zi,Wi)F̃ (dx,Zi)

≤ 0. (S.11)

The first term in expression (S.11) converges to

−E

{
R log

Pθ∗(Y |X,Z,W )

Pθ0(Y |X,Z,W )

}
. (S.12)

By the approximation theory of B-splines (Schumaker 1981),
∑sn

j=1B
q
j (z) log(p̂kj/p̃kj) is

asymptotically equivalent to

log

∑sn
j=1B

q
j (z)p̂kj∑sn

j=1B
q
j (z)p̃kj

= log
dF̂ (x, z)

dF̃ (x, z)

∣∣∣∣∣
x=xk

.

Thus
∑sn

j=1B
q
j (z) log(p̂kj/p̃kj) converges uniformly to log{dF ∗(x, z)/dF0(x, z)}|x=xk

. As

a result, the second term in expression (S.11) converges to

−E

{
R log

dF ∗(X,Z)

dF0(X,Z)

}
. (S.13)

The third term in expression (S.11) converges to

−E

{
(1−R) log

∫
Pθ∗(Y |x,Z,W )F ∗(dx,Z)∫
Pθ0(Y |x,Z,W )F0(dx,Z)

}
. (S.14)

By combining expressions (S.12), (S.13), and (S.14), we conclude that the Kullback-

Leibler information of the density indexed by θ∗ and F ∗ with respect to the true density is

nonpositive and thus must be zero. Therefore, the two densities are identical almost surely.

For R = 1, this implies that Pθ∗(Y |X,Z,W )F ∗(X,Z) = Pθ0(Y |X,Z,W )F0(X,Z). It

follows from Condition (C.2) that θ∗ = θ0 and F ∗ = F0. Thus, Theorem S.1 holds. �
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Theorem S.2. Under Conditions (C.1)–(C.5), n1/2(θ̂−θ0) converges in distribution to

a zero-mean normal random vector whose covariance matrix attains the semiparametric

efficiency bound.

Proof. Let lθ denote the score function for θ0 and lF (h) denote the score function along

the submodel {1 + εh(x, z)}dF0(x, z) based on one complete observation (Y,X,Z,W ),

where h ∈ L2(P), P is the probability measure indexed by (θ0, F0), and E{h(X,Z)} = 0.

We have lθ = ∂ logPθ0(Y |X,Z,W )/∂θ and lF (h) = h. For two-phase studies, the score

operators are loθ = Rlθ + (1 − R)E(lθ|Y,Z,W ) and loF = RlF + (1 − R)E(lF |Y,Z,W ).

The information operator is loθ∗loθ loθ
∗loF

loF
∗loθ loF

∗loF

 ,
where loθ

∗ and loF
∗ are the adjoint operators of loθ and loF , respectively. We calculate the

information operator as

loθ
∗loθ = E

{
Rlθ

⊗2 + (1−R)E(lθ|Y,Z,W )⊗2
}
,

loθ
∗loF (h) = loF

∗loθ(h)T = E [E {Rlθ + (1−R)E(lθ|Y,Z,W )|X,Z}h(X,Z)] , and

loF
∗loF (h) = E(R|X,Z)h(X,Z) + E {(1−R)E(h(X,Z)|Y,Z,W )|X,Z} .

This information operator is the sum of an invertible operator and a compact operator

from the space M ≡ Rd×BV (Dx,z) to itself, where d is the dimension of θ, and BV (Dx,z)

is the space of functions with bounded total variation in the support of (X,Z). By

Theorem 4.7 of Rudin (1973), the information operator is invertible if it is one to one, or

equivalently, the Fisher information along any nontrivial submodel is nonzero.

Suppose that the Fisher information is zero along some submodel [θ0+εv, dF0(x, z){1+

εh(x, z)}]. Then, the score function along this submodel, i.e., loθ
Tv + loF (h), is zero. We

set R = 1 to obtain lTθ v + lF (h) = 0 for any (Y,X,Z,W ) ∈ C. Specifically, for any
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(yi,x, z,wi) ∈ C, i = 1, 2, we have{
∂

∂θ
logPθ0(y1|x, z,w1)

}T

v + h(x, z) =

{
∂

∂θ
logPθ0(y2|x, z,w2)

}T

v + h(x, z),

which can be rewritten as a linear equation on v, i.e.,{
∂

∂θ
logPθ0(y1|x, z,w1)−

∂

∂θ
logPθ0(y2|x, z,w2)

}T

v = 0.

By Condition (C.2), v = 0 and h = 0 with probability one. Thus, the information

operator is invertible. Consequently, there exists a function h such that loF
∗loF (h) = loF

∗loθ,

i.e.,

E(R|X,Z)h+ E {(1−R)E(h|Y,Z,W )|X,Z}

=E {Rlθ + (1−R)E(lθ|Y,Z,W )|X,Z} . (S.15)

This means that the least favorable direction for θ0 exists. In addition, by using the

arguments in the proof of Theorem 3.4 of Zeng (2005) and Conditions (C.3) and (C.4),

we can show that h is q-times continuously differentiable.

Because (θ̂, F̂ ) maximizes expression (2), the derivatives of the log-likelihood function

with respect to ε along the submodel (θ̂+ εv, dF̂ ) for any v and the submodel {θ̂, dF̂ (1 +

εhn)} must be zero, where hn is the projection of h onto the tangent space of the sieve

space. By the approximation theory of B-splines (Schumaker 1981), we have ‖hn−h‖L2 .

s
−q/dz
n . Therefore, (θ̂, F̂ ) is the solution to the functional Ψn(θ, F ) = 0, where Ψn(θ, F ) =

Ψ1n(θ, F )−Ψ2n(θ, F ),

Ψ1n(θ, F ) = Pn
{
R
∂

∂θ
logPθ(Y |X,Z,W )

}
+ Pn

{
(1−R)

∫
∂

∂θ
logPθ(Y |x,Z,W )g2(Y,Z,W ,x;θ, F )F (dx,Z)

}
,

Ψ2n(θ, F ) = Pn {Rhn(X,Z)}

+ Pn
{

(1−R)

∫
g2(Y,Z,W ,x;θ, F )hn(x,Z)F (dx,Z)

}
,
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Pn is the empirical measure of the sample, and

g2(Y,Z,W ,x;θ, F ) =
Pθ(Y |x,Z,W )∫

Pθ(Y |x̃,Z,W )F (dx̃,Z)
.

Let Ψ(θ, F ) be the same as Ψn(θ, F ) except that Pn is replaced by P . Clearly, θ̂ satisfies

the following equation:

n1/2
{

Ψn(θ̂, F̂ )−Ψ(θ̂, F̂ )
}

= −n1/2Ψ(θ̂, F̂ ). (S.16)

We wish to use Theorem 2.11.22 of van der Vaart and Wellner (1996) to show that

n1/2
{

Ψn(θ̂, F̂ )−Ψ(θ̂, F̂ )
}

= n1/2(Pn − P) {loθ − loF (hn)}+ op(1). (S.17)

Note that the left-hand side of equation (S.17) is an empirical process of the following

two classes of functions indexed by (θ̂, F̂ ):

F1n =

{
R
∂

∂θ
logPθ(Y |X,Z,W ) + (1−R)

∫
∂

∂θ
logPθ(Y |x,Z,W )

× g2(Y,Z,W ,x;θ, F )F (dx,Z) : |θ − θ0|+ ‖F − F0‖ ≤ ε0

}
;

F2n =

{
Rhn(X,Z) + (1−R)

∫
g2(Y,Z,W ,x;θ, F )hn(x,Z)F (dx,Z) :

|θ − θ0|+ ‖F − F0‖ ≤ ε0

}
,

where ‖F − F0‖ is the supreme norm in Dx,z. By Theorem S.1 and the approximation

theory of B-splines (Schumaker, 1981), it is straightforward to verify that

R
∂

∂θ
logPθ̂(Y |X,Z,W ) + (1−R)

∫
∂

∂θ
logPθ̂(Y |x,Z,W )

× g2(Y,Z,W ,x; θ̂, F̂ )F̂ (dx,Z)

→ R
∂

∂θ
logPθ0(Y |X,Z,W ) + (1−R)

∫
∂

∂θ
logPθ0(Y |x,Z,W )

× Pθ0(Y |x,Z,W )F0(dx,Z)∫
Pθ0(Y |x,Z,W )F0(dx,Z)

= Rlθ + (1−R)E{lθ|Y,Z,W } = loθ,

9



and

Rhn(X,Z) + (1−R)

∫
g2(Y,Z,W ,x; θ̂, F̂ )hn(x,Z)F̂ (dx,Z)

→ Rh(X,Z) + (1−R)

∫
h(x,Z)Pθ0(Y |x,Z,W )F0(dx,Z)∫

Pθ0(Y |x,Z,W )F0(dx,Z)

= Rh(X,Z) + (1−R)E {h(X,Z)|Y,Z,W } = loF (h)

uniformly in (Y,X,Z,W ).

Clearly, all functions in the classes F1n and F2n are uniformly bounded. We wish to

verify the conditions in Theorem 2.11.22 of van der Vaart and Wellner (1996). We first

show that the classes of functions F1n and F2n satisfy the uniform entropy condition. Pick

any two functions from F1n, say f1 and f2, which are indexed by (θ1, F1) and (θ2, F2),

respectively. The difference between the two functions is bounded from above by∣∣∣∣ ∂∂θ logPθ1(Y |X,Z,W )− ∂

∂θ
logPθ2(Y |X,Z,W )

∣∣∣∣
+

∣∣∣∣∫ ∂

∂θ
logPθ1(Y |x,Z,W )g2(Y,Z,W ,x;θ1, F1)(F1 − F2)(dx,Z)

∣∣∣∣
+

∣∣∣∣ ∫ { ∂

∂θ
logPθ1(Y |x,Z,W )− ∂

∂θ
logPθ2(Y |x,Z,W )

}
× g2(Y,Z,W ,x;θ1, F1)F2(dx,Z)

∣∣∣∣
+

∣∣∣∣ ∫ ∂

∂θ
logPθ2(Y |x,Z,W )

{
g2(Y,Z,W ,x;θ1, F1)

− g2(Y,Z,W ,x;θ2, F2)
}
F2(dx,Z)

∣∣∣∣
≡ (i) + (ii) + (iii) + (iv).

By the mean-value theorem, (i) . ‖θ1 − θ2‖. Because the denominator in the expression

of g2(Y,Z,W ,x;θ, F ) is bounded away from zero, we obtain that

(ii) .
∫
|F1(x,Z)− F2(x,Z)| dx .

∫
|F1(x, z)− F2(x, z)| dxdz.
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By the mean-value theorem,

(iii) . ‖θ1 − θ2‖
∫
g2(Y,Z,W ,x;θ1, F1)F2(dx,Z) . ‖θ1 − θ2‖ .

Likewise,

(iv) . ‖θ1 − θ2‖+

∫
|F1(x, z)− F2(x, z)|dxdz.

Combining the above inequalities for (i), (ii), (iii), and (iv), we have

|f1 − f2| . ‖θ1 − θ2‖+

∫
|F1(x, z)− F2(x, z)|dxdz.

Thus, the Cauchy-Schwartz inequality implies that, for any finite measure Q,

‖f1 − f2‖L2(Q) . ‖θ1 − θ2‖+

{∫
|F1(x, z)− F2(x, z)|2dxdz

}1/2

= ‖θ1 − θ2‖+ ‖F1(X,Z)− F2(X,Z)‖L2(Q̃), (S.18)

where Q̃ is the uniform measure on Dx,z. We conclude that

N{ε,F1n, L2(Q)) .N(ε/2, (θ : ‖θ − θ0‖ < ε0), | · |}

×N(ε/2, (F : ‖F − F0‖∞ < ε0), L2(Q̃)}, (S.19)

where N(·, ·, ·) denotes the covering number. On the right-hand side of (S.19), the first

covering number is O(1/εd). The second covering number is O[exp{ε−2V/(V+2)}], where V

is some positive index. To see the latter result, we observe that (F : ‖F −F0‖∞ < ε) is in

the symmetric convex hull of a Vapnik-Chervonenkis class [I{a < (XT,ZT)T ≤ b}: a, b ∈

Rdx+dz ], where dx denotes the dimension of X. The result follows from Theorem 2.6.9 of

van der Vaart and Wellner (1996). Therefore, expression (S.19) implies that F1n satisfies

the uniform entropy condition in Theorem 2.11.22 of van der Vaart and Wellner (1996).

By similar arguments and the fact that ‖hn‖L2 . ‖h‖L2 , we can show that F2n also

satisfies the uniform entropy condition.

If we replace measure Q by P , then expression (S.18) implies that the functions in
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F1n and F2n are Lipschitz continuous with respect to (θ, F ) in the metric defined as

ρ{(θ1, F1), (θ2, F2)} = ‖θ1 − θ2‖+ ‖F1 − F2‖L2(P).

As a result, condition (2.11.21) in Theorem 2.11.22 of van der Vaart and Wellner (1996)

holds. In addition, the total boundedness of the index set (θ, F ) holds due to the precom-

pactness of (θ, F ) under the uniform metric. We have now verified all of the conditions

in Theorem 2.11.22 of van der Vaart and Wellner (1996). Thus, equation (S.17) follows

from that theorem.

By combining equations (S.16) and (S.17), we have

−n1/2
{

Ψ1(θ̂, F̂ )−Ψ2(θ̂, F̂ )
}

= n1/2(Pn − P){loθ − loF (hn)}+ op(1), (S.20)

where Ψ1(θ, F ) and Ψ2(θ, F ) are the same as Ψ1n(θ, F ) and Ψ2n(θ, F ), respectively,

except that Pn is replaced by P . The left-hand side of equation (S.20) can be linearized

around (θ0, F0). Specifically,

Ψ1(θ̂, F̂ ) = Ψ1(θ0, F0) + P{R ∂2

∂θT∂θ
logPθ∗(Y |X,Z,W )(θ̂ − θ0)}

+P
[
(1−R)

∫
∂

∂θ

{
∂

∂θ
logPθ∗(Y |x,Z,W )g2(Y,Z,W ,x;θ∗, F ∗)

}
× (θ̂ − θ0)F̂ (dx,Z)

]
+P
[
(1−R)

∫
∂

∂θ
logPθ∗(Y |x,Z,W )

{
∂

∂F
g2(Y,Z,W ,x;θ∗, F ∗)

× F ∗(dx,Z)

}
(F̂ − F0)

]
,

where ∂/∂F denotes the pathwise derivative, and (θ∗, F ∗) lies between (θ̂, F̂ ) and (θ0, F0).

Similar expansions can be obtained for Ψ2(θ̂, F̂ ). By the approximation theory of B-

splines (Schumaker 1981), we can show that the left-hand side of (S.20) equals

− n1/2 {1 + op(1)}E
{
loθθ(θ̂ − θ0) + loθF (F̂ − F0)− loFθ(hn)(θ̂ − θ0)− loFF (hn, F̂ − F0)

}
− n1/2 {Ψ1(θ0, F0)−Ψ2(θ0, F0)} , (S.21)
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where loθθ is the derivative of loθ with respect to θ, loθF (h) is the derivative of loθ with

respect to F along the direction h, loFθ(h) is the derivative of loF (h) with respect to θ, and

loFF (h1, h2) is the derivative of loF (h1) with respect to F along the direction h2.

Because we have chosen h to be the least favorable direction for θ0 and ‖hn − h‖L2 .

s
−q/dz
n , we have E{loFF (hn, F̂−F0)} = E{loθF (F̂−F0)}+O(s

−q/dz
n ) and E{loFθ(hn)(θ̂−θ0)} =

E{loFθ(h)(θ̂−θ0)}+O(s
−q/dz
n ). Thus, by Condition (C.5), the first term in expression (S.21)

is n1/2Σ(θ̂−θ0)+O(n1/2s
−q/dz
n ) = n1/2Σ(θ̂−θ0)+o(1), where Σ = −E{loθθ−loFθ(h)}, which

is an invertible matrix due to the invertibility of the information operator for (θ0, F0).

Because P {R∂ logPθ0(Y |X,Z,W )/∂θ} = 0 and

P
{

(1−R)

∫
∂

∂θ
logPθ0(Y |x,Z,W )

Pθ0(Y |x,Z,W )F0(dx,Z)∫
Pθ0(Y |x,Z,W )F0(dx,Z)

}
= 0,

the last term in (S.21) equals zero. It follows from equation (S.20) that

n1/2{1 + op(1)}Σ(θ̂ − θ0) + op(1) = n1/2(Pn − P) {loθ − loF (h)} .

Thus, we have established the asymptotic normality in Theorem S.2. Because Σ−1{loθ −

loF (h)} is the efficient influence function for θ0, its limiting covariance matrix attains the

semiparametric efficiency bound. �

For a given θ, we define F̂θ as the joint distribution function of (X,Z) that maximizes

ln(θ, {pkj}). By the arguments in the proof of Theorem S.1, we can show that for any

θ̂ → θ0 in probability, the estimator F̂θ̂ → F0 uniformly. Furthermore, given the existence

of the least favorable directions, we can construct the least favorable model. These two

facts imply that the profile likelihood theory in Murphy and van der Vaart (2000) holds

for our approach. Thus, the inverse of the negative Hessian matrix of the profile likelihood

function is a consistent estimator for the limiting covariance matrix of n1/2(θ̂ − θ0).
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S.2. Supplementary Figures and Tables

Figure S1. Plots of {N q
l (z)}2l=−q+1 for q = 1, 2, and 3. The functions in each B-spline

basis are distinguished by different colors.
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Figure S2. Quantile-quantile plots for the analysis of age, gender, and cohort indicators
in the DPR group.
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Figure S3. Quantile-quantile plots for the analysis of the BP study in the NHLBI ESP
using the SMLE method with different numbers of sieve regions.
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Figure S4. Quantile-quantile plots for the analysis of the LDL study in the NHLBI ESP
using the SMLE method with different numbers of sieve regions.
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Table S1. Additional Simulation Results Under the Model Y = 0.5X + 0.5Z + 0.5W + ε
With the Second-Phase Sample Selection Depending Only on Y

SMLE MLE0

n r Covariate Bias SE SEE CP RE Bias SE
4000 0.0 X 0.006 0.099 0.094 0.942 1.048 0.008 0.102

Z 0.002 0.062 0.062 0.951 2.728 0.006 0.103
W -0.001 0.055 0.055 0.949 3.380 0.006 0.102

0.1 X 0.008 0.100 0.095 0.940 1.040 0.008 0.102
Z 0.006 0.062 0.062 0.949 2.820 0.006 0.104
W -0.001 0.055 0.055 0.950 3.422 0.006 0.103

0.2 X 0.006 0.100 0.094 0.941 1.099 0.008 0.104
Z 0.007 0.061 0.061 0.949 2.973 0.006 0.105
W -0.001 0.055 0.055 0.950 3.480 0.007 0.103

0.3 X 0.003 0.099 0.095 0.941 1.155 0.008 0.107
Z 0.006 0.061 0.061 0.950 2.971 0.006 0.105
W -0.001 0.056 0.055 0.949 3.509 0.006 0.104

6000 0.0 X 0.005 0.096 0.093 0.937 1.061 0.006 0.099
Z 0.002 0.054 0.054 0.954 3.387 0.008 0.099
W 0.000 0.045 0.045 0.952 4.740 0.007 0.098

0.1 X 0.008 0.097 0.092 0.936 1.047 0.006 0.100
Z 0.008 0.053 0.053 0.951 3.540 0.007 0.099
W 0.000 0.045 0.045 0.951 4.790 0.007 0.099

0.2 X 0.003 0.095 0.090 0.936 1.131 0.006 0.102
Z 0.007 0.052 0.052 0.949 3.782 0.007 0.101
W 0.000 0.045 0.045 0.951 4.926 0.007 0.100

0.3 X -0.001 0.095 0.089 0.936 1.217 0.006 0.104
Z 0.007 0.052 0.052 0.948 3.785 0.007 0.101
W 0.000 0.045 0.045 0.952 5.004 0.007 0.101

NOTE: Bias and SE are, respectively, the empirical bias and standard error
of the parameter estimator; SEE is the empirical mean of the standard error
estimator; CP is the coverage probability of the 95% confidence interval; RE
is the empirical variance of MLE0 over that of SMLE. Each entry is based on
10,000 replicates.
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Table S2. Simulation Results When Z is Misclassified as Being Independent of X

r Covariate Bias SE SEE CP
0.00 X 0.002 0.108 0.108 0.948

Z 0.000 0.078 0.078 0.949
W -0.001 0.078 0.078 0.952

0.02 X 0.009 0.108 0.108 0.948
Z 0.009 0.078 0.078 0.948
W -0.001 0.078 0.078 0.953

0.04 X 0.016 0.108 0.108 0.947
Z 0.017 0.077 0.078 0.944
W -0.001 0.078 0.078 0.953

0.06 X 0.023 0.108 0.108 0.947
Z 0.025 0.077 0.078 0.940
W -0.001 0.078 0.078 0.953

0.08 X 0.030 0.108 0.108 0.943
Z 0.034 0.077 0.078 0.931
W -0.001 0.078 0.078 0.953

0.10 X 0.037 0.109 0.108 0.939
Z 0.042 0.077 0.078 0.919
W -0.001 0.078 0.078 0.953

0.15 X 0.053 0.108 0.108 0.923
Z 0.061 0.076 0.077 0.879
W -0.001 0.078 0.078 0.952

0.20 X 0.069 0.109 0.108 0.907
Z 0.080 0.076 0.077 0.826
W -0.001 0.078 0.078 0.953

NOTE: See the Note to Table S1.
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Table S3. Simulation Results Under the Model Y = 0.5X + 0.5Z1 + 0.5Z2 + ε

Second-phase sampling r Covariate Bias SE SEE CP
Depend only on Y 0.0 X 0.006 0.094 0.091 0.945

Z1 -0.001 0.080 0.079 0.949
Z2 0.001 0.079 0.079 0.950

0.1 X 0.015 0.094 0.092 0.940
Z1 0.002 0.079 0.079 0.948
Z2 0.004 0.078 0.079 0.948

0.2 X 0.020 0.096 0.094 0.940
Z1 0.002 0.078 0.079 0.949
Z2 0.004 0.078 0.079 0.948

0.3 X 0.022 0.100 0.098 0.934
Z1 0.001 0.078 0.079 0.954
Z2 0.002 0.078 0.079 0.951

Depend on (Y, Z1, Z2) 0.0 X 0.005 0.091 0.089 0.943
Z1 -0.001 0.079 0.079 0.950
Z2 0.000 0.079 0.079 0.951

0.1 X 0.006 0.091 0.089 0.944
Z1 0.003 0.079 0.079 0.950
Z2 0.004 0.079 0.079 0.950

0.2 X 0.005 0.093 0.092 0.946
Z1 0.005 0.079 0.079 0.948
Z2 0.006 0.078 0.079 0.952

0.3 X 0.000 0.096 0.095 0.943
Z1 0.006 0.079 0.079 0.951
Z2 0.008 0.079 0.079 0.951

NOTE: See the Note to Table S1.

21


