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MATERIALS AND METHODS 1 

 2 

Study design and populations 3 

We performed a cross-sectional study to determine the association between genome-wide 4 

DNA methylation and age-independent cardiovascular risk (CVR). We defined two 5 

complementary approaches to identify this CVR, considering it as (a) a continuous trait, 6 

using the residuals from the association between CVR and age (residuals approach) and (b) 7 

a discrete trait, using the difference between vascular and chronological age (Δage 8 

approach). We designed a two-stage EWAS for each approach.  9 

The two populations used in this study have been described in previous EWAS performed in 10 

our group.1 Briefly, in the discovery stage, we used data from the follow-up visit of the 11 

REGICOR (REgistre GIroní del COR) cohort in 2009-2013 (n=4980; response rate, 78.4%). 12 

This cohort includes participants from towns representing the urban and rural diversity of 13 

Girona Province (Spain)2 who continued to reside in the same towns where they were 14 

originally enrolled in 2003-2005. We randomly selected a subsample of 648 individuals, all of 15 

European descent. The study was approved by the local ethics committee and meets the 16 

principles expressed in the Declaration of Helsinki and the relevant Spanish legislation. All 17 

participants provided informed written consent prior to the studies. 18 

In the validation stage, we obtained data from the Framingham Offspring Study through the 19 

database of Genotypes and Phenotypes (dbGAP, http://dbgap.ncbi.nlm.nih.gov; project 20 

number #9047). We included the exam 8 participants with available DNA methylation data 21 

(n=2,568). 22 

REGICOR data were used for cross-sectional assessment of the association between 23 

classical vascular risk factors (VRF) and CpGs showing differential methylation in relation to 24 

age-independent CVR. Finally, we built an epigenetic risk score and assessed its association 25 

with arterial stiffness in the REGICOR cohort, and with incident coronary and cardiovascular 26 

events in the Framingham cohort.  27 

 28 

Vascular risk factors measurement and estimation of the age-independent 29 

cardiovascular risk 30 

The procedures used to measure VRFs and to collect data and samples from both 31 

populations have already been described.1 Briefly, examinations and fasting blood 32 

extractions were performed and questionnaires administered by a group of trained nurses in 33 

the REGICOR study. Standardized methods and questionnaires were used to collect 34 
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sociodemographic, lifestyle, and VRFs information. Further details on the measurement of 35 

the biochemical parameters representing the VRFs are extensively described elsewhere.1 In 36 

the Framingham Offspring Study, measurements and data were obtained through dbGaP 37 

and correspond to examination 8.  38 

We used a validated risk function (FRESCO) to estimate the CVR and vascular age of both 39 

the discovery and validation populations.3 This function has been developed and validated 40 

for the Spanish population, and although the absolute CVR estimation is not valid for the 41 

American population, the estimation of vascular age and of the residuals from CVR/age 42 

association can be used in any population regardless of any difference in absolute CVR.4 As 43 

the FRESCO function is only valid to estimate CVR of individuals between 35 and 79 years 44 

old,3 we excluded those younger and older than this chronological age range. We also 45 

excluded those individuals with no available information for any of the VRFs considered in 46 

the risk function. We used both of these REGICOR and Framingham Offspring Cohort 47 

populations in the residuals approach. For the Δage approach, we further excluded those 48 

individuals whose vascular age was <35 or >79 years.  49 

 50 

Assessment of DNA methylation status 51 

DNA extraction and methylation assessment have been fully described in a previous report.1 52 

In brief, DNA was extracted from whole peripheral blood in the REGICOR cohort, and from 53 

buffy coat in the Framingham Offspring Study. Genome-wide DNA methylation was 54 

assessed using the Infinium HumanMethylation450 BeadChip (Illumina, CA, USA), according 55 

to the standard protocol. This array is based on bisulfite conversion of unmethylated 56 

cytosines across the genome, and analyzes over 485,000 CpGs per sample.5 57 

Analysis and quality control of the raw data has also been previously described.1 Methylation 58 

status at each CpG site was reported by both M-values and β-values. Equation 1 was used 59 

to calculate the M-values, while Equation 2 was applied to estimate the β-values. 60 

     Equation 1 61 

             Equation 2 62 

Where:  63 

- Mi = intensity of methylated probes,  64 

- Ui = intensity of unmethylated probes, and  65 

- α = constant offset (α=1 and α=100 in the respective equations). 66 
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M-values close to 0 mean the CpG site is half-methylated. Positive M-values indicate the 67 

presence of more methylated than unmethylated cytosines, while negative M-values denote 68 

the opposite ratio. β-values range between 0 (completely unmethylated) and 1 (completely 69 

methylated).  70 

Owing to its statistical robustness, we used standardized M-values in the EWASs and the 71 

metaanalysis. Moreover, to control for batch effect we standardized the M-values by batch 72 

using Equation 3:1 73 

     Equation 3 74 

Where:  75 

- Z = standardized M-value,  76 

- X = M-value for a specific individual,  77 

- X̄ = mean of M-value for a specific batch, and  78 

- n = sample size. 79 

For the development of methylation risk scores (MRS) we used β-values, normalized by 80 

applying the Dassen method6, of the CpGs identified as differentially methylated in relation to 81 

age-independent CVR. 82 

Information about each CpG location in the genome was obtained using the annotation 83 

provided by Illumina (HumanMethylation450 v1.2 Manifest File.csv, www.illumina.com) and 84 

Genome Browser.7  85 

 86 

Subclinical atherosclerosis measurement: arterial stiffness  87 

Two trained technicians performed the ultrasonographic evaluation of the selected subjects 88 

utilizing a 10MHz probe (Acuson XP128) and specific acquisition software (Acuson-Siemens; 89 

Mountainview, California, United States). Longitudinal images of left and right common 90 

carotid arteries were obtained with M-Mode and B-Mode, and stored for offline analysis. 91 

Acquired images were analyzed applying a standardized protocol and software.8 Inter-92 

adventitial systolic (SD) and diastolic diameter (DD) were quantified in the proximal 93 

centimeter from the carotid bulb, following international recommendations.9 94 

Stiffness of the common carotid artery was estimated by calculating the distensibility 95 

coefficient (DC),10 following equation 4:  96 

     Equation 4 97 
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Where:  98 

- ΔD = strain or delta diameter (calculated as SD-DD),  99 

- DD = diastolic diameter, and 100 

- PP= brachial pulse pressure (calculated as the difference between the systolic blood 101 

pressure [SBP] and the diastolic blood pressure [DBP]).  102 

In Equation 4, DD and ΔD are expressed in meters, whereas PP is expressed in mmHg. The 103 

resulting DC is expressed in 10-3*kPa-1. This index represents the stroke change in an 104 

artery’s cross-sectional area, normalized for the total diastolic cross-sectional area, in 105 

response to a stress represented by PP. The lower the DC, the higher the arterial stiffness.  106 

Additionally, carotid Pulse Wave Velocity (PWV) was calculated using the Bramwell-Hill 107 

equation (equation 5):10 108 

     Equation 5 109 

Where:  110 

- DC = distensibility coefficient, and 111 

- ρ = blood density, assumed as 1050 Kg/m3. 112 

 113 

Clinical cardiovascular events assessment 114 

We obtained data from the Framingham Offspring Study through the database of Genotypes 115 

and Phenotypes (dbGAP; http://dbgap.ncbi.nlm.nih.gov; project number #9047). We used 116 

exam 8 as the baseline visit and the follow-up included events recorded until exam 12. 117 

 118 

Statistical analysis 119 

Robust multivariable linear regression was used in the EWAS analyses. We considered DNA 120 

methylation as the outcome and CVR independent of age as the exposure or independent 121 

variables. CVR independent of age was considered as (a) the residuals from CVR/age 122 

association, and (b) the difference between vascular and chronological age. 123 

To increase the sensitivity of our study, we defined four models for each approach (residuals 124 

and Δage). In model 1, standardized M-values were adjusted for three confounders: sex, 125 

age, and estimated cell count. In model 3, they were additionally adjusted for smoking status. 126 

Models 2 and 4 contained the same covariates as models 1 and 3, respectively, but were 127 

further adjusted for surrogate variables to control for unmeasured confounding.11 Cell count 128 
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was estimated using Houseman’s algorithm implemented in R::minfi,12,13 while surrogate 129 

variables were assessed using the R::sva R package.14  130 

We validated those CpGs associated with age-independent CVR which exceeded an 131 

arbitrary P-value threshold of 1·10-5 for any of the four models in each approach. Then, we 132 

performed a fixed-effects metaanalysis weighted by the inverse of the variance using data 133 

from the discovery and validation stages for Model 2 in both approaches. We focused on 134 

Model 2 for two main reasons: (1) the smoking status used as a covariate in models 2 and 4 135 

is a well-known CVR factor, and (2) models adjusted for surrogate variables are preferred in 136 

omics data analysis. We defined as statistically significant any association fulfilling the 137 

Bonferroni criteria (P-value<1.17·10-7; calculated as 0.05/427,948 probes that passed the 138 

quality control).  139 

To further study whether the validated CpGs were associated with one or more individual 140 

VRFs, or with none of them individually, we assessed this association in the REGICOR and 141 

Framingham populations. Considering methylation as the outcome, we used a multivariable 142 

linear regression model adjusted for triglycerides, total and HDL cholesterol, systolic and 143 

diastolic blood pressures, body mass index (BMI), smoking, diabetes, sex, age, and cell type. 144 

In the case of blood pressure and lipid levels, we performed the analyses in subsamples of 145 

non-treated individuals. 146 

Based on the validated CpGs, we developed a weighted MRS, considering normalized β-147 

values, for each approach in both populations. These four MRS models summarize an 148 

individual’s epigenetic predisposition to higher age-independent CVR. The weights for each 149 

CpG were based on the coefficients of the metaanalysis of normalized β-values from Model 2 150 

following Equation 6:  151 

     Equation 6 152 

Where:  153 

- MRS = methylation risk score for a specific individual,  154 

- i = CpG, 155 

- N = CpG sample size, 156 

- βmeta
 = coefficient of the metaanalysis for each CpG, 157 

- βnorm = normalized β-value for each CpG, 158 

 159 

Since MRSs were estimated in different units in each approach, they were standardized to 160 

further test them, according to Equation 7. 161 
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                Equation 7 162 

Where:  163 

- MRSZ = standardized methylation risk score,  164 

- MRS = methylation risk score for a specific individual,  165 

-  = mean of methylation risk scores for a specific CpG, and  166 

- n = population sample size. 167 

Finally, we evaluated the association between these standardized MRSs and clinical and 168 

subclinical measurements of atherosclerosis. Multivariable linear regression was used in the 169 

analysis of the association between MRSs and subclinical parameters (arterial distensibility 170 

and pulse wave velocity) in REGICOR. We analyzed the association between MRSs and 171 

CVD and CHD incidence in Framingham data, using Cox regression. All analyses were 172 

adjusted for age and sex (model 1) and the VRFs considered in the FRESCO risk function 173 

(age, sex, total and HDL cholesterol, diabetes, smoking status, SBP, and hypertensive 174 

treatment, model 2). 175 

All statistical analyses were performed using RStudio software (version 3.1.2). 176 

 177 
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