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SUPPLEMENTARY NOTE 11

Algorithmic Information Theory (AIT)2

In this section we briefly provide some basic notation, definitions, and key results of algorithmic information theory3

(AIT) that are used in the main text and in further appendices. Fuller descriptions can be found in ref. 1, which is a4

standard reference for AIT. Other good introductions can be found for example in refs. 2 and 3.5

Basic notation and definitions6

Notation7

Throughout this text, the length of a binary string x is denoted as l(x). The set of all binary strings x of length8

l(x) = n is denoted by {0, 1}n; the set of all binary strings of length ≤ n is written as {0, 1}≤n; the set of all possible9

binary strings is denoted {0, 1}∗. For a string x, xn represents n concatenated copies of the string x. For example,10

04 = 0000.11

We follow standard usage of the notation O(1) as in AIT and physics4: For a function ζ(u) we write ζ(u) =12

γ(u) +O(1) if for all u, |ζ(u)− γ(u)| < M , for some constant M . For example, if f(u) = u+ 2 or f(u) = sin(u) + u,13

then we can write f(u) = u+O(1).14

Universal Turing Machines15

Turing machines are abstract generic digital computation devices proposed in 1936 by Alan Turing5. A universal16

Turing machine (UTM) is a Turing machine that can simulate the behaviour of any other Turing machine, and17

a programming language that can be used to implement a UTM is called Turing complete. Most commonly used18

programming languages are Turing complete.19

One reason that UTMs are important is because of a hypothesis known as the Church-Turing thesis which states20

that any effectively computable function can, in principle, be calculated by a UTM. This thesis, although not formally21

proven, is widely believed to be true.22

Interestingly, Turing’s motivation for inventing UTMs was to prove that there are calculations a computer cannot23

do. If a program running on a UTM stops and presents an output after a finite number of steps, the program is said24

to halt. Turing famously showed that there is no universal way to decide whether any given arbitrary program will25

halt or not. This principle, which has deep implications for the philosophy of mathematics and computer science, is26

called the halting problem.27

It is customary in AIT to prove results for binary strings, a convention we will follow below. This convention can28

be understood intuitively by recognising that in principle any discrete object can be reduced to a binary string by a29

standard indexing procedure. Also, since a UTM can simulate any other UTM, and UTMs can be defined that take30

binary strings as their input, there is no loss of generality in this convention.31

Proving that a given map is Turing complete is often not straightforward. However one simple test for proving that32

a map is not Turing complete is to establish that all input programs halt. A computable map (or function) is one33

that produces an output and then halts for all valid inputs. By this criterion, we see that many maps used in science34

and engineering are computable; for example, any RNA nucleotide sequence we present to the Vienna computational35

folding package6 will adopt some secondary structure (i.e. output), and not keep running indefinitely. Nevertheless,36

there are important examples of physical systems that can be mapped onto UTMs, and thus have properties that are37

undecidable because they are equivalent to solving the halting problem7,8. But these will not concern us here.38

Basics of Kolmogorov-Chaitin complexity39

Definition of Kolmogorov-Chaitin complexity40

The historical development of AIT by Solomonoff9, Kolmogorov10 and Chaitin11,12 was motivated by attempts to41

quantify the information content or randomness of individual objects such as binary strings or discrete geometries. In42

this way, AIT contrasts with the better known Shannon information theory which focuses on distributions instead of43

on individual objects. For example, even if individual strings in a distribution vary enormously in their complexity,44
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Shannon information only picks up the frequency with which each string appears, which may be unrelated to the45

complexity of an individual string. AIT does not measure the properties of the distribution, but instead quantifies46

the complexity of an individual string. Nevertheless, there are important relationships between AIT and Shannon47

information theory, see e.g. the standard references cited above or ref. 13 for an overview.48

The fundamental insight of AIT is that the information content of an object can be defined algorithmically, by49

the minimum amount of information needed to describe or generate that object. Consider for example the following50

binary strings51

(01)n = 010101010101010101010101...

rand(1 : n) = 100111010101110001011111...

The first is intuitively ‘simple’ as the whole string can be described as “print ‘01’ n times”. Since the string conforms52

to a simple rule, and thus also a short description, the string is deemed simple in AIT. The second string is a typical53

randomly generated bit-string. Assuming that there are no hidden patterns in this string and that it does not conform54

to any simple rules or short description, then the shortest description may simply be to print the string in full. Hence55

it is deemed complex.56

AIT characterises the information content, or Kolmogorov-Chaitin complexity, of an output x as the length of the57

shortest computer program that can generate x. More formally, the (plain) Kolmogorov-Chaitin complexity or simply58

Kolmogorov complexity CU (x) of a binary string x is defined as59

CU (x) = min
q
{l(q) : U(q) = x} (1)

where l(q) is the length of a binary program q in bits, and U is a UTM. That is, CU (x) is the length of the shortest60

program over all programs that print x and then halt. It is well known that CU (x) is uncomputable, meaning that even61

in principle there cannot exist a general algorithm for finding the exact value of CU (x), given x. This is established62

by reducing the problem of calculating CU (x) to the halting problem.63

The invariance of complexity64

The invariance theorem is a cornerstone of AIT. It states that CU (x) only depends on the choice of the UTM U65

up to an additive constant. That is, if U and V are both UTMs, then66

|CU (x)− CV (x)| ≤ c (2)

for any x, where c is a constant independent of x, but depending on the choice of U and V . Intuitively, since one can67

always write a compiler to transform U to V , the constant c is smaller or equal to the size of the compiler. In the68

limit of large complexities this difference can be ignored, or alternatively, one can simply say that the Kolmogorov69

complexity is only defined up to a constant. Hence the subscript is dropped and we speak of ‘the’ Kolmogorov70

complexity C(x).71

A few quick notes. Firstly, C(x) is always defined with respect to a particular UTM. The invariance theorem simply72

tells us that up to a constant, it does not matter what UTM is used. Secondly, the invariance theorem also does not73

mean that Kolmogorov complexity is the shortest description of a string x for any UTM. For example, it is always74

possible to define a UTM that has a particular string x stored, so that C(x) is effectively zero for that string. It is75

worth quoting ref. 1 (pp 106) on this topic: The key point is not that the universal description method necessarily76

gives the shortest description length in each case, but that no other description method can improve on it infinitely77

often by more than a fixed constant.78

Most strings are complex79

Most binary strings have a Kolmogorov complexity close to their length in bits. This follows from the following80

simple counting argument: for a given number of bits n, there are 2n different strings in {0, 1}n, and 2n − 1 shorter81

strings in the set {0, 1}≤(n−1). There are enough strings that any of the 2n strings in the former set might be82

compressed to one in the latter set. However, 2n−1 of these strings are are just one bit shorter, so at best, 50% of83

the strings in {0, 1}n can be compressed by at most one bit. More generally, at most a fraction of 2−k of strings in84

{0, 1}n are compressible by exactly k digits, because there are only 2n−k binary strings of that length available. More85

generally, the fraction of strings of length n that can be compressed by at least k digits is 2−k+1− 2−n. For example,86

for strings of length n = 100, only about 0.2% can be compressed by k = 10 bits or more. In other words, 99.8% of87
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n = 100 strings cannot be compressed to less than 90% of their length. A string is considered to be algorithmically88

random if it cannot be compressed by more than a few bits, and as seen in this example, most strings can only be89

compressed by a relatively small amount. Therefore, a randomly chosen string is likely to be algorithmically random.90

Prefix complexity91

For technical reasons, as emphasised by Chaitin, it is often convenient to work with prefix-codes or instantaneously92

decodable codes for which the set of code words (i.e. programs) is prefix-free1, that is, if q and r are both valid93

programs which can produce outputs, then in a prefix code q cannot form the first l(q) bits (i.e. it cannot form a94

prefix) of program r, and vice versa. This implies that there is no need for a spacer or other symbol to mark the95

beginning and end of concatenated programs. Hence any string of bits can be unambiguously decoded into separate96

programs.97

Having introduced the plain complexity C(x), we now define the closely related prefix complexity KW (x) 11,14:98

KW (x) = min
q
{l(q) : W (q) = x} (3)

where W is a prefix UTM i.e. W is a self-delimiting machine where the programs are prefix-free. As above for the99

plain complexity C(x), an invariance theorem holds for its prefix-free analogue, and so we can drop the subscript of100

W on KW (x). While K(x) differs from C(x) in important technical ways, quantitatively they are in fact very close,101

as K(x) is also uncomputable, being equal to C(x) up to a term logarithmic in C(x): It is known1 that102

C(x) ≤ K(x) (4)

≤ C(x) + log2(C(x)) + 2 log2 log2(C(x)) +O(1) (5)

∼ C(x) (6)

so that the two complexity measures are normally quite close to one another.103

Conditional Kolmogorov complexity104

In Shannon information theory, it is convenient to derive relationships between concepts such as joint, mutual or105

conditional entropies/information. For example, the conditional information H(Y |X) is defined as the entropy in the106

variable Y given that the variable X takes a particular value X = x, averaged over all possible values of x. Somewhat107

analogous relationships can be derived for Kolmogorov complexity. However, in contrast to Shannon entropies, for108

which these relationships are statistical averages over distributions, for Kolmogorov complexity the relationships hold109

for individual objects. For example, a kind of mutual information can be defined as I(x : y) = K(x) +K(y)−K(x, y)110

which measures the difference between generating x and y separately, and generating them jointly (measured by111

K(x, y)). Similarly, the conditional prefix Kolmogorov complexity K(x|y) can be intuitively interpreted as the length112

of the shortest program that, when fed into a prefix UTM W , generates x and halts, if W is also given y “for113

free”. If y is genuinely independent of x, i.e., roughly saying, if having y doesn’t help W calculate x at all, then114

we expect that K(x|y) = K(x) + O(1), whereas if, say y = 2x, then it will be very easy for W to generate x and115

K(x|y) = O(1) � K(x). Note that there is a subtle difference between K(x|y) and K(x|y∗), with the latter defined116

as the conditional prefix Kolmogorov complexity given that the shortest program to calculate y is given.117

We will use the following two relations:118

K(x|y) ≤ K(x) +O(1) (7)

K(x) ≤ K(x|y) +K(y) +O(1) (8)

Intuitively, the first identity follows because adding information (y in this case) could mean you need less information119

to generate x, and if y is completely irrelevant then you can always generate x by ignoring y. Similarly, for the second120

identity, if the right side were less than K(x), then it would represent a shorter way to generate x, which, by definition121

would define the true K(x).122
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Universal probability and the coding theorem123

For a prefix UTM, the probability of generating a particular input program of length l by random coin flips is 2−l.124

The universal probability9,14 of a string x is defined as125

PU (x) =
∑

q:U(q)=x

2−l(q) (9)

which is the probability that a prefix UTM U outputs x when fed with a random program q (e.g. generated by coin126

flips). So the universal probability simply sums over the probability of all possible programs that generate a given127

output x. One reason to use a prefix UTM is Kraft’s inequality, which states that if F is a set of binary prefix-free128

code words, then
∑
f∈F 2−l(f) ≤ 1 which ensures that

∑
x PU (x) converges. However, because of the halting problem,129

it is impossible to know in general if a given program q will halt. If a program does not halt, then it does not produce130

any output, and there would be some probability mass absorbed by these non-halting programs. Hence summing131

over halting programs would yield a mass of less than 1. Thus strictly PU (x) is a semi-measure; it can only be132

approximated from below, and
∑
x PU (x) ≤ 1.133

The (algorithmic) coding theorem was established by Leonid Levin in 197414. It connects K(x) and the universal134

probability PU (x) as follows135

2−K(x) ≤ PU (x) ≤ 2−K(x)+d (10)

where d is some constant independent of x, but possibly depending on the choice of UTM, U . The coding theorem136

can be expressed differently as137

PU (x) = 2−K(x)+O(1) (11)

Because the invariance theorem implies that PU (x) is asymptotically independent of U , the subscript U is convention-138

ally dropped, and instead one just writes P (x). In essence this theorem says that the probability of a UTM printing139

x when fed with a random program is largely determined by the Kolmogorov complexity of x: Low complexity or140

‘simple’ outputs are highly probable, while highly complexity outputs are exponentially less likely. The fact that the141

lower bound P (x) ≥ 2−K(x) holds is clear, as the summation in equation (9) contains the term 2−K(x). This lower142

bound was in fact pointed out earlier by Solomonoff9, although he didn’t use prefix machines. The contribution of143

Levin was to show that the upper bound P (x) ≤ 2−K(x)+d also holds (for some constant d). This latter claim is neither144

obvious nor trivial in the UTM setting1,14,15. For example, for UTMs there are infinitely many possible programs,145

and so a priori we might expect that some high complexity outputs could nevertheless have high probability because146

many longer programs generate them. The coding theorem shows that this is not generally the case.147

SUPPLEMENTARY NOTE 2148

Upper bound on probability for computable maps149

In the main text we apply the following upper bound for computable maps:150

P (x) ≤ 2−K(x|f,n)+O(1) (12)

where K(x|f, n) is the complexity of an output x, given the map f and given n, which parametrises the size of the151

input space I of the input-output map, e.g. for binary sequences of fixed length n, the size is 2n possible inputs. This152

equation (or something similar to it) for the upper bound can be found in standard texts such as refs. 3 and 1, but153

we also provide a derivation here, following a standard method.
154

Consider the following algorithm A:155

156

(i) Enumerate all inputs using n.157

(ii) Map these inputs to their outputs, according to the rules specifying the map f .158

(iii) Print the resulting list of each output x and its corresponding probability P (x) (i.e. frequency in I).159

160

Since f and n are given, the complexity of the algorithm is K(A) = O(1). This procedure is an example of a well161

known result of AIT, namely that enumerating all possible objects in a set can be algorithmically much simpler than162
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generating a typical element of the set. For example, the information required to construct {0, 1}n, the set of all163

binary strings of length n, is only about log2(n) + O(1) bits, and possibly much less for very simple n, whereas a164

typical member x of this set has close to maximal complexity, i.e. K(x) = n+O(1). Hence enumerating the whole set165

requires much less information than does specifically generating one typical member. In the same way, the procedure166

above to generate all outputs can require substantially less information than the information needed to generate a167

specific output x.168

Now, it is well known from information theory15 that given a discrete distribution, one can efficiently encode outputs169

using a Shannon-Fano-Elias (SFE) code, which consists of prefix-free code words E(x) of length (in bits)170

l(E(x)) =

⌈
log2

(
1

P (x)

)⌉
+ 1 (13)

where d·e denotes taking the integer part. In this manner, we have a method for assigning bit strings to outputs x. So,171

using a SFE code, and given f and n, we can describe any output x using l(E(x)) +O(1) bits, where the O(1) term172

accounts for the fixed program to generate the SFE code. Because Kolmogorov complexity gives the shortest possible173

description length (within O(1) terms) for a given UTM, we must have that K(x|f, n), which is the information (in174

bits) required to specify a given output x, given the input-output map f and n, is no larger than the SFE code175

description just derived, i.e.176

K(x|f, n) ≤ l(E(x)) +O(1) (14)

= log2

(
1

P (x)

)
+O(1) (15)

⇒ P (x) ≤ 2−K(x|f,n)+O(1) (16)

Note that we are abusing notation slightly, since we have used the letter f to denote both the function, as well as177

to denote the program for implementing the function f . Similarly we have written n to denote both the number as178

well as a program to calculate it, although for most n the size of the programme n∗ will be log n +O(1) since most179

n are not compressible. So technically we should write K(x|f∗, n∗), but for simplicity of notation we simply write180

K(x|f, n).181

SUPPLEMENTARY NOTE 3182

Limited complexity maps183

Equation (12) is a very general statement that applies to a wide range of functions f . However, the details of184

f can affect the output probabilities P (x). For instance, if for a given output x and mapping function f one has185

K(x|f, n) � K(x), so that 2−K(x|f,n) � 2−K(x), then x would have a much higher probability to appear than186

predicted by the coding theorem. In other words, in this case, even if one knows K(x), it is necessary to know the187

details of the map f in order to make predictions about P (x).188

We will leave the case of making predictions about P (x) for general maps f for future work. In this manuscript, we189

instead consider one important special case, namely maps of limited complexity, which we define as maps for which190

asymptotically, i.e. for large x, K(f) + K(n) � K(x) + O(1) holds. Using standard inequalities we can then show191

that192

K(x) ≤ K(x|f, n) +K(f) +K(n) +O(1)

K(x|f, n) ≤ K(x) +O(1)

K(f) +K(n)� K(x) +O(1)

⇒ K(x) ≈ K(x|f, n) +O(1) (17)

from which it follows that occurrences of K(x|f, n) � K(x) are asymptotically negligible, and so the inequality (12)193

becomes194

P (x) . 2−K(x)+O(1) (18)

which is asymptotically independent of f and n. Of course f and n still define the set of x that are possible, but195

given an x, this inequality holds for the probability that it is generated upon uniform sampling of inputs. It is not196

hard to see that for limited complexity maps it is the case that K(x) = K(set of all inputs that generate x) +O(1),197

since the the set can generate x and given x the set can be generated by enumerating all inputs and checking those198
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that generate x. Thus, as in the main text, for limited complexity maps, the structural variation in outputs x is199

generated with as little artefactual biasing from the mapping rule-set as possible. If instead the map itself clearly200

determines many aspects of output structure irrespective of input choice, then any complexity in these aspects must201

be due to artefactual biasing of the map, and not the information contained in a given input. In the main text and202

in Supplementary Note 12 we show an explicit matrix based map which is generally not a limited complexity map,203

and therefore fails this “no artefactual biasing” test.204

Our arguments above invoke K(f)� K(x) and K(n)� K(x) for a typical x. Most examples we explore are maps205

of fixed complexity K(f) = O(1), for which one can always find large enough x so that these inequalities clearly hold.206

Since K(n) scales asymptotically as log(n) it would seem that simplicity bias should also hold for maps that scale as207

log(n), e.g. ones that are not necessarily fixed. On the other hand, if K(f) scales linearly with n (which is how K(x)208

scales) or more (e.g. in the matrix map K(f) ∼ O(n2)) then the inequality won’t hold. So exactly what maximum209

scaling of K(f) with n is possible for the map f to still show simplicity bias phenomenology, and exactly how this210

works for maps that we coarse-grain, where n is less well defined, remain open questions for future investigations.211

Another very interesting finding for the maps we study in this paper is that our simplicity bias predictions still work212

when x is small enough that we do not expect the K(f)� K(x) to strictly hold. For an example, in Supplementary213

Note 9 we explore the effect of input length on the prediction of simplicity bias for the input-output map from an214

RNA sequence to its corresponding secondary structure. While K(f) is not known for the Vienna package16, the215

software package used here to obtain those secondary structures6, K(f) is likely to be greater than the small number216

of bits necessary to describe the 20 letter-long outputs from this map. And yet, we clearly observe simplicity bias217

for this map. On the other hand, in Supplementary Note 9 we show that for very short RNA strands, the simplicity218

bias predictions we make start to break down, as expected. Although the general arguments used to derive our upper219

bound can only be proven to hold in the limit of larger outputs x, we conjecture that these basic properties survive220

when moving out of this asymptotic regime and into regimes where K(f) � K(x) may no longer strictly hold. It221

is not uncommon in physics and mathematics to find that an asymptotic law still works qualitatively outside of the222

domains for which it can be proven to hold. Something similar is likely to be at work here, meaning that our general223

predictions about simplicity bias have a wider domain of applicability than one might at first assume. Exactly how224

this works, and how it may depend on the scaling of K(f) with n remain open questions for future work.225

Finally, while we have mainly studied examples of fixed complexity maps, for the matrix maps with certain types226

of circulant matrices, described in Supplementary Note 12, we find very preliminary evidence that suggests that the227

simplicity bias holds not only for maps of fixed complexity, but also for maps where K(f) grows asymptotically as228

K(f) ∼ log(n), as we anticipated above. In the limit of large x the derivations above for equation (12) above still229

holds, but further investigation is necessary to work out more generally when and how simplicity bias depends on230

particular properties of the matrix map. It may be, for example, that it is most pronounced for the simpler fixed231

maps.232

SUPPLEMENTARY NOTE 4233

Limited complexity maps without simplicity bias234

Linear maps cannot show bias235

In the main text, we claim that for an input-output map to show simplicity bias, f must be a nonlinear function of236

its inputs. This is because linear transformations are not biased towards any outputs, as we show now.237

If f were linear then its domain I is a discrete subset of a finite-dimensional space; f would also be bounded and238

continuous. This would imply that if two inputs are close in input space, the corresponding outputs would also be239

close to each other17. Likewise, any distance in input space will translate into a proportional distance in output space.240

Moreover, while a linear transformation does not necessarily preserve angles between lines or distances between241

points, it does preserve ratios of distances between points lying on a straight line. Because of this property, if one242

were to select inputs on a grid, the ratios of the distances between the points on the grid would not be affected by243

the input-output map. The linear transformation would map the grid in input space to the grid in output space, and244

no point in output space would be “denser” - in terms of having more outputs in its neighbourhood - than any other245

point.246

In a similar way, if instead of selecting inputs from a grid one were to sample them uniformly from a bounded247

subset of input space, this uniform distribution would still be present in output space, as the corresponding outputs248

would also be uniformly distributed. In summary, a linear map cannot produce bias towards any outputs. Therefore,249

for a map to show simplicity bias (or any kind of bias for that matter), it must be a nonlinear function of its inputs.250
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Simplicity bias is not a necessary consequence of conditions 1-5251

In the main text we gave five conditions on maps which we conjecture are usually sufficient for observing simplicity252

bias. That is, we suggest that typical real-world maps satisfying these conditions will show simplicity bias.253

However, it is important to point out that these five conditions do not in fact necessitate that the map will show254

bias. As a very simple counter example, consider a map which prints the first n/2 bits of n-bit inputs strings. This255

map has NI � NO, and the map is simple. Nevertheless, the output is a uniform distribution over {0, 1}n/2, and256

hence there is neither bias, nor simplicity bias. Of course, this projection map is a linear map, and so it does not257

satisfy the condition of linearity which we imposed. However, it could easily be altered slightly to make it nonlinear,258

while retaining a roughly uniform distribution. For example, we could alter the definition of the map to ‘print 0n if259

the sum of first n/2 digits is a prime number; otherwise print the first n/2 digits’. This distribution would be biased260

toward the outputs 0n/2, but otherwise be uniform over the others.261

The point of this perhaps rather artefactual example is to illustrate that one can create maps that satisfy our262

conditions, but do not display simplicity bias. Nevertheless, for all the real-word systems we examined in this work,263

we find that simplicity bias holds. So we conjecture that our five conditions are sufficient for most non-UTM maps264

that are generated from real-world systems . But this conjecture could be tested with further examples. Working265

out the exact formal necessary and sufficient requirements for simplicity bias in non-UTM contexts would form an266

interesting future project.267

SUPPLEMENTARY NOTE 5268

Estimating the range of K(x|f, n)269

We will now estimate the range of values for K(x|f, n) with x ∈ O. We begin with a lower bound on possible270

complexity values: Given f and n we can compute all the inputs, and produce all NO outputs. Hence, we can271

describe any x ∈ O by its index 1 ≤ j ≤ NO in the set of outputs O. Therefore272

K(x|f, n) ≤ log2(j) +O(log2(log2(j))) +O(1) (19)

where the second O(log2(log2(j))) term arises from the fact that the description is in prefix-free form. Since at least273

one output should have an index of j = 1, for that output all terms containing log2(j) will be equal to zero, resulting274

in a lower bound for the range of K(x|f, n):275

min
x∈O

(K(x|f, n)) = O(1) (20)

Another slightly cruder way of estimating the minimum value of K(x|f, n) follows from simply noting that the276

probability P (x) should be always be less than one. In that case, our upper bound equation (12), implies that277

min
x∈O

K(x|f, n) & 0.278

For an upper bound on max
x∈O

K(x|f, n), the indexing argument from equation (20) suggests that279

max
x∈O

(K(x|f, n)) ≤ log2(NO) + log2(log2(NO)) +O(1) (21)

It is possible to derive a similar upper bound using a standard AIT argument: if all strings can be used as programs280

that encode a map’s outputs, then there are at most
∑M
l=1 2l = 2M+1 − 1 programs of length l ≤M . However, since281

we are using prefix codes, not all strings are available, and only roughly 2M out of the set of all 2M+1 − 1 programs282

can be used. For NO outputs, this argument implies that one would need strings made of up to log(NO) bits to283

encode all outputs, thus imposing an upper bound of log(NO) on K(x|f, n). Taken together, these arguments suggest284

the following range:285

0 ≤ K(x|f, n) ≤ log2(NO) +O(1) (22)

our upper bound equation (12) would then satisfy:286

1

NO
≤ 2−K(x|f,n)+O(1) ≤ 1. (23)
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The upper bound on our bound is in a sense trivial, as the probability of an output cannot be greater than 1. The287

lower bound is just the average value of P (x) given that there are NO outputs. Just to be clear, the lower bound288

above is not a lower bound for the probability P (x) of an output: it is the expected lowest value for the upper bound289

P (x) ≤ 2−K(x|f,n)+O(1), which is a decreasing function of K(x|f, n). In other words, the upper bound on P (x) –290

which for any given K(x|f, n) gives the upper bound on the probability of outputs with that value of K(x|f, n) – can291

be expected to roughly vary between these two extremes as a function of K(x|f, n), The actual probabilities P (x),292

on the other hand, can be closer or further from the bound. For example, the bound above tells us that P (x) for the293

most complex outputs will be less than 1/NO. This upper bound does not preclude there being that many x in this294

set for which P (x) � 1/NO, in fact for highly biased distributions we might expect this to be the case for the high295

complexity outputs. If there is bias in the distribution there are likely many outputs within the whole set x ∈ O that296

have P (x) < 1/NO, since
∑NO

o=1 P (x0) = 1.297

SUPPLEMENTARY NOTE 6298

Sampling inputs produces outputs close to the bound299

The upper bound on the probability to obtain a certain output on its own this does not say much about how close300

we expect an actual P (x) to be to this bound. In this section, we derive a lower bound for P (x) when x is produced301

from a random input (See also discussions in refs 3 and 1).302

Consider a computable function f(p) = x, where p is some input program producing output x. Let p ∈ {0, 1}n, so303

that all inputs have length n. Define the set A(x) to be the pre-image of x, i.e. the set of all the inputs that map to304

x, so that305

P (x) =
|A(x)|

2n
(24)

We can describe any arbitrary input p using the following procedure: Assuming f and n are given, first enumerate306

all 2n inputs and map them to outputs using f . Then describe the output x = f(p) using K(x|f, n) bits, and finally,307

describe the index of the specific input p within the set A(x) using at most log2(|A(x)|) bits. For example, if the set308

has 1024 elements, then with log2(1024) = 10 bits, we can describe any index i = 1, 2, 3, . . . , 1024. In other words, this309

procedure basically means identifying each input by first finding the x it maps to, and then finding its label within310

A(x).311

Following this procedure allows us to write the following bound for the complexity of the input p:312

K(p|n) ≤ K(x|f, n) + log2(|A(x)|) +O(1) (25)

If we choose a random input p, then with high probability (i.e. for most inputs) we will have K(p|n) = n+O(1), and313

the inequality becomes314

n ≤ K(x|f, n) + log2(|A(x)|) +O(1) (26)

Rearranging yields315

2−K(x|f,n)−O(1) ≤ |A(x)|/2n = P (x) (27)

Combining this lower bound together with the upper bound of equation (12) shows that for a randomly chosen input316

we have317

2−K(x|f,n)−O(1) ≤ P (x) ≤ 2−K(x|f,n)+O(1) (28)

with high probability. Note that both sides of the bound depend on uncontrolled O(1) terms. They arise from similar318

procedures, but are different, and we have put a minus sign on the left side of the equation to make this clear.319

Nevertheless, the overall argument suggests that for x generated by randomly chosen inputs, the probability P (x)320

should not be too far off from our upper bound. Indeed, the direct calculations of the maps in the main paper show321

that most of the probability mass is found not too far (on a log scale) from the upper bound.322

Another way to analyse the proximity of P (x) to the upper bound is to define the function323

q(x) =
2−K(x|f,n)+O(1)

P (x)
(29)
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which measures the ratio of the upper bound of equation (12) to the probability P (x) that an output x is generated324

by random sampling of inputs. q(x) measures the relative overestimate of the probability of output x when we325

approximate it by the upper bound, so we expect that in general q(x) ≥ 1.326

The expected value of q(x) summed over all inputs, which we call EI , can be written as a sum over all outputs,327

where every output is weighed as P (x):328

EI =
1

NI

NI∑
i=1

q(x(pi)) =

NO∑
i=1

P (xi)q(xi) (30)

=

NO∑
i=1

2−K(xi|f,n)+O(1) (31)

For a computable map
∑
x∈O P (x) = 1. Because K(x|f, n) is a prefix code,

∑
x∈O 2−K(x|f,n) ≤ 1, but since q(x) ≥ 1329

we know that EI =
∑
x∈O 2−K(x|f,n)+O(1) ≥ 1 due to the O(1) terms.330

More generally, since EI is finite for a computable map, and q(x) ≥ 0, we can use Markov’s inequality18, which331

implies, for q(x) generated by random inputs, that 3:332

NO∑
i=1

{P (xi) : q(xi) > EIr} <
1

r
(32)

for r > 0. From this it immediately follows that:333

NO∑
i=1

{
P (xi) :

2−K(xi|f,n)+O(1)

EIr
≤ P (xi)

}
≥ 1− 1

r
(33)

In other words, on uniform random sampling of inputs, the lower bound in334

2−K(x|f,n)+O(1)

EIr
≤ P (x) ≤ 2−K(x|f,n)+O(1) (34)

holds with a probability of at least 1− 1
r , while the upper bound, given by equation (12), always holds. Since we find335

that P (x) typically varies by many orders of magnitude, we will consider the bound to be tight (on a log scale) if336

it is within one or two orders of magnitude of the true P (x). Another way of thinking about this lower bound is to337

observe that EI is the input averaged ratio of the bound to the true P (x). We measured EI explicitly for the maps338

in the main text compared to our approximate upper bound and find that typically log10 EI ≈ 1 or 2, so that, using339

our definition above, the bound is relatively tight when random inputs are chosen for the maps described in the main340

text.341

We emphasise that the fact that random sampling of inputs generates P (x) close to the upper bound does not mean342

that most outputs x lie close to the bound. The average probability over all NO outputs is still < P (x) >= 1/NO,343

while we find for our upper bound 2−K(x|f,n)+O(1) � 1/NO for low complexity outputs, and even for the largest344

K(x|f, n) the upper bound ≥ 1/NO. So if the bound is tight for the outputs generated by random sampling of inputs,345

then these outputs typically have P (x) � 1/NO. To compensate, there must be many outputs with P (x) < 1/NO.346

Thus while sampling random inputs generates outputs that are relatively close to the bound, sampling random outputs347

uniformly should give many P (x) that are typically well below the bound. Indeed, for the maps we describe in this348

paper this behaviour is observed.349

SUPPLEMENTARY NOTE 7350

Approximations to K(x)351

Kolmogorov complexity K(x) is formally uncomputable1. At best, it can be approximated from above. At first352

sight these properties might seem to make it impractical to use. Nevertheless, there is a significant literature that353

uses various approximations to K(x) which have been found to work remarkably well in various applications, see e.g.354

references19–31355

We follow this same approach here, and in particular use an influential complexity measure for digital strings (or356

sequences) that was introduced in 1976 by Lempel and Ziv32. Their algorithm forms the foundation for many popular357
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Supplementary Figure 1. Heatmap for the complexity CLZ(x) versus entropy S(x) for binary strings of length n = 30. Both
measures are normalised by their maximum value. Complexity is bounded by entropy, in the sense that a binary string with
mostly zeros (and therefore low entropy) cannot be complex. Conversely, a string such as 010101...01 has maximum entropy,
since it is made of an equal number of 0s and 1s (thus S/Smax = 1), while still being very simple (CLZ(x)/Cmax

LZ ≈ 0.273).

compression algorithms. The essence of the Lempel-Ziv algorithm is to read through a string (of any finite alphabet358

size) from left to right and create a dictionary of new sub-patterns as they appear in the string. A string with many359

different sub-patterns would then yield a large dictionary, and hence be assigned a high complexity. Conversely, a360

string of little variation that is essentially built up of repeated sub-patterns would yield a small dictionary, and hence361

would be assigned a low complexity. If the number of words (distinct patterns) in the dictionary is Nw(x) then Lempel362

and Ziv showed subsequently30,33 that for an ergodic source and in the limit of long sequences that363

lim
n→∞

Nw(x) log2(n)

n
=
K(x)

n
= h(x) (35)

for nearly all sequences, where n = l(x) is the length of the binary strings, and h is the standard Shannon entropy rate.364

This complexity function has thus been a popular choice for approximating Kolmogorov complexity in the literature.365

In particular, it is thought to work better than other lossless compressions based measures for shorter strings26,34.366

We use the following approximate complexity measure based on the 1976 Lempel Ziv algorithm32:367

CLZ(x) =

{
log2(n), x = 0n or 1n

log2(n)[Nw(x1...xn) +Nw(xn...x1)]/2, otherwise
(36)

The reason for distinguishing 0n and 1n is merely an artefact of Nw(x) which assigns complexity K = 1 to the string368

0 or 1, but complexity 2 to 0n or 1n for n ≥ 2, whereas the Kolmogorov complexity of such a trivial string actually369

scales as log2(n), as one only needs to encode n. In this way we ensure that our CLZ(x) measure not only gives the370

correct behaviour for complex strings in the limn→∞, as shown in equation (35), but also the correct behaviour for371

the simplest strings. In addition to the log2(n) correction, taking the mean of the complexity of the forward and372

reversed strings makes the measure more fine-grained, since it allows more values for the complexity of a string. Note373

that CLZ(x) can also be used for strings of larger alphabet sizes than just 0/1 binary alphabets.374

It is instructive to compare our measure K̃(x) = CLZ(x) to the simple binary entropy, defined as S(x) = p log p+375

(1 − p) log(1 − p), where p is the fraction of 1s (or 0s) in the string x. While low entropy strings typically have low376

K̃(x), the converse is not always true. Strings that are algorithmically simple can still have high entropies, as we377

illustrate in Supplementary Figure 1. Nevertheless, as is well known in the literature (see also equation (35)), in the378

limit of long strings, the mean Kolmogorov complexity per length tends to the entropy rate.379

In Supplementary Figure 2a we plot the probability distribution of complexities for a wide range of lengths n. For380

lengths n ≤ 30 we performed complete enumerations, and for longer lengths we performed sampling with 1 × 109381

samples for each length. We estimated the mean complexity, the modal complexity, and the standard deviation as a382
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Supplementary Figure 2. Distribution of complexity values calculated with CLZ(x) for strings of different length
n. All strings of length n = {5, 10, 15, 20, 25, 30} were enumerated, and for n > 30 samples of 109 strings were taken. (a)
Distribution of CLZ(x)/n, for n = 100 to 2000. (b) Distribution of CLZ(x), for n = 50 to 400. (c) Distribution of CLZ(x), for
n = 5 to 30. (d) Mean of (CLZ(x)/n), for n = 5 to 400. Error bars represent one standard deviation. (e) Standard deviation
σ over the mean µ of CLZ(x), for n = 5 to 400. (f) Median of (CLZ(x)/n), for n = 5 to 400. Note that as n grows, the mean
and median CLZ/n approach 1, and the standard deviation σ over the mean µ drops: In other words, the distribution becomes
more peaked. Lines connecting data points were added to guide the eye.
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function of the length n. Also, we show in Supplementary Figure 2e that as the length of the strings get longer, the383

distributions get relatively narrower. The mean is expected to approach n→∞ limit < CLZ >≈ n30,33. The main384

thing to note is that for a given n, strings with complexity well below the mean are rare, and progressively more rare385

for lower complexities.386

Any estimator of Kolmogorov complexity will have weaknesses. And there are some subtleties that should be kept387

in mind when interpreting CLZ(x). Firstly, rather than most strings having the maximum complexity, we find that388

the majority of strings are close to the mode which is in turn very near the mean complexity (See Supplementary389

Figure 2c,d,e). For Lempel-Ziv it is known that strings with maximal complexity are somewhat anomalous because390

they can be created by an algorithmic process35, which is an artefact of the Lempel-Ziv algorithm itself, and so they391

are in fact not the most complex in a Kolmogorov sense. However, as can be seen in Supplementary Figure 2 these392

highest complexity strings remain rare, and so for our purposes they do not play a big role.393

We also applied two alternate complexity measures to CLZ(x). Firstly, in Supplementary Figure 3 we apply the394

Compress function in Mathematica to RNA secondary structures of n = 55 and n = 80 bases. As can be seen,395

the values of the complexity approximation K̃(x) are different, so that the values of a and b, estimated using the396

methods described in Supplementary Note 8, are different, as expected. Nevertheless, the same basic simplicity bias397

phenomenology obtains, as we would predict. Note that Compress is similar to zlib compression, which is based on398

another of Lempel and Ziv’s famous compression algorithms, often called LZ7736.399

Given that most lossless compression algorithms are influenced by the ideas of Lempel and Ziv, it is not straightfor-400

ward to find measures that are truly different in origin. Recently, however, a fundamentally different way of estimating401

the Kolmogorov complexity of strings has been derived in an important series of papers37–39 that apply the full AIT402

coding theorem by sampling over many Turing machines. In principle this coding theorem method (CTM) is very403

powerful, and in particular can go well beyond lossless compression techniques, which are fundamentally sophisticated404

entropy measures. However, CTM is limited to very short strings (. 12 bits). To calculate the complexity for longer405

strings, one can use the Block Decomposition Method (BDM) which, as the name suggests, breaks such strings into406

smaller blocks, whose complexity can be approximated by the value taken from the CTM39,40. As shown in Supple-407

mentary Figure 3, we again obtain the basic simplicity bias phenomenon. In this BDM case we simply fit to both a408

and b, rather than using the methods described in Supplementary Note 8. The reason is that some of the simplifying409

assumptions used in Supplementary Note 8 do not work for the BDM method. For example, we assume that a can410

be approximated by assuming b to be zero, but that does not work here, most likely because there is a larger additive411

constant to the BDM complexity than to the CLZ(x). However, as argued in Supplementary Note 8, additive and412

multiplicative changes can all be absorbed into a and b. In principle, once one has fit a and b for a given complexity413

measure, which only needs a small number of outputs, then equation (37) can be used for other outputs of the same414

map.415

Finally, the coding theorem results which we invoke apply to the prefix-free version of Kolmogorov complexity, de-416

noted K(x), as opposed to the plain Kolmogorov complexity, denoted C(x), see 1. However, while these two measures417

have important theoretical differences, they are asymptotically equal by equation (4), and so quantitatively close.418

Since we approximate K(x) anyway, we ignore the subtle distinction between these measures in our approximations.419

Some of the differences may be absorbed into our parameters a and b, discussed in the next section.420

SUPPLEMENTARY NOTE 8421

Predicting a and b for computable maps422

A key result in the main text is equation (3), which approximates the upper bound (12) for limited complexity423

maps as424

P (x) ≤ 2−aK̃(x)−b (37)

In this section, we describe how to make predictions for the values of a and b by using minimal information about the425

maps.426

Estimating a427

To derive an approximation for the slope a we start with equation (23) which provides lower and upper bounds428

on the probability bound. If we assume that the minimum upper bound is reached by the most complex objects,429

i.e. outputs such that our approximation to the Kolmogorov complexity, K̃(x), takes the value maxx∈O K̃(x), and430



13

a b

c d

e f

Supplementary Figure 3. Simplicity bias predicted by other approximations to Kolmogorov complexity. We use,
Mathematica’s Compress function, the block decomposition method (BDM) and the simple entropy S(x) of the dot-bracket
notation, for n = 55 and n = 80 RNA secondary structures. In order, the plots show (a) Compress for n = 55 RNA, (b)
Compress for n = 80 RNA, (c) BDM for n = 55 RNA, (d) BDM for n = 80 RNA, (e) Entropy S(x) for n = 55 RNA, (f)
Entropy S(x) for n = 80 RNA. The solid lines denote our estimated upper bound, the dashed lines are the upper bound with
b = 0. For the Compress and BDM method, we observe a similar simplicity bias phenomenology to what was observed in Figure
1a of the main paper, where CLZ was used. For the entropy measure, there is also a decay of the probability with increasing
complexity, but the behaviour of the upper part of the curves are significantly less linear than for Compress, BDM and CLZ(x).
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further that b can be ignored for this derivation which we motivate below, then a has a simple approximation, shown431

as equation (4) in the main text:432

a ≈ log2(NO)

max
x∈O

(K̃(x))
(38)

Using this equation we can either find the gradient a from knowing NO, or find NO from knowing a. Alternatively,433

if we have a way of estimating max(K̃(x)), as well as the gradient a, then we can infer NO directly. Since NO is very434

hard to estimate for large maps where exhaustive enumerations are not possible, this method may be a way to get a435

quick estimate of NO based on some limited sampling.436

Estimating b437

As a first approximation, we note that if a map is strongly biased towards simple outputs, then we expect the largest438

P (x) for outputs x with complexity for K̃(x) = min
x

(K̃(x)) to be at most within one or two orders of magnitude of 1.439

That suggests that b is generally small, and as a zeroeth order approximation we assume that b ≈ 0.440

Alternatively, if P (x) is known for some output x, then assuming knowledge of a and K̃(x), and assuming441

P (x) ≈ 2−aK̃(x)−b (39)

then b can be inferred by rearranging this equation. Clearly this method would work just as well for finding a, if one442

knew b and K̃(x). It seems plausible that the most likely P (x) to be close to the upper bound is the largest P (x)443

for the set of x with modal K(x), i.e. the K(x) that is most likely to be generated by sampling random inputs. We444

typically use this value of P (x) to fix b. One drawback with this method is that it relies on the assumption of the445

approximate equality equation (39); hence if for the chosen output x, the upper bound was only a poor approximation,446

then the corresponding estimation of b would be equally poor.447

With the methods above, reasonable approximations to a and b can generally be estimated with a limited amount448

of sampling of random inputs, as we demonstrate in the main text. As long as there are ways to estimate max(K̃(x)),449

and NO, then the only real fitting parameter is b, which to first order can simply be set to zero. Of course some450

simplifying assumptions have been used here. Not all maps may obey them, but we can always simply fix a and b451

with a few values of P (x) and K̃(x). It remains the case that only a small amount of information is needed to fix the452

bound.453

Finally, we note that the values of a and b depend on the chosen approximate measure of complexity. In this454

paper we use K(x) ≈ K̃(x) = CLZ(x). If we were to choose a different complexity say K̃α,β = αCLZ(x) + β, then455

the phenomenology would be the same, but with new constants aα,β = a/α and bα,β = b − aβ/α. In other words,456

multiplicative and additive constants are simply absorbed into the parameters. Such robustness is a useful property.457

Supplementary Figure 4. Probability P (x) vs. increasing complexity for different sized systems. (a) RNA n = 10
shows essentially no simplicity bias, although the trivial unbonded and simplest structure does have the largest probability.
(b) RNA n = 20 shows simplicity bias, despite the noise. For the upper bound, a = 0.23, b = 1.08; (c) RNA n = 80 shows
clear simplicity bias, as does n = 55 in the Main text. For the upper bound, a = 0.33, b = 6.39.
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SUPPLEMENTARY NOTE 9458

Simplicity bias and system size459

In the main text we argue that one needs NO � 1 to avoid finite size effects when measuring the simplicity bias460

of an input-output map. Here we illustrate this point, showing finite-size effects in the RNA map. Supplementary461

Figures 4a, b and c respectively show logP (x) vs. K(x) plots for n = 10, 20 and 80 RNA sequences, supplementing462

the plot for n = 55 map in the main text. The plots for the shortest sequences show behaviour that deviates from463

the upper bound simplicity bias prediction: Supplementary Figure 4a with n = 10 RNA shows no simplicity bias,464

except for the trivial structure of no bonds which is simplest and highest in probability, Supplementary Figure 4b465

with n = 20 shows simplicity bias, but with some noise. In contrast, Supplementary Figures 4c for n = 80 and Figure466

1(a) from the main text (n = 55) show pronounced simplicity bias for a range of values for K̃(x). Thus as NO grows,467

simplicity bias becomes clearer.468

For the shorter systems, full enumerations are possible, but since the space grows as NI = 4n, this is not possible469

for longer systems. For example, for n = 55, there are 455 ≈ 1033 different structures and an estimated 1013 different470

secondary structure outputs41. As it can be seen in Supplementary Figure 5, we only sample a small fraction of the471

total number of outputs, and these are typically those with higher P (x).472

a b

Supplementary Figure 5. Probability P (x) that a phenotype is obtained by random sampling over inputs versus its rank for
RNA secondary structures, in (a) linear and (b) logarithmic scale. In black, we show the analytic approximation for the
probability distribution derived in ref. 41. In green, the probability of sampled RNA structures of length n = 55 shown in
Figure 1a in the main text. Note that structures of low probability are not found by sampling.

SUPPLEMENTARY NOTE 10473

Predicting which of two outputs has higher probability474

The arguments above suggest that if outputs x and y are generated from random sampling of inputs, so that the475

outputs are expected to be close to their upper bounds, and if K̃(x) < K̃(y) holds, P (x) > P (y) should also hold476

in most cases. We tested this claim for all input-output maps in the Figure 1 in the main paper by sampling 104477

pairs of outputs (x, y), and counting a prediction as ‘correct’ if the claim holds or if K̃(x) = K̃(y) and P (x) is within478

a factor of 10 of P (y). Naturally, the null hypothesis would be no bias towards simple outputs therefore we should479

obtain P (x) > P (y) for 50% of the samples. We performed output-sampling, i.e. weighing every output equally,480

and input-sampling, i.e. weighing every output by its probability. Here is the percentage of correct results for each481

input-output map from Figure 1 in the main, including the complex matrix map, for which this method does not482
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work, since it does not show simplicity bias:483

• RNA: input-sampled 99%, output-sampled 78%484

• Circadian rhythm: input-sampled 81%, output-sampled 71%485

• Ornstein-Uhlenbeck financial model: input-sampled 92%, output-sampled 75%486

• L-systems: input-sampled 87%, output-sampled 68%487

• Simple matrix map: input-sampled 89%, output-sampled 71%488

• Complex matrix map: input-sampled 49%, output-sampled 52%489

For the simple matrix map, we ignored the highest probability output (a trivial vector) since this takes up the490

majority of the space and so skews the P (x) v.s. P (y) results. But overall, we see that just using K(x) and K(y) can491

give a good first guess of whether P (x) is larger of smaller than P (y). Of course, the larger the difference K(x)−K(y),492

the more confidence we can have in the difference between P (x) and P (y).493

SUPPLEMENTARY NOTE 11494

Low complexity, low probability outputs have lower complexity inputs495

a b

Supplementary Figure 6. The probability P (x) to obtain a given RNA structure x upon random sampling of inputs as a

function of the mean complexity of the input sequences that produce x for n = 20 RNA, shown for (a) K̃(x) = 21.29 and

(b) K̃(x) = 23.95. These are among the lowest complexity values, as seen in Supplementary Figure 4b. As predicted by
equation (25), secondary structure outputs with a lower P (x) (further from the bound) have a lower than average sequence
complexity.

There is another implication from the upper bound on the complexity of an input, described in equation (25): if496

both K(x|f, n) and P (x) = |A(x)|/2n are small, then this equation will be violated unless the l.h.s. is also small. In497

other words, this argument also predicts that low complexity outputs with low probability should be generated by498

inputs for which K(p|n) < n, i.e. inputs that are simpler than what we obtain by random sampling inputs. Small499

K(x|f, n) suggests a larger upper bound on P (x), so the outputs with simpler input sets are those for which P (x) is500

far from the upper bound of equation (12).501

To illustrate this effect we take the RNA map as an example. We measure the complexity KI of an RNA input502

string by replacing each of the 4 nucleotide letters with 00, 01, 10, or 11, and then measure the complexity of the503

corresponding binary sequence. We then sampled 50 million RNA sequences with n = 20 nucleotides, and measured504

the mean complexity of the inputs associated to each output. For randomly chosen n = 10 RNA input strings we505
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find an average complexity of KI = 51.2. However, as can be seen in Supplementary Figure 6, low K(x) low P (x)506

outputs, i.e. ones are far from the upper bound of Equation (12), have an average sequence complexity KI < 51.2,507

whereas those outputs that are closer to the upper bound, have the expected average complexity close KI = 51.2, the508

average for randomly chosen RNA n = 20 input strings. Since, as discussed above, low complexity strings are rare,509

the number of inputs mapping to low K(x) low P (x) outputs must be a small fraction of all input strings. This in510

turn implies that random inputs (which are overwhelmingly complex) must mainly map to outputs where P (x) is not511

too far from the bound.512

The validation of this non-trivial prediction from equation (25) helps justify our arguments above for the other513

conclusion that follow from this equation, namely that randomly sampled inputs are likely to generate outputs x with514

probabilities P (x) nearer the upper bound of Equation. (12).515

SUPPLEMENTARY NOTE 12516

Simplicity bias in other input-output maps517

In this section we provide some more examples of input-output maps, and elaborate further on some maps discussed518

in the main text.519

The circadian rhythm model520

In the main paper we study a well known model by Vilar et al.42 for the circadian rhythm of eukaryotes as an521

input-output map. The model consists of a set of nine equations:522

dDA/dt = θAD
′
A − γADAA

dDR/dt = θRD
′
R − γRDRA

dD′A/dt = γADAA− θAD′A
dD′R/dt = γRDRA− θRD′R
dMA/dt = α′AD

′
A + αADA − δMA

MA (40)

dA/dt = βAMA + θAD
′
A + θRD

′
R

−A(γADA + γRDR + γCR+ δA)

dMR/dt = α′RD
′
R + αRDR − δMR

MR

dR/dt = βRMR − γCAR+ δAC − δRR
dC/dt = γCAR− δAC

Since we are mainly using this model to illustrate a generic ODE map, we will not give a complete description of523

what all the parameters mean. For a full account we point to the original paper42. Very briefly, the model above524

aims to study the ability of circadian clocks to maintain a constant period even in noisy conditions, and describes the525

interaction of two genes that regulate the expression of a pair of proteins, the activator A and the repressor R. This526

repressor works by sequestering the activator, forming the inactivated complex C, whose concentration over time is527

the variable we chose to use as output, taking its rate of formation (i.e, its slope) at discrete time steps to produce528

our binary string. Since this variable is placed at the bottom of the regulatory cascade, it is a natural choice for529

the output. Supplementary Figure 7 represents the output of the ODE model, showing the concentration of the nine530

molecules over time, for the set or parameters given in the original paper42: DA and DR start at 1 molecule, meaning531

one single copy of the activator and repressor genes, and other variables start at zero, with αA = 50 h−1, α′A = 500532

h−1, αR = 0.01 h−1, α′R = 50 h−1, βA = 50 h−1, βR = 5 h−1, δMA
= 10 h−1, δMR

= 0.5 h−1, δA = 1 h−1, δR = 0.2533

h−1, γA = 1 molecule−1 h−1, γR = 1 molecule−1h−1, γC = 2 molecule−1 h−1, θA = 50 h−1, and θR = 100 h−1.534

Since in this input-output map the inputs are given as continuous parameters, it is less clear how to sample inputs535

than in cases such as RNA where the inputs are discrete strings. Here, instead, every input parameter corresponds to536

a biological constant or rate, and the realistic ranges for such parameters are often unknown. Moreover, the value of537

each parameter – allosteric constants, affinity rates – is also the product of a series of other very complex input-output538

maps, transducing information from DNA sequences into amino acid sequence and eventually into a parameter in this539

ODE model. To make progress, and since we are simply treating this as a model map, we set all 15 parameters to540
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a b

Supplementary Figure 7. The output of the ODE model described in equation (41), showing the concentration of 9 molecules
from equation (40) over time, in linear scale (a) and logscale (b). The initial conditions and parameters are the same as in the
original paper42.

their original values, multiplied by a random factor in {0.25, 0.50, . . . , 1.75, 2.00} chosen with uniform probability. In541

this way we effectively have a discrete set of input parameters.542

Since the outputs depend continuously on the input variables, in principle every input would produce a unique543

output. Nevertheless, intuitively, many outputs can be very similar to one another. To capture this, we coarse-grain544

the outputs by discretising them into binary strings using the “up-down” method43,44. We take the output curve y(t)545

calculated in an interval t ∈ [0, T ], calculate its slope dy/dt at intervals of t = δt, 2δt, 3δt, . . . , and print the sign of546

dy/dt in every interval: for j = 1, . . . , T/δt, if dy/dt ≥ 0 (or < 0) at t = jδt, the j-th bit of the output string gets547

assigned a 1 (or a 0). The resulting string represents the oscillations of y(t): curves with more oscillations will produce548

more complex strings, while curves with fewer oscillations will produce strings with longer repeated sequences of 0s549

and 1s.550

Alternative sampling of inputs551

To check that our discretisation method does not affect the main effects we observe, we also take the same range of552

parameters, but now randomly sample uniformly on the whole range for each one, e.g. not just or discrete values. In553

Supplementary Figure 8a we used this method to randomly sample 106 inputs and used the same method as above to554

calculate the complexities of the outputs. As can be seen, the same simplicity bias behaviour obtains as can be seen555

in Figure 1b of the main paper. The values of a and b for the two sampling methods agree more or less within the556

uncertainty of our methods for obtaining them.557

Discretising initial conditions558

Since the behaviour described by the circadian rhythm model should depend on the initial conditions of the ODE559

system, it is important to test whether the simplicity bias we observe also depends on that. We took a sample of560

106 combinations of different values for parameters and initial conditions, produced their corresponding outputs and561

derived the upper bound coefficients a = 0.32 and b = 1.39 according to equation (38). The plot in Supplementary562

Figure 8b shows the expected simplicity bias phenomenology: there is a very biased distribution in the probability563

that correlates with complexity.564

Alternative sample sizes565

To generate Figure 1b for the ODE in the main paper, we took a sample of 106 inputs, which is less than total566

815 ≈ 3× 1013 inputs for this coarse-grained ODE model. Consequently, any estimate of P (x) for outputs for which567

P (x) . 10−6 will be subject to large errors. Importantly, however, as can be seen in Supplementary Figure 9, even568

with as few as 103 samples, an upper bound can be identified which has a slope very close to the one found with much569

more sampling. We note that for the very small sample sizes, using the estimated NO needed in equation (38) does570
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Supplementary Figure 8. (a) Probability versus complexity for the outputs of a circadian rhythm model with 106 inputs
sampled uniformly from a continuous range, instead of sampled from discretised values over the same range. The upper bound
coefficients a = 0.29 and b = 1.48 are derived according to equation (38) (b)Probability versus complexity for the outputs of a
circadian rhythm model with 106 combinations of inputs and initial conditions, sampled from a discretised range. The upper
bound coefficients a = 0.32 and b = 1.39 are derived according to equation (38). For both plots, outputs were discretised in 50

bins, and the results are very close to Figure 1b in the main text. For every value of K̃, the blue dots represent the outputs
corresponding to 50% of the inputs that produce outputs with K̃(x) = K̃.

not work very well, but for the larger samples this works better and a consistent result is obtained. Nevertheless, we571

see that limited sampling is enough to identify the slope by fitting, and without needing equation (38). Hence the572

upper bound slope can be estimated without a full enumeration of the inputs, but with only partial sampling.573

Cell cycle574

Another input-output map we explore here is based on the well known the model of ref. 45, which describes part of575

the cell cycle for budding yeast. This well-established model is made of a large system of approximately 50 differential576

equations, where the values of more than 130 input parameters define the outputs, which are concentration-time577

curves for different chemicals. As an output we chose the concentration-time curve of the cell division cycle protein578

6, or Cdc6. Our choice was motivated only by the observation that the Cdc6 curve varies sufficiently to yield many579

different outputs of varying complexity. To coarse-grain the outputs, we discretise the output curves to binary strings580

following the ‘up-down’ method43,44 described above, yielding a binary string of length 40.581

As inputs for this map also consist in real parameters of an ODE system, we take an approach akin to what we582

did for the circadian rhythm, and similar to what is done by the authors of this model in a robustness analysis45. We583

set all parameters to default values, and then sample by allowing each parameter to be scaled by a random factor584 √
2
ζ
, where ζ is an integer {−4, , 4}, chosen with uniform probability. We then sampled 106 input parameter sets and585

produced the outputs shown in Supplementary Figure 10. As for the previous input-output maps, this one also shows586

clear simplicity bias.587

Ornstein-Uhlenbeck financial model588

In the main text we discuss an input-output map describing the pattern of price fluctuations modelled by the589

Ornstein-Uhlenbeck process. This process is described by the equation dSt = θ(µ − St)dt + σdWt, where St is the590

price, µ and σ are parameters representing the historical average price and the market volatility respectively, θ is the591

noise dissipation rate, and Wt is a Brownian motion representing market noise. This Brownian motion is also the592

input of the map. These inputs then generate St, and the outputs xt are defined also as sequences over n time steps,593
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Supplementary Figure 9. Probability versus complexity for the outputs of a circadian rhythm model with 103 to 106 inputs,
and outputs discretised in 50 bins. Note that for clarity, every sample size is displaced horizontally from the previous one by 0.3
for clarity. For sampling 10n times the lowest possible probability is 10−n, which explains the long K(x) range at the minimum
probability for each number of outputs. These are outputs that only appear once in the sample, and so the probability estimate
is inaccurate. As the size of the input sample grows, the estimate of the probability of the rare outputs becomes more accurate.
On the other hand, the P (x) close to the upper bound do not change as much, and nor does the estimated values of a and b
for the upper bound.

where xj = 0 if Sj ≤ 0, and xj = 1 otherwise. The output sequence x can be interpreted as indicating whether St is594

above or below its historical average, and thus whether the trader would profit by selling or buying more of it.595

In the main paper, we show that this input-output map shows simplicity bias phenomenology. In this section, we596

confirm that this bias towards simplicity we observe is not an artefact of our choice of parameters: Supplementary597

Figure 11 shows that different values of the parameters θ and σ still produce bias towards simple behaviour.598

Note that the Brownian motion in this model could be coarse grained as a random walk of fixed step sizes, which599

in turn can be defined by a sequence of ±1 steps. Both processes become equivalent when θ = 0 in the Ornstein-600

Uhlenbeck process, causing the noise term σdWt to dominate. From this perspective, we could also define the inputs601

in this model as the collection of all ±1 sequences of some specified length, depending on the level or coarse graining.602

Because of that, this input-output map is also related to the random walk return map below, which describes a map603

from a one-dimensional random walk with fixed step size to a binary string output, where the j-th bit represents604

whether on step j the random walking particle is to the right (sj > 0) or to the left (sj ≤ 0) of the origin s0 = 0.605

Random walk return map606

In this section we study a simple one-dimensional random walk starting at s0 = 0, followed by a series of uncorrelated607

steps of 1 or −1 as an input-output map.608

Inputs are defined as follows: A walk of m steps will produce a position vector s = (s1, s2, . . . , sm), where sj609

represents the position of the random walker at time j. Since each sequence of steps is equally likely, and will produce610

a unique path, we consider this path as an input.611

Outputs are defined as another sequence over m time steps, x = (x1, x2, . . . , xm), where xj = 0 if sj ≤ 0, and612

xj = 1 otherwise. The changes from 0 to 1 (and vice-versa) in the output sequence thus correspond to times when the613

random walker returns to s = 0. We measure the complexity of these binary output strings in the usual way using614

CLZ(x).615

One way of seeing this map is as a simplification of the Ornstein-Uhlenbeck model map, when the mean-reverting616

parameter θ is set to zero. In this regime, all change in the price St will be due to the Brownian motion dWt, which617

allows for steps of any size. In this section, this motion is coarse-grained to a random walk with steps of fixed size.618

This allows the inputs to be fully enumerated, since the number of possible random walks with a given number of619

steps becomes countable and finite.620

The probability versus complexity relationship is shown in Supplementary Figure 12a for all 222 random walks of621
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Supplementary Figure 10. The ODE cell cycle model of ref. 45, treated as an input-output map, shows simplicity bias. 106

inputs were randomly sampled and the output curves for the Cdc6 curve were discretised with the ‘up-down’ method over 40
bins. For every value of K̃, the blue dots represent the outputs corresponding to 50% of the inputs that produce outputs with
K̃(x) = K̃. Since the number of outputs is too small to provide a good estimate of NO, the upper bound line was fit to the
distribution.

m = 22 steps. The random walk return map shows the now familiar bias towards simple outputs. Since we computed622

the full list of outputs by enumerating all inputs of m = 22 steps, we were able to calculate max(K̃) and NO directly,623

and find a via equation (38). It is interesting to compare the probability versus entropy plot as well, which can be624

seen in Supplementary Figure 12b. Here the entropy measure shows a decay which is much less pronounced than the625

CLZ(x) decay.626

Given the simplicity of a random walk, this decay of the probability with complexity can also be motivated directly627

without needing AIT arguments. Since the random walk has no memory, every time the walker returns to s = 0 it628

can be seen as starting a new walk. In other words, the probability of any return to s = 0 can be represented as the629

product of multiple ‘first return’ walks. It is known46 that the probability of first return T of a simple random walk630

at step m scales for large m as:631

Pret(T = m) =
1

m− 1

(
m
m
2

)
2−m ≈ 1

m− 1

1√
πm/2

∼ m−1.5 (41)

where m must be an even number. Most importantly, this means that for a given number of steps, high probability632

outputs will be strings which have long sequences of zeros or ones, since P (T = m) goes to zero relatively slowly as633

m increases. Similarly, the probability of a simple random walker not returning after m steps is given by46:634

P (S1 6= 0, S2 6= 0, . . . , Sm 6= 0) = 2

m∑
b=1

b

m
P (Sm = b) (42)

where the 2 takes into account walks in s > 0 and s < 0, and P (Sm = b) =
(
m

m+b
2

)
2−m. Equation (41) implies635

that outputs made of simple repeated motifs will have very low probability. For instance, a run of length 6 that636

returns three times to the origin has a probability of Pret(T = 2)Pret(T = 2)Pret(T = 2) ≈ (2−1)3 ≈ 12.5%, while637

equation (42) implies that a run of same length that does not return to 0 has a probability of 64.4%. More generally,638

the largest probability strings are typically ones with no or few returns, while strings with multiple returns will have639

low probability.640

We give some examples of outputs and probabilities from the numerical simulations, enumerating all 222 bitstrings.641

An example of the highest probability output for each unique complexity value, with format (string complexity, log10642

probability, output string) is643
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Supplementary Figure 11. The Ornstein-Uhlenbeck process shows simplicity bias for different choices of the parameters θ and
σ, as well as of the number of steps of the Brownian motion. Respectively: (a) µ = 0.1, σ = 2.0, 25 steps, a=0.56, b=-1.6, (b)
µ = 0.5, σ = 0.1, 30 steps, a=0.58, b=-3.7, (c) µ = 0.5, σ = 0.10, 35 steps, a=0.59, b=-3.0, (d) µ = 2.0, σ = 0.25, 45 steps,

a=0.63, b=-5.0. For every value of K̃, the blue dots represent the outputs corresponding to 50% of the inputs that produce
outputs with K̃(x) = K̃. Since NO = 2n, max(K̃(x)) is also known, and the upper bound coefficients were calculated using
equation (38). Red dashed lines represent an upper bound offset of b = 0.

4.0, -1.08, ’1111111111111111111111’644

11.0, -2.40, ’1111111111111111111110’645

13.0, -1.66, ’1100000000000000000000’646

16.0, -1.66, ’1011111111111111111111’647

18.0, -2.24, ’0011000000000000000000’648

20.0, -2.24, ’0100111111111111111111’649

22.0, -2.81, ’0100110000000000000000’650

25.0, -3.39, ’0011010011111111111111’651

27.0, -3.82, ’1011111110110000000000’652

29.0, -4.22, ’0100111110110000000000’653

31.0, -4.78, ’0100000011010011111111’654

33.0, -5.32, ’0100000011101100111111’655

36.0, -5.84, ’0100110010111110110000’656

38.0, -5.92, ’0100000001001110101101’657

40.0, -6.62, ’1011101011110000110010’658

As expected from our back-of-the-envelope calculation for return probabilities, higher probability outputs contain659

long runs of zeros or ones. Further calculations in this vein could undoubtably provide more detail on the distribution660

of outputs. The point of this random walk illustration, however, is to demonstrate that our very simple AIT based661

predictions capture some of the main phenomenology without the need for detailed calculations.662
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Supplementary Figure 12. Decay in probability P (x) with increasing (a) complexity and (b) entropy for the random walk
return map. In (a), the values of a = 0.43 and b = 0.68 were estimated using the methods in Supplementary Note 8. In (b),
while there is a decrease in probability with increasing entropy, the upper bound for P (x) does not vary in orders of magnitude

as it does for K̃(x) = CLZ(x). For every value of K̃, the blue dots represent the outputs corresponding to 50% of the inputs

that produce outputs with K̃(x) = K̃.

Polynomial curves663

In this section, we study a particularly simple map. Inputs are the coefficients αi of a polynomial y(t) =
∑n
i=0 αit

i
664

and outputs are the resulting curve over the variable t. We show that this input-output map also exhibits bias towards665

simple outputs. As with the ODE systems above, this input-output map goes from the continuous space of all n-tuples666

of real coefficients, i.e. Rn, to the also continuous space of all polynomial curves y(t). Consequently the inputs cannot667

be fully enumerated, and every output curve is unique. It is therefore necessary to coarse-grain both the input and668

output spaces.669

The space of possible polynomials is extremely large. To simplify, we take the coefficients αi from a normal670

distribution of mean zero and variance one. Polynomials of this form are also known as Kac polynomials47. It is671

known that the expected number of real roots for a Kac polynomial of degree n is proportional to log n48, but the672

actual distribution of the number of zeros does not have a known closed formula. One advantage of Kac polynomials673

is that they have symmetry properties that lead to some simplifications: Since the distribution of coefficients αi is674

symmetric around zero, for every positive root there should be a negative root, which means that the negative real675

roots should be distributed in the same way as their positive counterparts. Second, for every polynomial p(x) with676

coefficients (a0, a1, . . . , an−1, an) there will be a polynomial p̃(x) with the same coefficients, but in the reverse order:677

(an, an−1, . . . , a1, a0). For every x 6= 0 which is a root of p(x), the reverse polynomial p̃(x) will have a root at 1/x.678

Due to this property, we only need to evaluate y(t) in [0, 1], since for every root in this interval there will be a root679

in [1,∞), in addition to their negative mirror images. In summary, because of these symmetries, the outputs can be680

considered in [0, 1] only.681

We coarse-grain the outputs in two ways. In the first one, we used the ‘up-down’ method described above, thus682

converting every output into a binary output which we here call string 1. And since the ‘up-down’ method produces683

a string that captures the changes in sign of the derivative of y(t), i.e. the roots of its derivative, we also produced a684

binary string simply describing the location of the roots of y(t). string 2 is made entirely of 0s, except for the digits685

representing the intervals where y(t) crosses zero, which are 1s. For example, if y(t) crosses zero three times in three686

different discrete bins, then its corresponding output string will then have three 1s, while if y(t) does not cross zero687

it will correspond to a string made only of 0s.688

One problem that remains is that since we don’t know the exact distribution of roots in advance, there could be689

multiple roots in a single bin when roots are closer than the distance between bins. This is hard to completely rule out.690

Instead, since the goal in this section is to simply demonstrate the existence of simplicity bias in this input-output691

map, we simply check for the severity of this problem by varying the number of bins in the discretisation, showing692
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Supplementary Figure 13. Simplicity bias in a simple polynomial input-output map. (a) and (b) respectively show output
probability versus output complexity, and output probability versus output entropy, for outputs defined as string 1, which
indicates changes of sign of the slope. Similarly, (c) and (d) show probability versus complexity and probability versus
entropy, for outputs defined as string 2, which indicates the coarse-grained location of the roots of a given polynomial. (e)
and (f) show the probability of all output strings 1 and 2 respectively, from most probable to least probable output. Note
that despite string 1 and string 2 being defined differently, both present the same decay in (e) and (f). Finally, (g) shows
the distribution of the number of roots in the [0, 1] interval. Polynomials of degree 10 were used for all figures, and the [0, 1]
interval was divided in 50 bins (t, t+ δt), where δt = 0.02.

that the simplicity bias phenomenology is present for different bin sizes.693

To proceed we take input coefficients from a standard normal distribution. The resulting polynomials are evaluated694

only in [0, 1] and then discretised into binary strings using the methods above. We sampled 105 polynomials of degree695

d = 10, discretising their outputs into 50 bit-long strings, and comparing the complexity K̃(x) and the entropy S(x)696

of an output to the number of inputs corresponding to each output, i.e. the probability of that output.Despite being697

very simple and coarse-grained, this input-output map shows the basic simplicity bias phenomenology we predicted698

above. As seen in Supplementary Figures 13a and 13c, random sampling of inputs (coefficients) is much more likely699

to produce low complexity curves than more complex curves.700

Supplementary Figure 13 also shows other proxies for output complexity. For example, Supplementary Figure 13b701

compares the probability of output string 1 with its entropy S(x). In sharp contrast to the complexity K̃(x), there702

is no clear relationship between the probability and the S(x). The reason for this is not hard to work out. Entropy703

is maximal for an equal number of one’s and zero’s, and minimal when either one or zero dominates. Thus simple704

patterns like 01010101010101010101 or 11111111110000000000 have low complexity when measured by CLZ(x) but705

maximal entropy. For string 1 many outputs of varying entropy will correspond to similar polynomial curves. For706

example, if the derivative of a polynomial has a single root in [0, 1], the proportion of 0s and 1s in string 1 will depend707

on where the root is located, since string 1 indicates where y(t) is increasing or decreasing. This leads to nearly708

identical outputs – curves with a single extremum – having very different values for entropy. On the other hand, as709

can be seen in Supplementary Figures 13c and 13d for string 2 both measures of complexity show a clear correlation.710

In this case, the complexity K̃(x) and the entropy S(x) of the output string, are essentially proxies for the number of711

roots in [0, 1], which drops quickly with increasing number of roots, as shown in Supplementary Figure 13g.712

Both output definitions, string 1 and string 2, give rise to the same distribution of probability per output, shown713

by the rank plot in Supplementary Figures 13e and 13f. Supplementary Figure 13g shows the distribution of the714

number of roots in [0, 1),715

This bias towards simple outputs is observed for polynomials of varying degree, with varying levels of discretisation.716
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In Supplementary Figures 14 and 15 we show that our results are robust to different levels of discretisation of the717

outputs, as well as to different polynomial degrees. For such a simple system it is possible to rationalise this bias in718

other ways as well, but the point of this exercise is to show that a simple application of our simplicity bias arguments719

seems to capture some of the dominant aspects of the bias.720

Supplementary Figure 14. Graphs showing probability versus complexity of an output string, for polynomials of varying degrees
and fixed discretisation (50 bins). Panels (a) to (f) represent polynomials of degree 10, 15, 25, 50, 75 and 100 respectively. Each

plot was produced from a sample of 105 polynomials. For every value of K̃, the blue dots represent the outputs corresponding
to 50% of the inputs that produce outputs with K̃(x) = K̃. Since the number of outputs is too small to provide a good estimate
of NO, the upper bound line was fit to the distributions.
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Supplementary Figure 15. Graphs showing probability versus complexity of an output string, for polynomials of varying
discretisation and fixed degree (d = 14). Panels (a) to (d) represent polynomials discretised in 12, 24, 49 and 99 bins

respectively. Each plot was produced from a sample of 105 polynomials, and for every value of K̃, the blue dots represent the
outputs corresponding to 50% of the inputs that produce outputs with K̃(x) = K̃. Since the number of outputs is too small to
provide a good estimate of NO, the upper bound line was fit to the distributions.

The matrix map: how map complexity affects simplicity bias721

In the main text we discussed a matrix map illustrated in Supplementary Figure 16. Here the inputs are binary722

vectors p of length n and the outputs are binary vectors x of length n. The outputs are produced by first performing723

a simple matrix multiplication z = M · p, where M is an n × n matrix, and then applying a thresholding function724

such that each element zi is transformed to the outputs vector x such that the output is 0 if zi < 0 and 1 if zi ≥ 0.725

The reason for the threshold function is to ensure the nonlinearity of this input-output map. A linear map, such726

as z = M · p, is incapable of producing bias towards any output, since it is simply an injective function from Rn into727

a subset X ⊆ Rn, and two different inputs cannot produce the same output. The threshold function thus forces the728

map to have some degeneracy.729

Here we treat this map as a very general input-output system. However, this matrix map can also be seen as730

simple a neural network, made only by the input and output layers, each with n neurons, having a step function as731

its activation function, and no hidden layers. Although this perspective is not explored in this paper, it is interesting732

to note that thinking of a neural network as a matrix map translates the machine learning task of finding a set of733

weights that minimises a cost function to the task of finding an input-output map with certain desired properties. A734

similar system was used as a very simple model of transcriptional gene networks in ref. 49, where it was shown that735

this map can generate biased outputs.736

The space of possible matrices is very large, so we begin with a very simple random 20 × 20 matrix where every737

entry is chosen from {−1, 1} with uniform probability. Supplementary Figure 17a shows that this map generates a738

very biased distribution of inputs over outputs, but, in sharp contrast to the other systems studied in this paper,739

there is no bias towards simpler or more complex outputs, as it can be seen in Supplementary Figure 17b.740

To show that most maps have a bias in their input-output maps, we use a very simple bias ratio measure, first741

introduced in ref. 41. If one takes the entropy of the distribution of the probabilities pi of the NO outputs, H =742
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input: output:

p x

Supplementary Figure 16. Illustration of an input-output map consisting in binary vectors multiplied by a matrix, following
by a binary threshold so that the output also consists in binary vectors.
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Supplementary Figure 17. Properties of a matrix map made from a random 20× 20 matrix where every entry is chosen from
{−1, 1} with uniform probability. (a) A rank plot shows that the map exibhits bias in that certain outputs are much more
likely to occur than others. (b) However, in contrast to simplicity bias phenomenology, there is no clear correlation between
probability and complexity of the output.

−
∑NO

i=1 pi log2 pi, then the exponential of the entropy, 2H , should be a rough estimate of the effective number of743

outputs50. One can then define a bias ratio β = 2H/NO, which measures the ratio between the effective number of744

outputs and the total number of outputs in that map. For maps with β ≈ 1, inputs should be roughly uniformly745

distributed across outputs, while for maps with β � 1, most inputs should correspond to a few outputs. In other746

words, the closer β is to 0, the stronger the bias in the distribution of inputs over outputs. For example, the map in747

Supplementary Figure 17 has a bias parameter β = 0.56. In Supplementary Figure 18a we show a histogram produced748

from an ensemble of 5000 matrices where each of the 20× 20 entries was chosen uniformly from {−1, 1}. We observe749

that most matrix maps in that ensemble have small β, and so most inputs map to a small fraction of the outputs.750

The maps show bias.751

For this same set of 5000 matrices we calculated the probability that a given output string would appear. We then752

measured the complexity of each output, and generated a distribution of outputs probability versus complexity. As753

can be seen in Supplementary Figure 18b, the distribution of these strings is very close to what we would expect754
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by random sampling of the outputs, or in fact random sampling of all binary strings of length 20. We also sampled755

over 5000 random 20 × 20 matrices where every entry is taken from a standard normal distribution (µ = 0, σ = 1),756

finding very similar results. We distinguish in the plot between input sampling and output sampling. The former757

takes averages over outputs generated by uniform random sampling of inputs that are fed into the map, and the latter758

simply samples uniformly over the outputs found. For an individual matrix with bias, input and output sampling can759

vary significantly, depending on the amount of bias. However, when we subsequently average over the matrices, this760

difference goes away. For the matrices with randomly chosen {−1, 1} entries, there remains a very slight difference761

between input and output sampling, while for the matrices with entries taken from a standard normal distribution762

input and output sampling yield essentially the same results within our measurement errors. In other words, while763

for a single matrix with bias, certain outputs are much more likely to be generated by random sampling of inputs764

than others, when averaged over many matrices, no output string is more or less likely to be generated than any765

other. This behaviour is fundamentally different from maps that show simplicity bias, because even if we averaged766

over maps, we would expect low complexity outputs strings to be more likely to occur on average.767
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Supplementary Figure 18. (a) Histogram for the bias ratio β, a measure for the ratio between the number of effective outputs
and the total number of outputs of a map. Smaller values of β mean more bias in the map. The map in Supplementary
Figure 17 has a bias parameter β = 0.56. (b) Distribution of K̃(x) for the outputs of matrix maps from an ensemble of
random 20×20 matrices with entries chosen uniformly from {−1, 1}. Dark blue circles denote a distribution made by sampling
inputs and yellow squares denote a distribution made by uniformly sampling over outputs, The green stars and red triangles
respectively represent the same input-sampled and output-sampled averages, but for random 20× 20 matrices with taken from
a standard normal distribution (µ = 0, σ = 1). The light blue crosses represent the distribution of K̃(x) over all bitstrings of
length 20. The overlap between all curves shows that the outputs of a random matrix map are likely to be as complex as a
random set of strings of the same length. Error bars are too small to be visible, and average values are all within 27.3± 0.3.

Circulant matrices768

All the matrix maps considered so far were made from random matrices, with entries either taken from {−1, 1} or769

from a normal distribution of mean zero and variance 1. In other words, for square matrices, the amount of information770

needed to specify the map grows as n2. In this section we study a set of matrix maps for which the amount of771

information needed to specify the map grows more slowly with n. We begin by studying circulant matrices, illustrated772

in Supplementary Figure 19a. Circulant matrices are a class of Toeplitz matrices where each row corresponds to the773

row above, shifted to the right by one element. They play a role in fields ranging from discrete Fourier transforms774

to cryptography51. In this work, their most important aspect is that these matrices are defined by the values on the775

first row. Limiting our matrix entries to {−1, 1}, a circulant matrix can be defined using n bits or less, as opposed to776

n2 bits for a random {−1, 1} matrix. These matrices are illustrated in Supplementary Figure 19a.777

While the outputs from the random matrix maps explored in the previous section were, on average, as complex as778

any random binary string of the same length, some circulant matrix maps do show some bias towards simple outputs779

(Some fully random maps may also show simplicity bias, but these are sufficiently rare that we do not find any in our780
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sampling). Supplementary Figure 19c, shows the ratio between K̃o, the average output complexity when all outputs781

are assigned the same weight, and K̃i, the average output complexity where every output is weighed by the frequency782

with which it appears upon random sampling of inputs. The majority of maps have K̃o/K̃i close to one, but a small783

fraction (a few %) have significantly higher ratios, which mean that low complexity outputs are more likely to appear784

upon random sampling of inputs.785

The main correlating factor for matrices that have high values of K̃o/K̃i is that the complexity K̃(row) of the786

top row which determines the whole matrix is low. We showed this in the main text in Figure 2, which is repeated787

above as Supplementary Figure 19d for clarity. This behaviour is what we would expect from our general derivation788

of simplicity bias, which relies on the map itself being having a limited complexity.789

To check that this bias towards simpler output presented by a small fraction of the circulant matrix maps could not790

be attributed to the matrices having low rank we also measure the rank of each matrix. As shown in Supplementary791

Figure 19b for an ensemble of 25000 circulant matrices with 20× 20 entries taken from {−1, 1}, most matrices have792

a matrix rank close to its maximum of 20, with 93.8% of the matrices having a rank of 20. We also confirmed that793

the matrices with high values of K̃o/K̃i do not have low rank on average.794

Supplementary Figure 19. (a) Illustration of a circulant matrix. (b) Histogram for the matrix rank of 25000 circulant matrices

with 20× 20 entries taken from {−1, 1}. (c) Histogram for the ratio K̃o/K̃i in the matrix maps made from the same matrices.

(d) Violin plots showing how K̃o/K̃i changes with the complexity of the top row of the same circulant matrices. Also shown
as Figure 2 in the main text.

Low complexity circulant matrices show simplicity bias795

We can explore this behaviour in more detail by creating circulant matrices with low complexity rows. We limited796

the {−1, 1} matrix ensemble to 20 × 20 circulant matrices defined by rows containing log n positive entries (and797

negative entries otherwise). Those matrices, by construction, are defined by O(log2 n) bits, a much smaller amount798

of information when compared to the n× n bits required to specify each entry of a random matrix with entries taken799

randomly from {−1, 1}, or the n bits to define most circulant matrices in the full ensemble (Note that most strings800
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of length n have (near) maximum (or modal for CLZ) complexity). For the matrix maps made from these simpler801

matrices, the evidence for simplicity bias is clear: all maps show a ratio K̃o/K̃i > 3.5.802

Since those matrices will consist in 320 entries equal to −1 and 80 entries equal to +1, we ran a control using803

using matrices with these same proportions, but without the row-by-row structure, as well as matrices with the same804

proportion of +1 and −1 per row (16 : 4), but without the Toeplitz structure. We tested both alternatives, but none805

showed simplicity bias as the simple matrices described in this section do. This can be attributed to the fact that806

these maps need not O(log2 n) bits to be described, but O(n log n), since all row structure is lost. They thus violate807

our limited complexity condition that K(f) +K(n)� K(x).808

Supplementary Figure 20. Histogram for K̃o/K̃i for 20×20 circulant matrices with entries taken from {−1, 1}, containing only
blog 20c = 4 positive entries per row.

Rank and sparsity do not explain simplicity bias in the matrix map809

Rank and sparsity are two traditional measures for the complexity of matrices. As another control, we consider810

10× 10 matrices of rank and sparsity varying from 1 to their maximum values of 10 and 100 respectively.811

Firstly, in Supplementary Figure 21 we show violin plots for the output complexity of random 10× 10 matrix maps812

made from random {−1, 1} matrices versus rank. As the matrix rank decreases from 10 to 1, both K̃o and K̃i deviate813

from the full-rank matrices. Supplementary Figure 21c, however, shows that the ratio K̃o/K̃i stays constant. In other814

words, even though matrix maps made from matrices of lower rank do produce low complexity outputs, that is not815

because those outputs correspond to more inputs than their high complexity counterparts, but rather because the816

high complexity outputs are not being produced at all. In an extreme case, a matrix of rank one will produce the817

simplest possible outputs, but nothing more than that.818

The second natural candidate for the complexity of a matrix map is the sparsity of its matrix, i.e. the number of819

zeros in the matrix. As shown in Supplementary Figure 22 for 10×10 matrices, K̃o and K̃i remain the same for levels820

of sparsity up to 80%, and drop sharply for sparser matrices. Still, the ratio K̃o/K̃i, remains around 1, indicating once821

again a decrease in output complexity but no bias towards producing simpler outputs over more complex outputs.822

In summary, even though rank and sparsity are used as proxies for matrix complexity in other contexts, we have823

presented evidence that they only affect the average output complexity of a matrix map when at extreme values of824

either low rank or high sparsity. Even in these cases, the ratio K̃o/K̃i remains around 1. This means that within825

all the outputs produced by these low-rank or high-sparsity matrix maps, there is no bias towards producing simpler826

outputs with a higher probability .827

On the other hand, we have shown that one can define simple matrix maps without resorting to low-rank or sparse828

matrices, by using circulant {−1, 1} matrices with a small number of positive entries on each row - approximately829

log n elements on a n × n matrix. And as mentioned above, the matrix maps from this ensemble can be defined830

with O(log2 n) bits of information. While in the main text and in Supplementary Note 3 we mainly treat maps of831



31

a b c

Supplementary Figure 21. Violin plots for the complexity of random {−1, 1} matrix maps made from 10 × 10 matrices as a

function of rank. K̃o in (a) shows the average output complexity, while K̃i in (b) shows the average output complexity where

each output is weighed by its frequency, i.e. the fraction of inputs that correspond to it. Figure (c) shows the ratio K̃o/K̃i.
Red lines mark the average values in all violin plots.

a b c

Supplementary Figure 22. Output complexity of random {−1, 1} matrix maps made from 10 × 10 matrices, versus matrix

sparsity. K̃o in (a) shows the average output complexity, while K̃i in (b) shows the average output complexity where each

output is weighed by its frequency, i.e. the fraction of inputs that correspond to it. Panel (c) shows the ratio K̃o/K̃i. The

darkest red lines represent the average K̃o, K̃i and their ratio K̃o/K̃i, and the lighter shades of red represent one and two
standard deviations.

fixed complexity, if maps grow only as log2 n then for large enough n the requirement that K(f) � K(x) should832

always hold. However, we only tried an extremely small range of log n so these conclusions are very preliminary.833

Again, as discussed earlier, we find clear simplicity bias phenomenology even when we may not quite be in the limit834

of K(f) � K(x). This suggests that the large n asymptotic behaviour persists down to smaller maps. We have not835

yet explored how small the matrix maps should be for finite size effects, discussed for example in Supplementary Note836
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