
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

By extending a classical result from algorithmic information theory, the major claim of the paper is 
that for many real-world maps, the a priori probability P(x) that randomly sampled inputs generate a 
particular output x decays exponentially with the approximate Kolmogorov complexity K ̃(x) of that 
output.  

This is a surprising and somewhat important general result. It concerns many fields as the paper 
shows. 

Their weaker version of the coding theorem for computable maps into a simple equation is really 
practically important and the paper shows that the basic simplicity bias phenomenology this 
equation predicts holds for a wide diversity of real-world  

 

This is an original paper.  

The statistical analysis is rather elementary and convincing.  

 

Line 91 "It is not hard to show (see SI section II), using using standard results from AIT such as the 
complexity of a whole set can be much lower than the complexity of individual members of the set, 
that the probability P(x) that a randomly ... "  

The word using is written twice  

More important: this is a central point of the paper, and it must be explained more cautiously.  

 

The paper must be accepted after some corrections (I think the English can be improved) and 
complements about the central equation of the paper.  

 

 

Reviewer #2 (Remarks to the Author):  

 

In this paper it is uncovered that the a priori probability P(x) that randomly sampled inputs of 
different maps generate simple outputs decays exponentially with their complexity (the same 
measured by the approximate Kolmogorov complexity). The authors call this behavior simplicity bias. 



Based on information theory, an upper bound for most inputs is derived. The described behavior is 
investigated in different real systems.  

 

Some concern about the paper is related to the restrictions applied to the maps, particularly the 
necessity of dealing with low complexity maps (as showed by the authors, high complexity maps, as 
in the random matrix case, do not exhibit simplicity bias), and the condition of “well behaved” which 
seems too restrictive for real nonlinear maps. For example, maps that mostly produce chaotic 
solutions (as should be the case for some nonlinear partial differential equations) do not shown 
simplicity bias?  

 

Moreover, regarding the practical usefulness of the results, it is interesting that, in some cases, low 
complexity outputs of low probability are produced by low complexity inputs. However, there is not 
a lower bound and, thus, it is possible that particular inputs can also produce high complexity 
outputs of low probability. The question arises, thus, if such high complexity outputs of low 
probability should be generated by low complexity inputs. Such possibility is interesting for 
predicting the a priori probability of successful modelling of complex behaviors with simple maps 
feed by simple inputs. For example, in tRNA folding, a very interesting question regards the relation 
between the complexity of the input sequences and the complexity of the folded tRNAs. The 
probability that a random input sequence generates a complex folding like such observed in present 
tRNA molecules is relevant from an evolutionary point of view.  

 

Another point regards the example of coarse grained ODEs as a model for circadian rhythms. The 
behaviors showed in the cases of low and high complexity are respectively, a fixed point and a self-
sustained oscillation. However, we known that such behaviors depend also strongly on initial 
conditions; thus, also a randomization of initial conditions seems to be necessary for asserting a 
global trend in the probability of the output complexity (the simplicity bias).  

 

Nevertheless, the paper is clear, scientifically sound, address an interesting issue, and show new 
results that can stimulate further research in this topic.  

 

In my opinion the paper deserve publication in the Journal as it is, perhaps a little discussion about 
the influence in practical terms of the requirements on complexity and well behavior of the map 
should increase its reach.  

 

 

Reviewer #3 (Remarks to the Author):  



 

To put these comments into context, my research expertise lies in computational complexity and I 
have done extensive work in Kolmogorov complexity, or in the author’s terminology algorithmic 
information theory.  

 

The basic idea of algorithmic information is that you can describe the “algorithmic information” of 
some data by the size of the shortest program that generates that data. So a sequence 
“ababababababababababababababab” has less information than 
“abaababaaabaabbbababbbabaababa” even though they would have the same probability if chosen 
randomly. Dual to this notion is the universal measure p(x) that weights data x by 2^(-K(x)) where 
K(x) is the algorithmic information complexity of x.  

 

This paper looks at functions that take uniformly randomly chosen inputs and run them through 
some “natural” process and look at the probability generated by the output strings. If the process 
simulated a arbitrary computation then it is known that the probability distribution would be within 
a constant factor of p(x). The authors do some computational experiments to show that you can see 
this kind of behavior to processes such as structure from RNA sequence, circadian rhythm and a 
financial market model. To simulate the uncomputable Kolmogorov complexity, the authors use 
standard compression functions, something that has been used with some success in the past.  

 

For the most part, the author’s discussion of technicalities of Kolmogorov complexity pretty accurate 
but I found the interpretation of the results here quite simplistic. Equation (3) just gives an upper 
bound, technically even the random matrix map has this bound, albeit with a large a and b.  

 

And since the authors use standard compression functions instead of true Kolmogorov complexity, 
really what is going on is the ability of the compression function to sort of “undo” the functions 
given. If you use a cryptographic hash function (like MD5 or SHA-2), you should find similar behavior 
to the random matrix map even though these hash functions have small descriptions.  

 

The authors do not make a great argument for the motivation for a simplicity bias. Is it really just 
capturing the phenomenon that outputs of a simple function with a large number of inverses occur 
with higher probability and can often be compressed because of it? I think there might be a better 
story to tell in connections to learning and predictions along the lines described in Li & Vitanyi (3rd 
edition), section 5.4.  

 

Lance Fortnow  



Professor and Chair  

School of Computer Science  

Georgia Institute of Technology 



Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

By extending a classical result from algorithmic information theory, the 
major claim of the paper is that for many real-world maps, the a priori 
probability P(x) that randomly sampled inputs generate a particular output 
x decays exponentially with the approximate Kolmogorov complexity K ̃(x) 
of that output. 
This is a surprising and somewhat important general result. It concerns 
many fields as the paper shows. 
Their weaker version of the coding theorem for computable maps into a 
simple equation is really practically important and the paper shows that the 
basic simplicity bias phenomenology this equation predicts holds for a wide 
diversity of real-world 

This is an original paper. 
The statistical analysis is rather elementary and convincing. 

Line 91 "It is not hard to show (see SI section II), using using standard 
results from AIT such as the complexity of a whole set can be much lower 
than the complexity of individual members of the set, that the probability 
P(x) that a randomly ... " 
The word using is written twice 
We thank the referee for pointing this error out, it is now corrected. 

More important: this is a central point of the paper, and it must be 
explained more cautiously.  
This argument is laid out in much more detail in the SI section II. 
Nevertheless, we have taken this comment on board and rewritten and 



expanded the main text around what was line 91 to sketch out the main 
argument.  
The paper must be accepted after some corrections (I think the English can 
be improved) and complements about the central equation of the paper. 
We have had a careful read through the paper and have done our best to 
improve the English where we could. 

Reviewer #2 (Remarks to the Author): 

In this paper it is uncovered that the a priori probability P(x) that randomly 
sampled inputs of different maps generate simple outputs decays 
exponentially with their complexity (the same measured by the 
approximate Kolmogorov complexity). The authors call this behavior 
simplicity bias. Based on information theory, an upper bound for most 
inputs is derived. The described behavior is investigated in different real 
systems. 

Some concern about the paper is related to the restrictions applied to the 
maps, particularly the necessity of dealing with low complexity maps (as 
showed by the authors, high complexity maps, as in the random matrix 
case, do not exhibit simplicity bias), and the condition of “well behaved” 
which seems too restrictive for real nonlinear maps. For example, maps 
that mostly produce chaotic solutions (as should be the case for some 
nonlinear partial differential equations) do not shown simplicity bias?  

It this paper we did not treat maps that are chaotic, or related maps such as 
pseudo-random number generators, all which are violate condition (5) on page 2 of 
the main paper i.e. they are not ``well behaved’’ because they produce 
pseudorandom numbers.   As explained in the main text, the main reason for 
imposing this condition is that these pseudorandom high entropy outputs would be 
mistakenly classified by our Lempel Ziv (LZ) estimator or almost any other known 
complexity estimator, as having high complexity.  Pseudorandom number generators 
are in fact designed to produce numbers that are hard to compress (i.e. they fool 
most complexity estimators), even if their origin is algorithmic, so that their true 
Kolmogorov complexity can be quite small. We did indeed study some simple chaotic 
systems such as the logistic map and found intriguing results suggesting that some 
aspects of simplicity bias may still hold.  However, we feel that the complexities 
mentioned above mean that more needs to be worked out before this could be 
published. We believe that studying simplicity bias phenomenology for maps that are 
not ``well behaved” is indeed a promising new avenue of research, as the referee 
implies, and now mention this idea explicitly in the discussion section of the paper. 

Moreover, regarding the practical usefulness of the results, it is interesting 
that, in some cases, low complexity outputs of low probability are produced 



by low complexity inputs. However, there is not a lower bound and, thus, it 
is possible that particular inputs can also produce high complexity outputs 
of low probability. The question arises, thus, if such high complexity 
outputs of low probability should be generated by low complexity inputs.  
Such possibility is interesting for predicting the a priori probability of 
successful modelling of complex behaviors with simple maps feed by simple 
inputs. For example, in tRNA folding, a very interesting question regards 
the relation between the complexity of the input sequences and the 
complexity of the folded tRNAs. The probability that a random input 
sequence generates a complex folding like such observed in present tRNA 
molecules is relevant from an evolutionary point of view. 
 
The referee again makes an excellent point about the possible evolutionary 
implications of our work.  We have written on RNA evolution previously (e.g. our 
reference [20]) and are currently preparing a more general paper on the 
evolutionary implications of simplicity bias for publication. 
 
Another point regards the example of coarse grained ODEs as a model for 
circadian rhythms. The behaviors showed in the cases of low and high 
complexity are respectively, a fixed point and a self-sustained oscillation. 
However, we known that such behaviors depend also strongly on initial 
conditions; thus, also a randomization of initial conditions seems to be 
necessary for asserting a global trend in the probability of the output 
complexity (the simplicity bias). 
 
To address this point, we took a sample of 10^6 combinations of different values for 
parameters and initial conditions, produced their corresponding outputs and derived 
the upper bound coefficients for the slope  a=0.32 and offset b=1.39 according the 
methods proposed in the text. The result, shown in Figure 8b in the SI, shows the 
same simplicity bias as in Figure 1b in the main paper. 
 
Nevertheless, the paper is clear, scientifically sound, address an interesting 
issue, and show new results that can stimulate further research in this 
topic. 
 
In my opinion the paper deserve publication in the Journal as it is, perhaps 
a little discussion about the influence in practical terms of the requirements 
on complexity and well behavior of the map should increase its reach. 
We thank the referee for suggesting this .   At the end of the discussion, we have 
now added the following text:   
 
“In this paper, we have focussed on maps that satisfy a number of restrictions.  In 
particular, it will be interesting to study maps that violate our condition (5) of being 
well-behaved.  



In parallel, another interesting open question remains: how much of the patterns 
that we study in science and engineering are governed by maps that that are simple 
and well-behaved?”  

Reviewer #3 (Remarks to the Author): 

To put these comments into context, my research expertise lies in 
computational complexity and I have done extensive work in Kolmogorov 
complexity, or in the author’s terminology algorithmic information theory. 

The basic idea of algorithmic information is that you can describe the 
“algorithmic information” of some data by the size of the shortest program 
that generates that data. So a sequence 
“ababababababababababababababab” has less information than 
“abaababaaabaabbbababbbabaababa” even though they would have the 
same probability if chosen randomly. Dual to this notion is the universal 
measure p(x) that weights data x by 2^(-K(x)) where K(x) is the 
algorithmic information complexity of x. 

This paper looks at functions that take uniformly randomly chosen inputs 
and run them through some “natural” process and look at the probability 
generated by the output strings. If the process simulated a arbitrary 
computation then it is known that the probability distribution would be 
within a constant factor of p(x). The authors do some computational 
experiments to show that you can see this kind of behavior to processes 
such as structure from RNA sequence, circadian rhythm and a financial 
market model. To simulate the uncomputable Kolmogorov complexity, the 
authors use standard compression functions, something that has been 
used with some success in the past. 

For the most part, the author’s discussion of technicalities of Kolmogorov 
complexity pretty accurate but I found the interpretation of the results here 
quite simplistic. Equation (3) just gives an upper bound, technically even 
the random matrix map has this bound, albeit with a large a and b. 

Indeed, in a trivial sense, P(x) < 1, so an upper bound always holds.  But for the 
matrix map, for example, the complexity of the outputs does not correlate in an 
obvious way with the probability, and it certainly does not decrease with complexity, 
as would be needed for any slope a>0 large or small.  So, equation (3) only holds in 
this kind of trivial sense if you set the slope a to zero and just use the offset b.    

And since the authors use standard compression functions instead of true 
Kolmogorov complexity, really what is going on is the ability of the 



compression function to sort of “undo” the functions given. If you use a 
cryptographic hash function (like MD5 or SHA-2), you should find similar 
behavior to the random matrix map even though these hash functions have 
small descriptions. 

As described in our response to referee 2, we restrict ourselves to maps 
that don’t violate condition (5) on page 2. Pseudorandom number 
generators are a good example of maps that do violate this condition. They 
are precisely designed to do so.    We have now added a sentence on the 
page where we introduce condition (5) explaining this explicitly for 
pseudorandom number generators on page 2. It reads:   
” For example, pseudorandom number generators are designed to produce 
outputs that appear to be incompressible, even though their actual 
algorithmic complexity may be low.”  
  As we demonstrate with our broad range of examples, this restriction 
does not preclude a large number of interesting possible applications of 
simplicity bias.   It would be interesting to study systems that do violate 
condition (5), and we now added the following text to discussion at the 
end of the paper 

`` In this paper, we have focussed on maps that satisfy a number of restrictions.  In 
particular, it will be interesting to study maps that violate our condition (5) of being 
well-behaved.  
In parallel, another interesting open question remains: how much of the patterns 
that we study in science and engineering are governed by maps that that are simple 
and well-behaved?  ‘’ 

The authors do not make a great argument for the motivation for a 
simplicity bias.  

We are not quite sure what the reviewer means here.   It could be that the 
reviewer means: Why care about simplicity bias? We argue here that a 
large number of physically relevant maps show a bias towards simple 
outputs, and that we can provide a useful bound on the probabilities using 
concepts from AIT.    Our results have broad implications across science 
and engineering, and that seems to us like motivation enough. 
 Or perhaps the reviewer means: Can you prove that simplicity bias will 
arise? We address this interesting question in SI section IV, where we 
show that we can construct maps that are simple, and yet do not show 
simplicity bias.  Admittedly, these maps are somewhat artefactual, but they 
demonstrate that it is not so easy to prove exactly when simplicity bias will 



or will not occur, even if we observe that it is widespread.  We leave this 
interesting question for future work.  

Is it really just capturing the phenomenon that outputs of a simple function 
with a large number of inverses occur with higher  
probability and can often be compressed because of it?  
In compression theory, outputs can be compressed to ~log(1/P(x)) bits, 
and hence high probability outputs (with many inverses) can be assigned 
short code words. In this sense, outputs with many inverses can be 
compressed, because of this fact, regardless of their nature (what the 
outputs look like).  This is a standard result from Shannon information 
theory, and it doesn’t really matter what the objects are, the coding has to 
do with their distribution.  However, as we briefly discuss in SI IB, 
Kolmogorov complexity is not about distributions, as Shannon information 
is, but rather about individual objects. So, it is not at all obvious in the 
cases we examine that higher probability outputs should themselves be 
simple/compressible, i.e. why should a high probability output be 
symmetric/regular, and hence compressible? We find that they are 
compressible due to inherent regularities, not simply due to having a high 
probability. The fact that we can connect their probability to their 
complexity is the central claim of this paper.  

I think there might be a better story to tell in connections to learning and 
predictions along the lines described in Li & Vitanyi (3rd edition), section 
5.4. 

We agree with the referee that there is an interesting story connecting our 
paper to learning and prediction.  In fact, we are currently working hard on 
a paper that makes connections to learning theory.  

We also are aware of section 5.4 of Li & Vitanyi’s book, which summarises 
work around the Minimum Description Length (MDL), introduced by 
Rissanen in 1978.   Roughly speaking, MDL says that given some data, the 
hypothesis H we choose to explain it should minimise both the complexity 
of the hypothesis K(H) and the complexity of the data D, given the 
hypothesis. That is, we should seek to minimise K(H)+K(D|H). While MDL 
is relevant to learning problems, it is not yet clear whether MDL can shed 
light on simplicity bias.  Just to be clear: One of the main points of our 
paper is to say that given a set of outputs from a simple map, we can 
make non-trivial predictions about which outputs will have higher/lower 



probability, just by measuring (or estimating) the complexity of each 
output. Hence in this paper, we are not trying to form hypotheses or learn 
from observed data, rather we are making a priori predictions 
without/before looking at the data. 
 Nevertheless, the connections to MDL are a potentially interesting 
research topic for future work, and we have now included a line in the 
discussion that cites MDL and mentions possible connections. 

Lance Fortnow 
Professor and Chair 
School of Computer Science 
Georgia Institute of Technology 



REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

 

For me the new version of the paper is good for publication.  

 

 

Reviewer #2 (Remarks to the Author):  

 

The authors have answered satisfactorily all raised concerns and have make an effort for including 
some suggested comments.  

 

Thus, in my opinion, the new version of the paper deserve publication in Nature Communications as 
it is.  

 

 

 

Reviewer #3 (Remarks to the Author):  

 

In their rebuttal the authors state: “However, as we briefly discuss in SI IB, Kolmogorov complexity is 
not about distributions, as Shannon information is, but rather about individual objects. So, it is not at 
all obvious in the cases we examine that higher probability outputs should themselves be 
simple/compressible, i.e. why should a high probability output be symmetric/regular, and hence 
compressible? We find that they are compressible due to inherent regularities, not simply due to 
having a high probability. The fact that we can connect their probability to their complexity is the 
central claim of this paper.”  

 

This misses the real difference between Kolmogorov and Shannon. You can define a distribution 
m(x) = 2^{-K(x)}, a universal distribution. In fact Kolmogorov originally started with the distribution 
and then took logs to get a measure on strings. The difference with Shannon is that Kolmogorov 



takes into account computation. That’s why equation (3) is not surprising and actually tight with real 
Kolmogorov complexity.  

 

My point with Equation (3) is that you only have an upper bound, not a lower bound. When you 
aren’t tight it’s not because of the Kolmogorov complexity but because you are using a weak version 
of it. 



RESPONSE TO REFEREES.

Referees 1 and 2 make no further comments, and referee 3 makes some small points that we 
answer in red below. 

Referee 3 writes:
In their rebuttal the authors state: “However, as we briefly discuss in SI IB, Kolmogorov 
complexity is not about distributions, as Shannon information is, but rather about individual 
objects. So, it is not at all obvious in the cases we examine that higher probability outputs 
should themselves be simple/compressible, i.e. why should a high probability output be 
symmetric/regular, and hence compressible? We find that they are compressible due to 
inherent regularities, not simply due to having a high probability. The fact that we can connect 
their probability to their complexity is the central claim of this paper.” 
 
This misses the real difference between Kolmogorov and Shannon. You can define a 
distribution m(x) = 2^{-K(x)}, a universal distribution. In fact Kolmogorov originally started with 
the distribution and then took logs to get a measure on strings. The difference with Shannon is 
that Kolmogorov takes into account computation. That’s why equation (3) is not surprising and 
actually tight with real Kolmogorov complexity. 

We agree that the key difference is that Kolmogorov takes into account computation.  In the 
Supplementary Information section IB, we briefly discuss Shannon v.s. Kolmogorov and also 
refer the reader to standard works that discuss this difference further. We feel there is no need 
to discuss this particular question further as much more detailed treatments are found in the 
standard literature, and this is not a major point of our paper..  Equation (3) is indeed tight with 
real Kolmogorov complexity and a universal Turing machine, when it reverts to the coding 
theorem of equation (1).   However  here we are looking at systems that are not UTMs, which is 
the main point of our paper.  So we are essentially on the same page as the referee here. To 
make this more clear, we have now added, in the paragraph right after eq(3), a line that reads:

(Of course if the mapping were a full UTM, then equation~(\ref{eq:approx}) would simply revert 
to the full coding theorem again with and upper and a lower bound.)
 
My point with Equation (3) is that you only have an upper bound, not a lower bound. When you 
aren’t tight it’s not because of the Kolmogorov complexity but because you are using a weak 
version of it.

We agree, and to make this point more clear, we have now added a sentence to the end of the 
introduction which reads: 

In the next sections, we show how a weaker version of the coding theorem, which 
approximately preserves the exponential preference for low complexity, can be applied to a 
wide range of practical systems.
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