Molecular Cell, Volume 69

Supplemental Information

The Circulating Protease Persephone Is

an Immune Sensor for Microbial Proteolytic

Activities Upstream of the Drosophila Toll Pathway

Najwa Issa, Nina Guillaumot, Emilie Lauret, Nicolas Matt, Christine Schaeffer-Reiss, Alain Van Dorsselaer, Jean-Marc Reichhart, and Florian Veillard

Figures S1 to S5

Figure S2: Specific activation of Psh by *B. subtilis* subtilisin (Related to Figure 3)

(A) rpro-Psh (0.2 μ g/ μ l) was incubated at 29 °C with various concentrations of B. subtilis purified subtilisin. After 15 or 60 min, 1 µg aliquots were removed and boiled for 5 min to stop the reaction. After SDS-PAGE electrophoresis, residual rpro-Psh was visualized using anti-HisTag antibody. (B) rpro-Psh (0.2 μ g/ μ l) was incubated at 29 °C with *B. subtilis* (1 nM) purified protease. At various time points, 5 µg aliquots were removed and boiled for 5 min to stop the reaction. Samples were then electrophoresed and stained with Coomassie blue. Representative results of at least 2 independent experiments. (C) The N-terminal extremities of the main hydrolysis products (indicated by arrows) were determined by nanoLC-MS/MS analysis after in-gel protein N-terminal labeling using TMPP-Ac-Osu. (D) Cell-free supernatant of S2 cells expressing rpro-Psh (200 µl) was incubated in TrisHCl buffer 0.1 M, pH 8 with *B. subtilis* (1 nM) protease. After 1 hour, proteolytic activity of the generated rPro-Psh hydrolysis products was determined on the fluorogenic substrate Z-Arg-AMC for 30 min at 29 °C in 0.1 M TrisHCl buffer pH 8 supplemented with 5 mM CaCl₂. (E) rpro-Psh mutants His143/Glu, Ser339/Ala and His143/Glu; Ser339/Ala (0.2 µg/µl) were incubated with *B. subtilis* protease under the same conditions. After 1 or 2 hours, residual proteins were observed by Western blot with anti-6HisTag antibody and hydrolysis products visualized by Coomassie blue staining.

Figure S3: Implication of cysteine cathepsins in the Toll pathway (Related to Figure 5)

(A-C) Flies deficient for the indicated gene (See Sup Table 1) were challenged by septic injury with *E. faecalis* ($OD_{600}=1$) (A), *M. luteus* ($OD_{600}>200$) (C) or by natural infection with *B. bassiana* (B). After 24 hours at 29 °C, flies were collected and *drs* gene expression was monitored by RT-qPCR in total RNA extracts. *Ribosomal protein 49* (*Rp49*) mRNA was used as reference gene. Results were normalized to the value obtained for w^{1118} control flies. Data represent means \pm standard errors of 3 independent experiments, each containing three groups of 10 flies (5 males and 5 females). (D-E) Survival rate of adult flies challenged with *E. faecalis* by septic injury ($OD_{600}=1$) or with *B. bassiana* by natural infection 72 hours post-infection. Results are normalized with control flies (w^{1118} flies for null mutants and *C564-gal4* flies for RNAi expressing flies). Data represent means \pm standard errors of 3 independent experiments, each containing three groups of 10 flies (10 males and 10 females).

Figure S4: Generation of cathepsin 26-29-p mutants (Related to Figure 6)

(A) Schematic representation of the genomic region of 26-29-p and the mutant alleles obtained by P-element excision. Two null mutants and one revertant fly lines were generated by excision of the *KG00154* P-element (purple arrow) following crosses with $P(\Delta 2-3)$ transposase flies (Bloomington #2534). (B) PCR products obtained using the primers forward: 5'-GTCCGACTATCGGTTCGGTTT-3' and reverse: 5'-GATTGCCGCCATTCTTCAGG-3' and indicated by black arrows in (A). (C) Flies were collected and 26-29-p gene expression was monitored by RT-qPCR in total RNA extracts. *Ribosomal protein 49* (*Rp49*) mRNA was used for normalization. Data represent means ± standard errors of 3 independent experiments, each containing three groups of 10 flies (5 males and 5 females).

Figure S5: Expression and activation of rpro-cathepsin 26-29-p (Related to Figure 7)

S2 cells were stably transfected with the expression plasmid of rpro-cathepsin 26-29-p as described previously. (A) Expression of rpro-cathepsin 26-29-p was assessed in S2 cells lysate and cells culture supernatant by Western blot using the monoclonal Anti-6His C-term antibody. (B) To activate rpro-cathepsin 26-29-p, cells culture media was concentrated 20 times and then incubated with pepsine (0.002 mg/ml) in 0.2 M Glycine buffer, pH 4. After incubation at 37 °C, rpro-cathepsin 26-29-p processing was followed by Western blot with the monoclonal Anti-6His C-term antibody. (C) Activity of the generated hydrolysis products was assessed with or without E-64 (0.1 mM) at 37 °C in 0.1 M sodium acetate buffer, pH 5.5 on the fluorogenic substrate Z-Phe-Arg-AMC (λ_{ex} = 350 nm; λ_{em} = 460 nm). Pepsine alone was used as control.

Supplementary Table S1 TO S5

Plasmid name	Construction	Destination plasmid	Details
pJM1345	rpro-Psh	pMT-V5	PCR on cDNA clone GH12385 (DGRC) with primers IMU839/840 cloned in Kpnl-Xhol
pJM1681	rpro-Psh ^{M1}	pMT-V5	PCR on pJM1345 with primers IMU1144/1342, IMU1341/1145, IMU1144/1145 cloned in BglII-XhoI
pJM1682	rpro-Psh ^{M2}	pMT-V5	PCR on pJM1345 with primers IMU 1343/1344 cloned in Bgl2-Xhol
pJM1692	pro-Psh	pUAST-ATTB	KpnI-PmeI fragment from pJM1345
pJM1693	pro-Psh ^{M1}	pUAST-ATTB	Kpnl-Pmel from fragment pJM1681
pJM1694	pro-Psh ^{M2}	pUAST-ATTB	Kpnl-Pmel fragment from pJM1682
pJM1674	rpro-Psh	pMT-V5	PCR on pJM1345 with primers IMU1144/1228,
	Ser339 / Ala		IMU1145/1229, IMU1144/1145 cloned in Kpnl-Xhol
pJM1675	rpro-Psh	pMT-V5	PCR on pJM1345 with primers IMU1144/1338,
	His144 / Glu		IMU1145/1337, IMU1144/1145 cloned in KpnI-XhoI
pJM1676	rpro-Psh	pMT-V5	PCR on pJM674 with primers IMU1144/1338,
	His143 / Glu ;		IMU1145/1337, IMU1144/1145 cloned in KpnI-XhoI
	Ser339 / Ala		
pJM1696	rpro-cathepsin	pMT-V5	PCR on cDNA clone pRE 18380 (DGRC) with primers
	26-29-р		T7/IMU1347 cloned in EcoR1-Apa1

Table S1: List of Plasmids (Related to STAR Methods)

Primer name	Sequence (5'-3')
IMU 839	GGGGGGTACCAAGATGCCATTGAAGTGGTCCCTGC
IMU 840	GGGGCTCGAGCACCCGATTGTCCGGCCAGA
IMU 1144	TGTGGTCAGCAGCAAAATCAAGTG
IMU 1145	CTGCATTCTAGTTGTGGTTTGTCC
IMU 1228	GCTCATGAATGAGCGGCCCACCGGCGTCGCCCTTGCATGCGTCGGCG
IMU 1229	CGCCGACGCATGCAAGGGCGACGCCGGTGGGCCGCTCATTCAT
IMU 1337	GAGCGGCAATCAATTGGTCATAGACATCGTGGGCGGTTATCC
IMU 1338	GGATAACCGCCCACGATGTCTATGACCAATTGATTGCCGCTC
IMU 1341	GCTGCTGCTGCTGCTCCCACGTTCGGAAGCGGT
IMU 1342	AGCAGCAGCAGCAGCACTGGTCATTGGAGCTTTTGTGC
IMU 1343	GCTGCTGCTGCTGCTGCTGCTGCTAGCGGTGATCGCCCAGC
IMU 1344	AGCAGCAGCAGCAGCAGCAGCAGCAGCACTGGTCATTGGAGCTTTTGTGC
IMU 1345	GCACAAAAGCTCCAATGACCAGTAGCGGTGATCGCCCAGC
IMU 1346	GCTGGGCGATCACCGCTACTGGTCATTGGAGCTTTTGTGC
IMU 1347	GCTTACCTTCGAAGGGCCCCATCTCCACATAAGTGGGCATGG
T7	TGTAAAACGACGGCCAGTGA

Table S2: List of Primers for PCR (Related to STAR Methods)

Name	CG number	Bloomington	Genotype
		stock number	
26-29-р	CG8947	13051	P(SUPor-P)26-29-p ^{KG00154}
Cathepsin L1	CG6692	32932	P(TRIP.HMS00725)attP2
CG4847	CG4847	42655	P(TRIP.HMS02491)attP2
CG12163	CG12163	33955	P(TRIP.HMS00910)attP2
CG11459	CG11459	50488	Mi(MIC)CG11459 ^{MI08810}
Cathepsin B1	CG10992	15434	P(EPgy2)CtsB1 ^{EY03339}
Swing	CG3074	36591	P(TRIP.GL00551)attP2
Bleomycin	CG1440	13977	P(SUPor-P)CG1440 ^{KG04580}
Hydrolase			

Table S3: Screening of cysteine cathepsins (Related to STAR Methods)

_					•••	. 4	2	2	Ñ	H	æ	÷	F	H	4	ä	1	H	Ħ	0,	~			Ξ,	1			
y ion																												
y0++(M)		1449,7	1400,165	1371,655	1343,144	1261,612	1213,086	1163,552	1106,038	1057,512	1029,001	979,4669	897,9352	849,4089	780,8794	707,3617	671,8431	636,3246	579,7826	551,2718	469,7402	413,1981	362,6743	289,1401	260,6293	210,1055		
/0 (M)		2898,392	2799,324	2742,302	2685,281	2522,217	2425,165	2326,096	2211,069	2114,016	2056,995	1957,927	1794,863	1697,81	1560,752	1413,716	1342,679	1271,642	1158,558	1101,536	938,473	325.389	724,3413	577,2729	520,2514	419,2037		
(M) ++		1458,705	1409,171	1380,66	1352,149	1270,618	1222,091	1172,557	.115.0435	1066,517	1038,006	88.4722	906,9405	858,4141	789,8847	716,367	680,8484	645,3299	588,7878	560,2771	478,7454	422,2034	371,6796	298,1454	269,6346	219,1108	161,5973	88,0631
(M) ++*		1450, 192	1400,657	1372,147	1343,636	1262,104	1213,578	1164,044	1106,53	1058,004	1029,493	979,9589	898,4272	849,9009	781,3714	707,8537	672,3352	636,8166	580,2746	551,7638	470,2322	413,6901	363, 1663	289,6321	261, 1214	210,5975	153,084	79,5498
* (M)		2899,376	2800,308	2743,286	2686,265	2523,201	2426,149	2327,08	2212,053	2115	2057,979	1958,911	1795,847	1698, 795	1561,736	1414,7	1343,663	1272,626	1159,542	1102,52	939,4571	826,373	725,3253	578,2569	521,2354	420, 1878	05.1608	158,0924
(M) V		2916,403	2817,334	2760,313	2703,291	2540,228	2443,175	2344,107	229.0797	132.027	2075,006	975.9371	812.8738	1715,821	578.7621	431.7267	360.6896	289.6525	176.5684	119.5469	56.4836	43.3995	42.3519	95.2835	38.262	37.2143	22.1874 3	75.119
V (M) ++0								678,296	726,8224 2	755,3331 2	804,8673	886, 399 1	934,9254 <mark>1</mark>	1003,455	1076,973	1112,491	1148,01	1204,552	1233,062	1314,594 <mark>1</mark>	1371, 136 <mark>9</mark>	1421,66	1495,194 7	1523,705 <mark>5</mark>	1574,229 <mark>5</mark>	1631,742	1705,276 3	7
p (M) b		_						1355,585	1452,638	1509,659	1608,727	1771,791	1868,843	2005,902	2152,938	2223,975	2295,012	2408,096	2465,118	2628,181	2741,265	2842,313	2989,381	3046,403	3147,45	3262,477	3409,546	
++ (M) b	343,6399	393,1741	421,6848	450,1955	531,7272	580,2536	629,7878	87.3013	735,8277	764,3384	813,8726	895,4043	943,9306	1012,46	1085,978	1121,496	1157,015	1213,557	1242,068	1323,599	1380,141	1430,665	1504, 199	1532,71	1583,234	1640,748	1714,282	
q (M)	86.2725	85.3409	842,3624	99.3838	062.4471	1159,5	258.5683	373.5953 6	1470,648	527.6695	626.7379	789.8012	1886,854	2023,913	2170,948	241.9854	2313,023	2426,107	2483,128	2646,191	2759,276	2860,323	3007,392	3064,413	3165,461	3280,488	3427,556	
0++(M) b	320,6371 6	370,1713 7	398,6821	427,1928	508,7245	557,2509	606,7851	664,2985	712,8249	741,3356	790,8699 1	872,4015	920,9279	989,4574	1062,975	1098,494 2	1134,012	1190,554	1219,065	1300,597	1357,139	1407,663	1481,197	1509,707	1560,231	1617,745	1691,279	
o (M) a	640,267	739,3354	796,3569	853,3783	1016,442	1113,494	1212,563	1327,59	1424,643	1481,664	1580,732	1743,796	1840,849	1977,907	2124,943	195.9799	2267,017	2380,101	2437,123	2600,186	2713,27	2814,318	2961,386	3018,408	3119,455	3234,482	3381,551	
9 (M) ++	329,6424	379,1766	407,6874	436, 1981	517,7298	566,2561	615,7903	673,3038	721,8302	750,3409	799,8751	881,4068	929,9332	998,4626	1071,98	1107,499 2	1143,018	1199,56	1228,07	1309,602	1366,144	1416,668	1490,202	1518,713	1569,237	1626.75	1700,284	
a*++(M)	321,1291	370,6634	399,1741	427,6848	509,2165	557,7429	607,2771	664,7905	713,3169	741,8277	791,3619	872,8935	921,4199	989,9494	1063.4671	1098,986	1134,504	1191,046	1219,557	1301,089	1357,631	1408,155	1481,689	1510,199	1560,723	1618,237	1691,771	
a* (M)	641,251	740,3194	797,3409	854,3624	1017,426	1114,478	1213,547	1328,574	1425,627	1482,648	1581,716	1744,78	1841,833	1978,891	2125,927	2196,964	2268,001	2381,085	2438,107	2601,17	2714,254	2815,302	2962,37	3019,392	3120,439	3235,466	3382,535	
a (M)	658.2776	757.346	814,3674	871.3889	1034.4522	1131,505	1230.5734	1345,6	1442,653	1499,675	1598,743	1761,806	1858,859	1995,918	2142,953	2213,991	2285,028	2398,112	2455,133	2618,197	2731,281	2832,328	2979,397	3036,418	3137,466	3252,493	3399,561	
b ion	1	2	ε	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
amino acid		>	U	U	۲	Ь	>	D	Ь	IJ	>	۲	Ь	Т	Σ	A	A		IJ	۲		F	ц	IJ	Т	D	ц	В

Table S4: Ms/Ms fragmentation table of the N-terminal TMPP labeledpeptide IVGGYPVDPGVYPHMAAIGYITFGTDFR(Mascot interpretation,Related to Figure 3).

Table S5: Log-rank analyses of flies survival assays (OASIS online application) (Related to Figure 6)

		B. bas	ssiana	E. faecalis						
Condition	Chi^2	P-value	Bonferroni P- value	Chi^2	P-value	Bonferroni P- value				
w ¹¹¹⁸ v.s. Psh	78.36	0.0e+00	0.0e+00	16.63	4.5e-05	0.0002				
w ¹¹¹⁸ v.s. Spz	79.56	0.0e+00	0.0e+00	62.94	0.0e+00	0.0e+00				
w ¹¹¹⁸ v.s. 26-29-р ^{нз}	84.16	0.0e+00	0.0e+00	14.72	0.0001	0.0006				
w ¹¹¹⁸ v.s. 26-29-р ^{н6}	67.11	0.0e+00	0.0e+00	9.70	0.0018	0.0092				
w ¹¹¹⁸ v.s. 26-29-p ^{A2}	1.83	0.1758	0.8792	0.00	0.9505	1.0000				
Psh v.s. w ¹¹¹⁸	78.36	0.0e+00	0.0e+00	16.63	4.5e-05	0.0002				
Psh v.s. Spz	5.32	0.0211	0.1056	32.07	1.5e-08	7.5e-08				
Psh v.s. 26-29-p ^{H3}	2.52	0.1122	0.5610	0.01	0.9195	1.0000				
Psh v.s. 26-29-p ^{H6}	2.34	0.1261	0.6304	0.65	0.4214	1.0000				
Psh v.s. 26-29-p ⁴²	49.70	0.0e+00	0.0e+00	17.63	2.7e-05	0.0001				
Spz v.s. w ¹¹¹⁸	79.56	0.0e+00	0.0e+00	62.94	0.0e+00	0.0e+00				
Spz v.s. Psh	5.32	0.0211	0.1056	32.07	1.5e-08	7.5e-08				
Spz v.s. 26-29-р ^{нз}	0.18	0.6751	1.0000	24.51	7.4e-07	3.7e-06				
Spz v.s. 26-29-р ^{н6}	8.90	0.0028	0.0142	29.92	4.5e-08	2.3e-07				
Spz v.s. 26-29-p ⁴²	54.91	0.0e+00	0.0e+00	66.53	0.0e+00	0.0e+00				
26-29-р ^{нз} v.s. w ¹¹¹⁸	84.16	0.0e+00	0.0e+00	14.72	0.0001	0.0006				
26-29-р ^{нз} v.s. Psh	2.52	0.1122	0.5610	0.01	0.9195	1.0000				
26-29-р ^{нз} v.s. Spz	0.18	0.6751	1.0000	24.51	7.4e-07	3.7e-06				
26-29-р^{нз} v.s. 26-29-р ^{н6}	6.96	0.0083	0.0416	0.61	0.4351	1.0000				
26-29-р ^{H3} v.s. 26-29-р ^{A2}	55.06	0.0e+00	0.0e+00	15.56	0.0001	0.0004				
26-29-р ^{н6} v.s. w ¹¹¹⁸	67.11	0.0e+00	0.0e+00	9.70	0.0018	0.0092				
26-29-р ^{н6} v.s. Psh	2.34	0.1261	0.6304	0.65	0.4214	1.0000				
26-29-р ^{н6} v.s. Spz	8.90	0.0028	0.0142	29.92	4.5e-08	2.3e-07				
26-29-р ^{н6} v.s. 26-29-р ^{нз}	6.96	0.0083	0.0416	0.61	0.4351	1.0000				
26-29-рН6 v.s. 26-29-р ^{A2}	39.74	0.0e+00	0.0e+00	10.51	0.0012	0.0059				
26-29-p ^{A2} v.s. w ¹¹¹⁸	1.83	0.1758	0.8792	0.00	0.9505	1.0000				
26-29-p ^{A2} v.s. Psh	49.70	0.0e+00	0.0e+00	17.63	2.7e-05	0.0001				
26-29-p ⁴² v.s. Spz	54.91	0.0e+00	0.0e+00	66.53	0.0e+00	0.0e+00				
26-29-p ^{A2} v.s. 26-29-p ^{H3}	55.06	0.0e+00	0.0e+00	15.56	0.0001	0.0004				
26-29-р ^{A2} v.s. 26-29-р ^{H6}	39.74	0.0e+00	0.0e+00	10.51	0.0012	0.0059				