Supporting information

Gold-catalyzed Fluorination of Alkynyl Esters and Ketones: Access to Fluorinated 1,3-Dicarbonyl Compounds

Xiaojun Zeng,^[a] Zhichao Lu,^[b] Shiwen Liu,^[a] Gerald B. Hammond^{[b], *} and Bo Xu^{[a], *}

^[a]College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China; ^[b]Department of Chemistry, University of Louisville, Louisville, KY 40292, USA.

Table of Contents

1.	General	S2
2.	General procedure for the synthesis of alkynyl ketones 1	S2
3.	General procedure for the synthesis of alkynyl esters 4	S4
4.	General procedure for fluorination of 1 or 4	S6
5.	Copies of NMR Spectra for compounds 3 and 5.	S15
6.	References	S106

1. General

Commercial reagents and solvents were obtained from the commercial providers and used without further purification. The products were purified using a commercial flash chromatography system or a regular glass column. TLC was developed on silica gel 60 F254 glass plates. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a Bruker NMR apparatus. The chemical shifts are reported in δ (ppm) values (¹H and ¹³C NMR relative to CHCl₃, δ 7.26 ppm for ¹H NMR and δ 77.0 ppm for ¹³C NMR). Or alternatively, ¹H NMR chemical shifts were referenced to tetramethylsilane signal (0 ppm). Multiplicities are recorded by s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), h (hextet), m (multiplet) and br (broad). Coupling constants (*J*), are reported in Hertz (Hz). GC analyses were performed using a Shimadzu GC-2010ultragas chromatography–mass spectrometry instrument equipped with a Shimadzu AOC-20s autosampler.

2. General procedure for the synthesis of alkynyl ketones 1

A mixture of aryl iodide (5 mmol), 3-butyn-2-ol or 1-octyne-3-ol (5.5 mmol) and $(PPh_3)_2PdCl_2$ (2 mol %) and Et₃N (10 mL) was stirred for ten minutes at the room temperature, then CuI (1 mmol%) was added slowly. Finally, the reaction was stirred overnight at room temperature under a nitrogen atmosphere. Then the reaction was concentrated under reduced pressure and the residue was purified by flash chromatography to give the desired product propargyl alcohol derivatives.

Under stirring, a solution of propargyl alcohol derivatives (1 equiv) in DCM (20 mL) was added DMP (1.5 equiv) and NaHCO₃ (3 equiv). The reaction vessel was wrapped in aluminum foil to avoid light exposure. Finally, the reaction was monitored by TLC. Then the reaction was quenched by addition of saturated Na₂SO₃ solution and extracted with DCM. The solvent was removed under reduced pressure and the residue was purified by flash chromatography to obtain the alkynone derivatives **1**.

4-(3-Oxobut-1-yn-1-yl)benzonitrile (**1b**). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (q, J = 8.2 Hz, 4H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.90, 133.20, 132.22, 124.68, 117.82, 113.96, 90.54, 86.81, 32.68. HRMS (ESI⁺) calcd. for C₁₁H₈NO₂[M+H]⁺: 170.0606, found:170.0600.

4-(4-Acetylphenyl)but-3-yn-2-one (**1e**). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.2 Hz, 2H), 7.62 (d, J = 8.2 Hz, 2H), 2.59 (s, 3H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.97, 184.19, 138.02, 132.99, 128.28, 124.46, 89.97, 88.29, 32.72, 32.68, 26.64. HRMS (ESI⁺) calcd. for C₁₂H₁₁O₂[M+H]⁺:187.0759, found:187.0753.

Methyl 3-(3-oxobut-1-yn-1-yl)benzoate (**1f**). White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 8.12 – 8.00 (m, 1H), 7.79 – 7.64 (m, 1H), 7.46 (t, *J* = 7.9 Hz, 1H), 3.92 (s, 3H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.24, 165.75, 136.83, 134.02, 131.50, 130.79, 128.81, 120.39, 88.59, 88.52, 52.40, 32.69. HRMS (ESI⁺) calcd. for C₁₂H₁₁O₃[M+H]⁺: 203.0708, found:203.0720.

3-(3-Oxobut-1-yn-1-yl)phenyl methanesulfonate (**1g**). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.34 (m, 4H), 3.17 (s, 3H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.13, 148.84, 131.79, 130.36, 126.15, 124.58, 121.97, 88.85, 87.58, 37.74, 32.68. HRMS (ESI⁺) calcd. for C₁₁H₁₁SO₄[M+H]⁺: 239.0378,

found:239.0371.

3. General procedure for the synthesis of alkynyl esters 4

To a mixture of aryl iodide (5 mmol), ethyl propiolate (6 mmol) and $(PPh_3)_2PdCl_2$ (2 mol %) in THF (20 mL), K_2CO_3 (15 mmol) was added. The reaction was stirred for 10 min at the room temperature, then CuI (1 mmol%) was added slowly. Finally, the reaction was stirred overnight at 75 °C under a nitrogen atmosphere. Then the solution was filtered, the filtrate was concentrated under deduced pressure and the residue was purified by flash silica gel chromatography to give the pure product **4**.

F₃CO

Ethyl 3-(4-(trifluoromethoxy)phenyl)propiolate (**4e**). Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.58 (m, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 4.30 (q, *J* = 7.1 Hz, 2H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -57.75. ¹³C NMR (100 MHz, CDCl₃) δ 153.77, 150.58, 135.67 – 133.74 (m), 120.24 (q, *J* =

258.8 Hz, 1H). 120.83 (d, J = 18.5 Hz), 118.24, 84.25, 81.30, 62.23, 14.01. HRMS (ESI⁺) calcd. for $C_{12}H_9F_3O_3[M+H]^+$: 259.0582, found:259.0576.

 $\begin{array}{c} & \text{Methyl } 3-(3-\text{oxobut-1-yn-1-yl}) \text{benzoate } (\mathbf{4f}). \text{ White solid. } ^1\text{H NMR } (400 \text{ MHz}, \\ & \text{CDCl}_3) \ \delta \ 8.25 \ (\text{s}, 1\text{H}), \ 8.10 \ (\text{d}, J = 7.8 \text{ Hz}, 1\text{H}), \ 7.74 \ (\text{d}, J = 7.6 \text{ Hz}, 1\text{H}), \ 7.46 \\ & (\text{t}, J = 7.8 \text{ Hz}, 1\text{H}), \ 4.30 \ (\text{d}, J = 7.1 \text{ Hz}, 2\text{H}), \ 3.92 \ (\text{s}, 3\text{H}), \ 1.35 \ (\text{t}, J = 7.1 \text{ Hz}, \\ & 3\text{H}). \ ^{13}\text{C NMR } (100 \text{ MHz}, \text{CDCl}_3) \ \delta \ 165.77, \ 153.73, \ 136.78, \ 134.02, \ 131.44, \\ & 130.76, \ 128.75, \ 120.15, \ 84.54, \ 81.24, \ 62.20, \ 52.38, \ 14.04. \ \text{HRMS } (\text{ESI}^+) \ \text{calcd.} \\ & \text{for } \text{C}_{13}\text{H}_{12}\text{O}_4 \ [\text{M+H}]^+: \ 233.0814, \ \text{found:} 233.0807. \end{array}$

Ethyl 3-(3-((4-methylphenyl)sulfonamido)phenyl)propiolate (**4g**). Pale red solid. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, *J* = 8.4, 2.0 Hz, 2H), 7.25 (ddt, *J* = 17.2, 8.9, 2.5 Hz, 6H), 4.28 (q, *J* = 7.1 Hz, 2H), 2.37 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 153.90, 144.24, 137.17, 135.66, 129.80, 129.43, 127.23,

124.73, 123.20, 120.64, 85.01, 80.95, 76.71, 62.26, 14.03. HRMS (ESI⁺) calcd. for $C_{18}H_{18}NSO_4[M+H]^+$: 344.0957, found: 344.0949.

DEt Ethyl 3-(3-(benzyloxy)phenyl)propiola (**4h**). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.24 (m, 6H), 7.19 (d, J = 8.1 Hz, 2H), 7.06 (d, J = 7.6 Hz, 1H), 5.05 (s, 2H), 4.29 (d, J = 7.0 Hz, 2H), 1.35 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.51, 153.99, 136.32, 129.69, 128.62, 128.12, 127.41, 125.76, 120.60,

118.39, 118.28, 85.88, 80.43, 70.13, 62.08, 14.06. HRMS (ESI⁺) calcd. for $C_{18}H_{17}O_3[M+H]^+$: 281.1178, found:281.1171.

4-(4-Fluoro-3-methylphenyl)but-3-yn-2-one (**4i**). Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.32 (m, 2H), 6.99 (t, *J* = 8.9 Hz, 1H), 4.28 (d, *J* = 7.1 Hz, 2H), 2.26 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.97. ¹³C NMR (100 MHz, CDCl₃) 162.57 (d, *J* = 252.1 Hz), 154.01.136.39 (d, *J* = 14.7 Hz), 132.57 (d, *J* = 12.7 Hz), 125.81 (d, *J* = 18.3 Hz), 115.62 (d, *J* = 23.5 Hz),

115.30 (d, J = 3.9 Hz), 62.05, 14.25, 14.07. HRMS (ESI⁺) calcd. for $C_{12}H_{12}FO_2$ [M+H]⁺: 207.0821, found:207.0815.

4. General procedure for fluorination of 1 or 4

A polypropylene vial was charged with alkynone **1** or alkynoate **4** (0.2 mmol, 1 equiv), 2,6-dibromopyridine N-oxide **2d** (0.28 mmol, 70 mg), and HF-pyridine (HF content 70 wt/wt%, 0.8 mmol, 27 mg, 4 equiv) and PhCF₃ (0.4 mL). The reaction was commenced by the addition of JohnPhosAuNTf₂ (5 mol%, 7.75 mg) and the reaction mixture was heated to 40 °C, the progress of the reaction was monitored by TLC. The reaction typically took 4 h or overnight to complete. Upon completion, the mixture was quenched with saturated sodium bicarbonate. The mixture was extracted with DCM and washed with 1N HCl. The organic layers were collected, dried over anhydrous MgSO₄ and filtered. The solvent was removed under reduced pressure and the residue was subjected to flash column chromatography purification (eluent: hexanes / ethyl acetate) to give 2-fluoro-1,3-dicarbonyl compounds **3** or **5**.

Colorless oil, 79% yield (28.4 mg), **3a/3a'** = $3.5/1^{1}$. ¹H NMR (400 MHz, CDCl₃) δ 13.74 (d, *J* = 3.5 Hz, 1H-minor), 8.04 (d, *J* = 7.8 Hz, 2H-major), 7.98 (d, *J* = 7.4 Hz, 1H-minor), 7.67 (t, *J* = 7.4 Hz, 1H-major), 7.53 (t, *J* = 7.7 Hz, 2H-major), 7.49 (d, *J* = 6.8 Hz, 1H-minor), 5.97 (d, *J* = 50.1 Hz, 1H-major), 2.38 (s, 3H-minor), 2.37 (d, *J* = 4.1 Hz, 3H-major). ¹⁹F NMR (377 MHz, CDCl₃) δ -170.10 (p, *J* = 4.3 Hz, 1F-minor), -189.58 (dq, *J* = 50.4, 4.8 Hz, 1F-major).

White solid, 80% yield (32.8 mg), **3b/3b'** = 6.5/1. ¹H NMR (400 MHz, CDCl₃) δ 13.36 (s, 1H-major), 8.09 (d, *J* = 8.0 Hz, 2H-minor), 8.02 (d, *J* = 8.7 Hz, 2H-major), 7.79 (d, *J* = 8.6 Hz, 2H-minor), 7.74 (d, J = 8.4 Hz, 2H-major), 5.92 (d, *J* = 49.8 Hz, 1H-minor), 2.38 (d, *J* = 4.2 Hz, 3H-major), 2.35 (d, *J* = 4.1 Hz, 3H-minor). ¹⁹F NMR (376 MHz, CDCl₃) δ -167.71 (d, *J* = 4.3 Hz, 1F-major), -189.96 (dq, *J* = 49.9, 4.2 Hz, 1F-minor). ¹³C NMR (100 MHz, CDCl₃) δ 193.46 (d, *J* = 29.5 Hz, major), 159.88 (d, *J* = 19.8 Hz, major),

143.80 (d, J = 236.9 Hz, major), 135.46 (d, J = 5.2 Hz, minor), 132.49(major), 132.13(major), 130.05 (d, J = 3.4 Hz, minor), 129.08(major), 128.99(major), 118.05(major), 114.88(minor), 96.57 (d, J = 200.0 Hz), 26.10 (minor), 23.30 (major). HRMS (ESI⁺) calcd. for C₁₁H₉FNO₂ [M+H]⁺: 206.0617, found:206.0612.

Pale yellow solid, 78% yield (32.7mg), **3b/3b'** = 2/1. ¹H NMR (400 MHz, CDCl₃) δ 13.71 (s, 1H-minor), 7.59 (d, J = 7.3 Hz, 1H-major), 7.54 (d, J = 7.8 Hz, 1H-minor), 7.51 (s, 1H-major), 7.46 (s, 1H-minor), 7.44 – 7.35 (m, 1H-major), 7.40 – 7.31 (m, 1H-monor), 7.17 (d, J = 8.3 Hz, 1H-major), 7.05 (d, J = 8.9 Hz, 1H-monor), 5.90 (d, J = 50.1 Hz, 1H-major), 3.85 (s, 3H-major), 3.84 (s, 3H-minor), 2.33 (d, J = 4.1 Hz, 3H-major), 2.32 (d, J = 2.1 Hz, 3H-minor). ¹⁹F NMR (376 MHz, CDCl₃) δ -169.51(s, 1F-minor), -189.31 (dq, J = 50.0, 4.3 Hz, 1F-major). ¹³C NMR (100 MHz, CDCl₃) δ 200.45 (d, J = 24.2 Hz, major), 190.22 (minor), 190.01 (d, J = 18.2 Hz, major), 165.23 (d, J = 19.5 Hz), 159.83(minor), 129.47(minor), 122.46 (d, J = 3.5 Hz, major), 121.42(major), 121.36(minor), 121.25(minor), 118.21(major), 113.33(major), 96.49 (d, J = 198.1 Hz, major), 55.47(major), 55.36, 25.92(major), 22.39(minor). HRMS (ESI⁺) calcd. for C₁₁H₁₂FO₃ [M+H]⁺: 211.0770, found:211.0766.

Pale yellow solid, 84% yield (43.2 mg), 3d/3d' = 7/1. ¹H NMR (400 MHz, CDCl₃) 13.60 (s, 1H-major), 7.87 (d, J = 8.3 Hz, 2H-minor), 7.81 (d, J = 8.8 Hz, 2H-major), 7.64 (d, J = 8.3 Hz, 2H-minor), 7.59 (d, J = 8.5 Hz, 2H-major), 5.88 (d, J = 50.2 Hz, 1H-minor), 2.44 (d, J = 1.2 Hz, 3H-minor), 2.34 (d, J = 4.1 Hz, 3H-major). ¹⁹F NMR (376 MHz, CDCl₃) δ -169.32 (s, 1F-major), -189.53 (dd, J = 49.7, 4.3 Hz, 1F-minor). ¹³C NMR (100 MHz, CDCl₃) δ 200.19 (d, J = 23.8 Hz, minor), 190.55 (d, J = 29.0 Hz, major), 163.79 (d, J = 19.5 Hz, major), 143.65 (d, J = 233.1 Hz, major), 134.26(minor), 132.18(minor), 131.79 (major), 131.06 (d, J = 3.3 Hz, minor), 130.53 (d, J = 5.2 Hz, minor), 130.20(major), 130.11(major), 126.75(major), 96.56 (d, J = 194.9 Hz, minor), 25.94(minor), 22.49(major). HRMS (ESI⁺) calcd. for C₁₀H₉BrFO₂[M+H]⁺: 258.9770, found:258.9764.

White solid, 92% yield (40.8 mg), **3e**/**3e**' = 16/1. ¹H NMR (400 MHz, CDCl₃) δ 13.46 (s, 1H-major), 8.00 (s, 4H-major), 5.94 (d, *J* = 49.9 Hz, 1H-minor), 2.62 (s, 3H), 2.36 (d, *J* = 4.2 Hz, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ -168.37 (s, 1F-major), -189.87 (dq, *J* = 50.6, 4.2 Hz, 1F-minor). ¹³C NMR (100 MHz, CDCl₃) for 3e major δ 197.34, 192.69 (d, *J* = 29.2 Hz), 161.60 (d, *J* = 19.9 Hz), 143.81 (d, *J* = 235.4 Hz), 138.94, 135.47 (d, *J* = 5.3 Hz), 128.79 (d, *J* = 8.9 Hz), 128.19, 26.75, 23.10. HRMS (ESI⁺) calcd. for C₁₂H₁₂FO₃ [M+H]⁺: 223.0770, found:233.0765.

Pale yellow oil, 88% yield (41.8mg), **3f/3f'** = 10/9. ¹H NMR (400 MHz, CDCl₃) δ 13.57 (s, 1H-minor), 8.63 (s, 1H-minor), 8.58 (s, 1H-major), 8.28 (d, *J* = 7.5 Hz, 1H-minor), 8.17 (t, *J* = 7.7 Hz, 2H-minor), 8.10 (d, *J* = 7.3 Hz, 1H-major), 7.56 (dt, *J* = 16.0, 7.8 Hz, 2H-major), 5.97 (d, *J* = 49.9 Hz, 1H-major), 3.94 (d, *J* = 1.3 Hz 3H-minor), 3.93 (d, *J* = 1.4 Hz 3H-major), 2.36 (s, 3H-minor), 2.35 (s, 3H-major). ¹⁹F NMR (376 MHz, CDCl₃) δ -169.50(s, 1F-minor), -190.05 (dd, *J* = 50.0, 4.4 Hz s, 1F-major). ¹³C NMR (100 MHz, CDCl₃) δ 200.30 (d, *J* = 24.2 Hz, major), 190.96 (d, *J* = 29.1 Hz), 189.62 (d, *J* = 19.3 Hz, major), 166.25(major), 165.76(minor), 163.54 (d, *J* = 19.9 Hz, minor), 143.68 (d, *J* = 233.6 Hz, minor), 130.72 (d, *J* = 3.1 Hz, minor), 130.59(major), 129.81 (d, *J* = 9.0 Hz, minor), 129.04(minor), 128.66(major), 96.28 (d, *J* = 199.0 Hz), 52.50, 52.35(major), 26.06(minor), 22.59(major). HRMS (EI⁺) calcd. for C₁₂H₁₀FO₄ [M-H⁺]⁻: 237.0567, found: 237.0558.

Pale yellow solid, 81% yield (44.3 mg), **3g/3g'** = 10/3. ¹H NMR (400 MHz, CDCl₃) δ 13.49 (s, 1H-minor), 7.98 (d, J = 4.4 Hz, 1H-major), 7.92 (s, 1H-minor), 7.90 (s, 1H-major), 7.83 (s, 1H-minor), 7.61 – 7.52 (m, 2H-major), 7.51 (d, J = 7.9 Hz, 1H-minor), 7.44 (d, J = 8.2 Hz, 1H-minor), 5.91 (d, J = 49.9 Hz, 4H), 3.20 (s, 3H-major), 3.17 (s, 3H-minor), 2.36 (d, J = 4.0 Hz, 3H-minor), 2.34 (d, J = 4.2 Hz, 3H-major). ¹⁹F NMR (376 MHz, CDCl₃) δ -168.83(s,1F-minor), -189.83 (dd, J = 49.8, 4.1 Hz,1F-major). ¹³C NMR (100 MHz, CDCl₃) δ 200.12 (d, J = 23.7 Hz, major), 191.62 (d, J = 29.3 Hz), 188.80 (d, J = 19.5 Hz, major), 162.06 (d, J = 19.6 Hz), 149.24(major), 149.11(minor), 143.67 (d, J = 3.7 Hz, major), 128.36(major), 127.52 (d, J = 9.3 Hz, minor), 126.80 (minor), 125.41(major), 122.97 (d, J = 3.2 Hz, major), 122.11 (d, J = 9.1 Hz, minor), 121.36(minor), 96.56 (d, J = 199.4 Hz, major), 37.77(major), 37.61(minor), 26.04 (major), 22.77(minor). HRMS (ESI⁺) calcd. for C₁₁H₁₂FSO₅[M+H]⁺: 275.0389, found: 275.0384.

Colorless oil, 78% yield (34.6 mg), **3h/3h'** = 1.3/1. Major product **3h**: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.64 (s, 1H), 8.11-8.22 (m, 2H), 7.51-7.58 (m, 2H), 6.02 (d, *J* = 49.1 Hz, 1H), 3.94 (s, 3H), 2.99 (t, *J* = 6.8 Hz, 2H), 1.18 – 1.75 (m, 6H), 0.91 - 0.94 (m, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -171.07 (s) (s,1F-minor), -192.05 (d, *J* = 49.1 Hz, 1F-major). HRMS (ESI⁺) calcd. for C₁₆H₂₀FO₄[M+H]⁺: 295.1346, found: 259.1340.

3i' (minor)

Colorless oil, 78% yield (34.6 mg), **3i**/**3i**' = 5/1. Major product: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, *J* = 8.4 Hz, 2H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.49 (t, *J* = 7.4 Hz, 2H), 6.14 (dd, *J* = 49.1 Hz, 1H), 1.24 (s, 9H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -167.60, (s,1F-minor), -187.14 (d, *J* = 49.0 Hz, 1F-major). It is spectroscopic data is consistent with literature report.²

Pale yellow solid, 81% yield (34.6 mg), 3j/3j' = 2/1. ¹H NMR (500 MHz, Chloroform-*d*) δ 13.65 (s, 1Hminor), 7.97 (d, J = 8.3 Hz, 2H-major), 7.91 (d, J = 8.4 Hz, 2H-minor), 7.49 (d, J = 8.4 Hz, 2H-major), 7.45 (d, J = 8.5 Hz, 2H-minor), 5.91 (d, J = 50.1 Hz, 1H-major), 2.35 (s, 3H-major), 2.35 (s, 3H-minor). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -169.43(s,1F-minor), -189.53 (d, J = 50.2 Hz,1F-major). It is spectroscopic data is consistent with literature report.³

Colorless oil, 63% yield (21.9 mg), 3k/3k' = 5/2. ¹H NMR (400 MHz, Chloroform-*d*) δ 12.88 (s, 0.4Hminor), 5.23 (d, J = 50.7 Hz, 1H-major), 2.72 – 2.39 (m, 2H-major,0.8H-minor), 2.29 (d, J = 4.0 Hz, 3Hmajor), 2.16 (d, J = 3.8 Hz, 1.2H-minor), 1.68 – 1.55 (m, 2H-major,0.8H-minor), 1.38 – 1.25 (m, 4Hmajor,1.6 H-minor), 0.96 – 0.75 (m, 3H-major,1.2H-minor). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ – 174.63(s,1F-minor), -193.08 (d, J = 50.6 Hz, 1F-major). It is spectroscopic data is consistent with literature report.²

Ethyl 2-fluoro-3-oxo-3-phenylpropanoate¹ (**5a**). Colorless oil, 81% yield (34 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.28 – 7.86 (m, 2H), 7.69 – 7.54 (m, 1H), 7.54 – 7.43 (m, 2H), 5.85 (dd, J = 48.8, 1.7 Hz, 1H), 4.29 (qt, J = 9.2, 2.6 Hz, 2H), 1.37 – 1.15 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -190.36 (d, J = 48.8 Hz).

ethyl 2-fluoro-3-oxo-3-(p-tolyl)propanoate⁴ (**5b**). Colorless oil, 80% yield (36.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.73 (m, 2H), 7.29 (d, *J* = 7.9 Hz, 2H), 5.83 (d, *J* = 48.9 Hz, 1H), 4.29 (dt, *J* = 7.1, 3.4 Hz, 2H), 2.42 (s, 3H), 1.25 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -190.26 (d, *J* = 48.6 Hz).

Ethyl 2-fluoro-3-(4-nitrophenyl)-3-oxopropanoate (5c). Pale yellow oil, 77% yield (39.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.51 – 8.27 (m, 2H), 8.29 – 8.10 (m, 2H), 5.84 (dd, *J* = 48.7, 0.8 Hz, 1H), 4.46 – 4.11 (m, 2H), 1.28 (td, *J* = 7.1,

0.7 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -190.19 (d, J = 48.9 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 188.52 (d, J = 21.7 Hz), 164.17 (d, J = 24.1 Hz), 150.92, 137.62, 130.66, 123.92, 90.49 (d, J = 196.5 Hz), 63.17, 13.93. HRMS (ESI⁺) calcd. for C₁₁H₁₁FNO₅ [M+H]⁺: 256.0621, found:256.0615.

Ethyl 3-(4-chlorophenyl)-2-fluoro-3-oxopropanoate⁴ (**5d**). Pale yellow oil, 87% yield (42.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.26 – 7.77 (m, 2H), 7.62 – 7.26 (m, 2H), 5.80 (d, *J* = 48.9 Hz, 1H), 4.29 (dd, *J* = 7.0, 2.9 Hz, 2H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -190.01 (d, *J* = 48.8 Hz).

Ethyl 2-fluoro-3-oxo-3-(4-(trifluoromethoxy)phenyl)propanoate (**5e**). Pale yellow oil, 80% yield (47 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.8 Hz, 2H), 7.31 (d, *J* = 8.3 Hz, 2H), 5.80 (d, *J* = 48.8 Hz, 1H), 4.30 (dd, *J* = 7.0, 3.1 Hz, 2H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -

57.65, -189.93 (d, J = 49.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 188.13 (d, J = 20.8 Hz), 164.61 (d, J = 24.1 Hz), 153.54, 131.72 (d, J = 4.0 Hz), 131.37, 120.34, 120.18 (q, J = 259.5 Hz). 90.30 (d, J = 198.3 Hz), 62.84, 13.89. HRMS (ESI⁺) calcd. for C₁₂H₁₁F₄O₄ [M+H]⁺: 294.0593, found:259.05888.

for C₁₈H₁₉NSFO₅ [M+H]⁺: 380.0968, found: 380.0962.

Methyl 3-(3-ethoxy-2-fluoro-3-oxopropanoyl)benzoate (**5f**). Colorless oil, 85% yield (45 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 8.28 (d, J = 6.6 Hz, 1H), 8.21 (d, J = 7.7 Hz, 1H), 7.59 (t, J = 7.8 Hz, 1H), 5.90 (d, J

= 48.6 Hz, 1H), 4.29 (q, J = 4.9, 4.3 Hz, 2H), 3.94 (s, 3H), 1.55 – 0.89 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -190.89 (d, J = 48.7 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 188.90 (d, J = 20.6 Hz), 165.78, 164.51 (d, J = 23.9 Hz), 135.11, 133.62, 133.44 (d, J = 3.7 Hz), 131.00, 130.54 (d, J = 3.2 Hz), 129.07, 89.88 (d, J = 198.0 Hz), 62.81, 52.49, 13.89. HRMS (ESI⁺) calcd. for C₁₃H₁₄FO₅ [M+H]⁺: 269.0825, found:269.0819

 $\begin{array}{c} \begin{array}{c} \mbox{O} & \mbox{O} & \mbox{Ethyl 2-fluoro-3-(3-((4-methylphenyl)sulfonamido)phenyl)-3-oxopropanoate (5g).} \\ \mbox{Pale yellow solid, 91% yield (68.9 mg). }^1\mbox{H NMR (400 MHz, CDCl_3) } \delta 7.72 (dd, J \\ \mbox{= 14.1, 8.0 Hz, 4H), 7.45 (d, J = 8.0 Hz, 1H), 7.37 (t, J = 7.9 Hz, 1H), 7.30 - 7.16 \\ \mbox{(m, 2H), 5.78 (d, J = 48.7 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 2.36 (s, 3H), 1.23 (t, J \\ \mbox{= 7.1 Hz, 3H). }^{19}\mbox{F NMR (376 MHz, CDCl_3) } \delta -190.31 (d, J = 48.6 Hz). }^{13}\mbox{C NMR (100 MHz, CDCl_3) } \delta \\ \mbox{188.91 (d, J = 20.5 Hz), 164.67 (d, J = 24.0 Hz), 144.26, 135.76, 134.28, 129.80, 127.27, 126.54, 125.84 \\ \mbox{(d, J = 3.8 Hz), 121.18 (d, J = 3.3 Hz), 89.91 (d, J = 196.1 Hz), 62.83, 21.51, 13.89. HRMS (ESI^+) calcd. \end{array}$

Ethyl 3-(3-(benzyloxy)phenyl)-2-fluoro-3-oxopropanoate (**5h**). Pale yellow oil, 88% yield (55.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.20 – 7.52 (m, 2H), 7.55 – 7.29 (m, 6H), 5.83 (d, *J* = 48.8 Hz, 1H), 5.11 (s, 2H), 4.29 (q, *J* = 7.1 Hz, 2H), 1.25 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -190.09 (d, *J* = 48.7 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 189.21 (d, *J* = 20.1 Hz), 164.85 (d, *J* = 24.2 Hz), 159.01, 136.23, 134.58, 129.87, 128.64, 128.18, 127.55, 122.41 (d, *J* = 4.0 Hz), 122.05, 114.39 (d, *J* = 2.9 Hz), 89.99 (d, *J* = 197.6 Hz), 70.23, 62.68, 13.94. HRMS (ESI⁺) calcd. for C₁₈H₁₈FO₄ [M+H]⁺: 317.1189, found:317.1182.

Ethyl 3-(4-fluoro-3-methylphenyl)propiolate (**5**i). Colorless oil, 87% yield (42.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (t, *J* = 7.2 Hz, 2H), 7.10 (t, *J* = 8.8 Hz, 1H), 5.80 (d, *J* = 48.9 Hz, 1H), 4.35 – 4.21 (m, 2H), 2.32 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -106.01, -189.69 (d, *J* = 48.9 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 188.16 (d, *J* = 20.4 Hz), 164.85 (d, *J* = 24.1 Hz), 165.16 (d, *J* = 256.4 Hz), 133.39 (d, *J* = 3.5 Hz), 129.76

(d, J = 5.8 Hz), 129.45, 125.99 (d, J = 18.0 Hz), 115.60 (d, J = 23.3 Hz), 62.70, 14.50, 13.92. HRMS (ESI⁺) calcd. for C₁₂H₁₃F₂O₃ [M+H]⁺: 242.0833, found:243.0826.

Ethyl 3-(3-chlorophenyl)-2-fluoro-3-oxopropanoate (**5j**). Colorless oil, 83% yield (40.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.92 (d, *J* = 7.5 Hz, 1H), 7.60 (d, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.9 Hz, 1H), 5.81 (d, *J* = 48.7 Hz, 1H), 4.30 (dd, *J* = 7.1, 2.9 Hz, 2H), 1.27 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -190.36 (d, *J* = 49.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 188.45 (d, *J* = 20.8 Hz), 164.48 (d, *J* = 23.9 Hz), 135.21, 134.77, 134.42, 130.11, 129.40 (d, *J* = 3.5 Hz), 127.62 (d, *J* = 4.2 Hz), 90.07 (d, *J* = 199.7 Hz), 62.87, 13.92. HRMS (ESI⁺) calcd. for C₁₁H₁₁ClFO₃ [M+H]⁺: 245.0381, found:245.0375.

Cl O O Ethyl 3-(2-chlorophenyl)-2-fluoro-3-oxopropanoate (**5k**). Colorless oil, 35% yield (17 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.4 Hz, 1H), 7.54 – 7.41 (m, 2H), 7.40 – 7.30 (m, 1H), 5.94 (d, J = 48.2 Hz, 1H), 4.49 – 3.90 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -192.38 (d, J = 48.3 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 192.48 (d, J = 23.0 Hz), 163.96 (d, J = 24.2 Hz), 134.96, 133.04, 131.95, 130.60, 130.05 (d, J = 2.8 Hz), 126.92, 90.43 (d, J = 199.2 Hz), 62.70, 13.88. HRMS (ESI⁺) calcd. for C₁₁H₁₁ClFO₃ [M+H]⁺: 245.0381, found:245.0374.

Ethyl 2-fluoro-3-oxo-3-(thiophen-2-yl)propanoate⁴ (**5**). Colorless oil, 84% yield (36.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.78 (d, *J* = 4.9 Hz, 1H), 7.18 (d, *J* = 4.8 Hz, 1H), 5.68 (d, *J* = 48.9 Hz, 1H), 4.57 – 3.77 (m, 2H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -189.23 (d, *J* = 48.4 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 182.32 (d, *J* = 21.8 Hz), 164.55 (d, *J* = 24.4 Hz), 139.53, 136.21, 135.33 (d, *J* = 6.9 Hz), 128.66, 90.52 (d, *J* = 198.8 Hz), 62.77, 13.94.

Methyl 2-fluoro-3-oxooctanoate (**5m**). Colorless oil, 86% yield (37.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 5.20 (d, J = 49.4 Hz, 1H), 3.84 (s, 3H), 2.65 (qd, J= 7.2, 3.0 Hz, 2H), 1.58-1.62 (m, 2H), 1.26-1.28 (m, 4H), 0.88 (t, J = 6.7 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -194.92 (d, J = 49.6 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 201.30 (d, J = 23.0 Hz), 164.62 (d, J = 24.2 Hz), 91.26 (d, J = 198.5 Hz), 53.13, 38.39, 31.04, 22.30 (d, J = 3.8 Hz), 13.79.

(Z)-hex-3-en-1-yl 2-fluoro-3-oxononanoate (**5n**). Colorless oil, 68% yield (37 mg). ¹H NMR (500 MHz, CDCl₃) δ 5.71 – 5.43 (m, 1H), 5.29 (ddq, *J* = 8.9, 3.3, 1.6 Hz, 1H), 5.20 (d, *J* = 49.5 Hz, 1H), 4.24

(t, J = 7.0 Hz, 2H), 2.80 – 2.57 (m, 2H), 2.55 – 2.30 (m, 2H), 2.06 (td, J = 7.5, 1.7 Hz, 2H), 1.61 (q, J = 7.3 Hz, 2H), 1.29 (q, J = 2.9, 2.4 Hz, 4H), 0.98 (t, J = 7.5 Hz, 3H), 0.89 (t, J = 6.9 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -194.70 (d, J = 49.7 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 201.24 (d, J = 22.6 Hz), 164.20 (d, J = 24.0 Hz), 122.63 (d, J = 12.9 Hz), 91.23 (d, J = 197.1 Hz), 65.88, 38.43, 31.43, 28.59, 26.47, 22.52 (d, J = 21.4 Hz), 20.58, 13.99. HRMS (ESI⁺) calcd. for C₁₅H₂₆FO₃: 273.1866, found:273.1860.

4-Methoxyphenyl 2-fluoro-3-oxo-3-phenylpropanoate (50). Colorless oil, 90% yield (51.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 7.7 Hz, 1H), 7.66 (t, J = 6.8 Hz, 1H), 7.53 (t, J = 7.9 Hz, 2H), 6.99 (d, J = 8.9 Hz, 2H), 6.85 (d, J = 9.0 Hz, 2H), 6.09 (d, J = 48.6 Hz, 1H), 3.77 (s,

2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -189.89 (d, J = 48.5 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 189.15 (d, J = 20.1 Hz), 163.93 (d, J = 24.7 Hz), 157.77, 143.23, 134.71, 133.34, 128.95, 121.77, 114.55, 89.74 (d, J = 196.2 Hz), 55.55. HRMS (ESI⁺) calcd. for C₁₆H₁₄FO₄[M+H]⁺: 289.0876, found:289.0870.

5. Copies of NMR Spectra for compounds 3 and 5.

S48

S61

6. References

- 1. Kitamura, T.; Kuriki, S.; Morshed, M. H.; Hori, Y. Org. Lett. 2011, 13, 2392-2394.
- 2. Yoshida, M.; Fujikawa, K.; Sato, S.; Hara, S. *Arkivoc* **2003**, 36-42.
- 3. Hussain, I.; Yawer, M. A.; Lau, M.; Pundt, T.; Fischer, C.; Görls, H.; Langer, P. Eur. J. Org. Chem. 2008, 2008, 503-518.
- 4. Han, X.; Kwiatkowski, J.; Xue, F.; Huang, K.-W.; Lu, Y. Angew. Chem. Int. Ed. 2009, 48, 7604-7607.