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Derivation of a new PMF expression of absolute binding free energy 

We consider the calculation of absolute binding free energy between ligand L and receptor R 

as illustrated in Fig. S1. To derive the expression of absolute binding free energy, we start from 

the statistical mechanical expression for ∆G����°  1–3  

  ∆G����° = −
�� ln �
��
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     (1) 

Here �� = �
�� = 1660	Å  is the inverse of the standard concentration of 1M solution. !",# is 

the configuration integral (! = $%&'())/,-./0) of a single solute species X solvated in a box of 

volume V containing N water molecules. Thus, !12,#  represents a system containing one 

receptor-ligand complex in the bound state solvated by N water molecules. !�,#  represents a 

system of pure solvent. If the solvent box V is sufficiently large, we can rewrite the denominator 

in the logarithm of the right hand side of Eq. (1) as 

  ∆G����° = −
�� ln �
��
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Here !452,#  represents the configuration integral of volume V containing the receptor R, the 

unbound ligand L and N waters. The transformation in Eq. (2) corresponds to transferring L from 

its own solvent box to the solvent box that contains R. Note that R and L remains unbound in the 

final solvent box. Thus, Eq. (2) becomes 

  ∆G����° = −
�� ln �
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The evaluation of the right hand side of Eq. (3) is made possible by inserting the following 

intermediate states 

∆G����° = −
�� ln
�
��

!12,#
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Here !12(=,>,?,@,A),# represents a bound complex RL in which the ligand L’s external degrees of 

freedom, which are defined by the polar angles (θ, φ) and three Euler angles (Θ, Ф, Ψ) (Fig. S1), 

are restrained to their equilibrium values in the bound state by a set of harmonic restraints: 



B= = �
 
=(C − C�) , B> = �

 
>(D − D�) , BΘ = �
 
Θ(Θ − Θ�) , BΦ =

�
 
Φ(Φ − Φ�) , EF/	BΨ = �

 
Ψ(Ψ − Ψ�)  . Fig. S1 gives the definition of the polar angles (θ, φ) 

and three Euler angles (Θ, Ф, Ψ). 

 

Figure S1. The coordinate frame in which the orientation and the position of the ligand relative to the DNA receptor 
are defined, where the atoms a,b,c and A,B,C belong to the receptor and ligand, respectively. The ligand position is 
defined in the polar coordinates by the distance raA and two angles θ: b-a-A;φ: c-b-a-A. The ligand orientation is 
defined by the three Euler angles: Θ: a-A-B; Ф: a-A-B-C; Ψ: b-a-A-B.  

 

!152()∗,=,>,?,@,A),# represents a system in which the ligand L is not only subject to the polar and 

orientational restraints (B= , B>, B?, B@, BA),  but also subject to the harmonic restraint B)∗ =
�
 
)(0 − 0∗) , which forces the ligand atom A to be close to a bulk location 0∗. 

The different terms inside the logarithm of the right hand side of Eq. (4) can be recognized as 

corresponding to the following thermodynamic transformations: 

The first term inside the logarithm in the right hand side of Eq. (4) corresponds to the free 

energy of switching on the angular restraints (B= , B>, B?, B@, BA)	on the ligand in the bound 

state, i.e. 

   
���,�

���(6,7,8,9,:),�
= %∆G;HIJ;K�LMN/,-.    (5.1) 

which can be computed using free energy perturbation (FEP) on the bound complex. In this 

work, this is done by using 24 λ windows to switch on the polar angular and orientational 



restraints (B= , B>, B?, B@, BA): 12 λ windows (λ = 0.0, 0.01, 0.025, 0.05, 0.075, 0.1, 0.2, 0.35, 

0.5, 0.65, 0.8, 1.0) are used to switch on the polar angle restraints (B= , B>), followed by another 

12 λ for the ligand orientational restraints (B?, B@, BA). The Bennett acceptance ratio (BAR)4 is 

used to compute the free energy change in Eq. (5.1). 

The second term inside the logarithm of the right hand side of Eq. (4), 
���(6,7,8,9,:),�

��3�(;∗,6,7,8,9,:),�
, equals 

to the ratio of the probability of an angularly restrained bound complex and the probability of a 

unbound, but “cross linked” receptor-ligand “complex”. The cross-linking is maintained by the 

distance and angular restraints OB)∗ , B= , B>, B?, B@, BAP.  To evaluate the ratio 
���(6,7,8,9,:),�

��3�(;∗,6,7,8,9,:),�
 

in the Eq. (4), we make use of the potential of mean force (PMF). Let R(0) be the 1D PMF 

along the raA axis. R(0) can be computed using umbrella sampling simulation on the ligand in 

the presence of all the angular restraints (B= , B>, B?, B@, BA): see below. Using the 1D PMF 

R(0), we can write 

���(6,7,8,9,:),�
��3�(;∗,6,7,8,9,:),�

= $ STU(;)/V-WX)K�LMN
$ STU(;)/V-WSTY;∗/V-WX)KLZV

= $ STU(;)/V-WX)K�LMN
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 (5.2a) 

When the force constant 
) is sufficiently large (stiff spring), the integrand in the denominator of 

the Eq. (5.2) is everywhere zero except within a very small region in the neighborhood of the 

bulk location r* , and the right hand side of Eq. (5.2a) becomes 
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      (5.2b) 

Substituting Eq. (5.2b) into Eq. (5.2a) yields 

���(6,7,8,9,:),�
��3�(;∗,6,7,8,9,:),�

= $ ST[U(;)TU(;∗)]/V-WX)K�LMN
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[
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       (5.2)  



Finally, the last term inside the logarithm of the right hand side of Eq. (4), 
��3�(;∗,6,7,8,9,:),�

��3�,�
, 

represents the free energy of removing all the distance and angular restraints 

(B)∗ , B= , B>, B?, B@, BA)  on the bulk ligand such that the ligand is allowed to occupy the 

standard volume 1/a° and rotate freely. When the force constants used in the harmonic restraints 

are sufficiently strong, which is the case in this work, the rigid-rotor approximation holds, which 

allows this term to be evaluated analytically 2, i.e. 

  
��3�(;∗,6,7,8,9,:),�
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where C�  and Θ�  are the equilibrium values of θ and Θ, respectively. 
)
=
>
?
@
A in the 

denominator is the product of the force constants for the corresponding harmonic restraints on (r, 

θ, φ, Θ, Ф, Ψ) .  

Combining the above Eq. (5) and Eq. (4), we obtain the final expression for the absolute 

binding free energy 

∆lmdeX° = −∆l)Scn)mopeX − R(0∗) − 
�� ln
$ STU(;)/V-WX)K�LMN

( j,-./,;)
[
\

− 
�� ln ��)∗\cde=�cde?�( f,-g)h

ij\O,;,6,7,8,9,:P
[
\

      (6) 

The last term in the Eq. (6) is the free energy of turning on all the restraints on the ligand 

external degrees of freedom in the bulk solution. Thus, we can rewrite Eq. (6) as 

∆lmdeX° = −∆l)Scn)mopeX − R(0∗) − 
�� ln
$ STU(;)/V-WX)K�LMN

( j,-./,;)
[
\

+ ∆l)Scn)mpr,    (7) 

where  ∆l)Scn)mpr, = −
�� ln ��)∗\cde=�cde?�( f,-g)h

ij\O,;,6,7,8,9,:P
[
\

 

It should be noted that, the 1D-PMF w(r) implicitly contains the Jacobian factor that is 

proportional to 2πr2. To see this, we first note that in the presence of  the ligand polar angle 

restraints (B= , B>),  the ligand moves along an 1D axis inside a cone defined by the restraints 

(B= , B>),  and whose cross-section surface area at position r is given by 2t0 ∆C , where ∆C  is 



the mean-square fluctuation in C angle. ∆C  is related to the angular force constant 
= and the 

temperature factor by ∆C = ,-.
,6

 . Thus, the 1D probability density P(r) actually can be written 

as a product of the surface area of the cone  2t0 ∆C  and a term uv(0) that only depends on r, 

that is  

   u(0) = 2t0 ,-.
,6

uv(0)    (7.1) 

Since the PMF w(r) is related to the 1D probability density P(r) by R(0) = −
��wF[u(0)] +

a, where C is a constant defined by set the zero of w(r) at the bound state to zero. Combine the 

above with Eq. (7.1) 

  R(0) = −
��wF x2t0 ,-.,6
uv(0)y + a  (7.2) 

 
It is important to note that the implicit r2-dependence in the w(r) is necessary to make the 

absolute binding free energy expression of the Eq. (6) independent of the choice of the bulk 

location r*. To see this, note that the last term in the right hand side of the Eq. (6) has an r*2 

dependence. This r*2 dependence is cancelled out by the r*2-dependence in the term -w(r*), 

which makes the overall expression of ∆lmdeX°  independent of the choice of r*. 

As shown in the Table 3 of the main text, the integral term −
�� ln
$ STU(;)/V-WX)K�LMN

( j,-./,;)
[
\

 in the 

Eq. (6) is very small for both 5’ and 3’ complexes. This means that the ratio 
$ STU(;)/V-WX)K�LMN

( j,-./,;)
[
\

 

has a value close to one for both the complexes at the 5’ and 3’ ends. The physical meaning of 

this ratio is as follows: the numerator $ %&z())/,-./0mopeX  provides an estimate for the effective 

1D line width that corresponds to the bound state, while the denominator (2t
��/
))
[
\ provides 

an estimate for the 1D line width that corresponding to a ligand harmonically restrained to the r* 

location in the bulk region. The fact that the two line widths are close to each other (for example, 



for the 5’ end site, the two line width are 1.26 Å and 0.99 Å) is mainly the result of the choice of 

the harmonic force constant 
)  rather than the consequence of some fundamental physical 

factors. In fact, one could choose a stronger 
) , which would lead to a more negative 

−
�� ln
$ STU(;)/V-WX)K�LMN

( j,-./,;)
[
\

. 

Although in this work, the zero point of the PMF w(r) is set to be the bound state, the presence 

of the w(r*) term in the Eq. (6) doesn’t depends on the choice of the zero point of w(r). Instead, 

it follows from the fact that PMF w(r) is related to the 1D probability density P(r) by R(0) =

−
��wF[u(0)] + a, where C is an arbitrarily chosen constant. It can be shown that any choice of 

the C or equivalently the zero point of the w(r) will lead to the same expression of the ∆lmdeX°   in 

the Eq. 6. 

We compute the ligand 1D PMF R(0) using umbrella sampling simulations in explicit ionic 

solvent 5, in which a series of MD simulations is performed with the harmonic distance restraint 

on the DNA atom a and ligand atom A: see Fig. S1. The biasing potential in the i-th simulation 

window is B),d = �
 
)(0 − 0d�) , where 0d� is the reference distance for the i-th sampling window. 

The full range of the distance space is covered using 24 umbrella windows for the 5’ site 

complex and 26 umbrella windows for the 3’ complex. A single force constant kr = 1000 kJ mol-1 

nm-2 is used for the distance restraint in all the sampling windows. The force constants used in 

the angular restraints are: 
= = 
> = 
Θ = 
Φ = 
Ψ = 1000	
{	0E/&�|}w&� . In each umbrella 

window, a 25-ns MD simulation is performed, starting from the last simulation snapshot of the 

previous window. The first 5 ns are treated as equilibration, which allows the system to adjust to 

the current umbrella potential. The last 20 ns of sampling data are used for the calculation of 

PMF. The biased probability distributions along the distance r accumulated in these sampling 



windows are unbiased and combined using the Weighted Histogram Analysis Method (WHAM) 

method to yield the unbiased distribution and the potential of mean force R(0) 6,7. The WHAM 

program implemented by Grossfield is used to calculate the PMF 8. The statistical uncertainties 

are estimated by dividing the trajectory in each sampling window into two blocks; the difference 

in the results obtained using the first half of the trajectory and the second half of the trajectory 

gives an estimate of the error bar at each intermediate distance: see Fig. 3 and Fig. 4 of the main 

text. 

The double decoupling method 

In DDM, the expression Eq. (1) for the absolute binding free energy ∆G����°  is also evaluated 

by inserting intermediate states 1,2, i.e. 

∆G����° = −
�� ln ����,���,�
����,���,�

= −
�� ln(���
���,�
��⋯�,�

��⋯�,�
��U�J⋯���I

��U�J⋯���I
��,�����I

����I��,�
��,�

)   (8) 

Here !1⋯2,# is the configuration integral of a solvated ligand-receptor complex in the bound 

state, in which the ligand is harmonically restrained to remain within the receptor binding site by 

a ligand-receptor distance restraint; !1U�J⋯2��I is the configuration integral of a bound complex 

in which the ligand is harmonically restrained to remain within the receptor binding site but 

otherwise does not interact with its environment; !2��Idescribes an ideal-gas phase ligand. 

Thus, Eq. (8) allows ∆G����°  to be computed as 

  ∆G����° = −∆l)Scn)�op�rSX − ∆lXS�op�rmopeX + ∆l)Scn)��c + ∆lXS�op�rmpr,    (9) 

Each term in Eq. (9) can be computed from simulation or analytically: 

  −∆l)Scn)�op�rSX = −
�� ln ���,�
��⋯�,�

      (9.1) 

   −∆lXS�op�rmopeX = −
�� ln ��⋯�,�
��U�J⋯���I

      (9.2) 

  ∆l)Scn)��c = −
�� ln �
��

��U�J⋯���I
��,�����I

      (9.3) 



 ∆lXS�op�rmpr, = −
�� ln
����I�U�J
��U�J

      (9.4) 

In Eq. (9.1), ∆l)Scn)�op�rSX  is the free energy of switching on the ligand-receptor harmonic 

distance restraint to force the ligand to remain inside the binding site, when the ligand is fully 

coupled to its environment (i.e. receptor and solvent). This term is typically small and can be 

computed with a single simulation of the ligand-receptor complex in solution using the Zwanzig 

free energy perturbation formula 9. ∆lXS�op�rmopeX  is the free energy of turning off (i.e. decoupling) 

the nonbonded interactions between the ligand and its environment, when the ligand remains in 

the binding site in the presence of the ligand-receptor harmonic distance restraint; this term is 

computed using thermodynamic integration (TI) by simulating the decoupling process. ∆l)Scn)��c is 

the free energy of switching on the harmonic distance restraint that forces the gas-phase ligand to 

remain inside the receptor binding site 2; this term is evaluated analytically by  

∆l)Scn)��c = −
�� ln �
��

��U�J⋯���I
��,�����I

= −
�� ln �
��

�
� �

 j,-.
,;

�
h
\ = −
�� ln �

��
� j,-.,;

�
h
\
   (10) 

where 
) is the force constant of the ligand-receptor distance restraint. In Eq. (9.4) −∆lXS�op�rmpr,  is 

the free energy of inserting the gas-phase ligand into the solvent. This term is the ligand 

solvation free energy, which is also calculated using TI. 

Therefore, a DDM calculation involves two legs of decoupling simulations in order to compute 

the ∆lXS�op�rmopeX  and −∆lXS�op�rmpr, . In the each leg of the decoupling simulations the Coulomb 

intermolecular interaction is turned off first using 11 λ-windows, and the Lennard-Jones 

intermolecular interaction is then switched off in 17 λ-windows. (Coulomb decoupling: λ = 0.0, 

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0; Lennard-Jones decoupling: λ = 0.0, 0.1, 0.2, 0.3, 0.4, 

0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.94, 0.985, 1.0). To achieve convergence at each 

λ, a decoupling simulation is performed for 15 ns. The first 5 ns of the trajectory were treated as 



equilibration and the last 10 ns trajectory were used to compute ∆G����° . For each ∆G����°  

calculation, three independent DDM runs with different starting velocities were carried out. The 

statistical error bars are estimated from the standard deviations of the three independent sets of 

DDM simulations. A total of ≈ 2.5 µs simulation data were collected to compute a single ∆G����°  

value. The total simulation time which includes the equilibration for all the DDM simulations is 

≈ 10 µs.  

Binding free energy decomposition based on DDM 

As seen from Eq. (9), a DDM calculation 1,2,10,11 involves two legs of decoupling simulations, 

in which a ligand is decoupled from the receptor binding pocket or from the bulk solution by 

gradually turning off the nonbond interactions (Coulomb and Lennard-Jones) between the ligand 

and its environment. These two decoupling simulations yield ∆lXS�op�rmopeX  and ∆lXS�op�rmpr, , the free 

energy of decoupling the ligand from the receptor binding site and that from the bulk solvent, 

respectively. When the decoupling is done by first turning off the electrostatic Coulomb 

interactions between the ligand and its environment, followed by turning off the intermolecular 

Lennart-Jones interactions 10,12,  the decoupling simulations provide estimates for the following 

free energy terms 

   ∆lXS�op�rmopeX = ∆lXS�op�r&�opro�m
mopeX + ∆lXS�op�r&2�mopeX   

   ∆lXS�op�rmpr, = ∆lXS�op�r&�opro�m
mpr, + ∆lXS�op�r&2�mpr, 	   (11) 

Combining Eq. (11) with the Eq. (9), the absolute binding free energy ∆G����°  can be rewritten 

as 

   ∆G����° = −∆l)Scn)�op�rSX + ∆l�opro�m + ∆l2� + ∆l)Scn)��c   (12)  

where ∆l�opro�m  is the difference in the free energies of turning of the Coulomb interaction 

between the ligand and the binding site and that between the ligand and the bulk solvent, i.e. 



   ∆l�opro�m = −(∆lXS�op�r&�opro�m
mopeX − ∆lXS�op�r&�opro�m

mpr, )   (12.1) 

The ∆l2� has a similar meaning, i.e.  

   ∆l2� = −(∆lXS�op�r&2�mopeX − ∆lXS�op�r&2�mpr, )    (12.2) 

To a certain extent, these two terms ∆l�opro�m  and ∆l2�  reflect the contributions of the 

effective electrostatic interactions and the nonpolar intermolecular interactions to the binding 

free energy, respectively 11,13, and they therefore contain physical insights into the 

thermodynamic driving forces of binding. However, it should be noted that the decomposition of 

total binding free energy depends on the choice of alchemical path. For example, such a 

decomposition is only physically meaningful when the Coulomb interactions are switched off 

before the Lennard-Jones interactions are turned off, as is done here. While such decomposition 

can be useful for understanding the nature of ligand binding, the interpretation it provides is 

qualitative and should be viewed with caution. 

Lastly, it should be noted that the simulations of the DDM calculation are performed in finite-

size, periodic solvent box; for charged ligands this can have a non-negligible effect on the 

calculated electrostatic decoupling free energies ∆lXS�op�r&�opro�m
mopeX  and ∆lXS�op�r&�opro�m

mpr, . 

Here we used a scheme developed by Rocklin et al.14 to compute the correction for these effects. 

The electrostatic finite-size corrections include the following contributions: periodicity-induced 

net-charge interactions, periodicity-induced net-charge undersolvation, discrete solvent effects, 

and residual integrated potential effects.14 Calculating the residual integrated potential effects 

requires three Poisson-Boltzmann calculations (PB) of electrostatic potentials generated by 

different combinations of receptor and ligand charge distributions. Here the PB calculations are 

performed using the APBS program15. With these corrections, the final expression for the 

absolute binding free energy from DDM is written as 



 ∆G����° = −∆l)Scn)�op�rSX + ∆l�opro�m + ∆l2� + ∆lSrS�_�o))�dednS_cd�S + ∆l)Scn)��c   (13) 

Hydration Site Analysis Calculation 

To perform HSA calculations 16,17, a molecular dynamics simulation of the unliganded c-MYC 

DNA-quadruplex was performed using the AMBER parmbsc0 force field 18 in a TIP3P 19 cubic 

water box, using the AMBER14 package. The water box was built with a minimum 10.0 Å 

buffer between solute atoms and box boundary. After preparation, structures were minimized for 

up to 10000 cycles, with all solute and ions harmonically restrained using a force constant of 100 

kcal mol−1 Å−2. The minimization step was followed by a 200 ps NVT equilibration where the 

system was heated at a constant volume from 100 K to 300 K and a 350 ps NPT equilibration 

where the restraints were reduced 100 kcal mol−1 Å−2 to 10 kcal mol−1 Å−2. The system was again 

minimized for up to 10000 cycles maintaining the previous restraints and equilibrated to a 

temperature of 300 K and a pressure of 1 atm under NPT conditions for 6 ns. An NVT 

production run was started from a configuration in which the box volume was close to the 

average of the last 5 ns of the previous NPT simulation. The production MD simulations were 

run for 100 ns and snapshots were collected every 1.0 ps. The first 1 ns of the production run was 

discarded.  

During the production run, position restraints with a force constant of 10 kcal mol−1 Å−2 were 

used on all of the heavy atoms and SHAKE was used to constrain any bonds involving hydrogen 

atoms. The temperature was maintained with a Langevin thermostat. A stochastic Langevin 

dynamics integrator with a friction constant of 1 ps-1 and a time step of 1 fs was used to integrate 

the equations of motion and to provide constant temperature control at T = 300 K. Electrostatic 

interactions were computed using the particle-mesh Ewald (PME) method 20.  



Hydration site analysis was used to determine solvation thermodynamics and structural 

properties of water molecules inside the 5’end and 3’end binding cavities. In this work, we 

performed HSA analysis on a subset of 10,000 frames from the 100 ns production trajectory. 

High density spherical regions (hydration sites) of 1Å radius were identified using a clustering 

procedure 16 on the water molecules that were found within 3 Å of the heavy atoms of the 

quinolone rings in an aligned holo conformation. The resulting hydration sites were each 

populated by retrieving all water molecules, which had oxygen atoms within 1.0 Å from the 

corresponding hydration site center. The hydration sites were then enumerated according to their 

occupancies, with the highest populated site given the index 0. 

The energy of each hydration site (Etotal) is calculated as a function of the pairwise solute-water 

energies (Esw) and water-water energies (Eww) 16, 

 �non =	 � 	(�cz		 +	�zz	)   
 

where a factor of one-half takes into account the assignment of pairwise interactions to each 

molecule in the pair.  

Hydrogen bonds were identified based on the following geometric criteria: the donor−acceptor 

heavy atom distance is less than or equal to 3.5 Å and the hydrogen−donor−acceptor angle is less 

than or equal to 30°.17 The total number of hydrogen (HBtot) is equal to sum of the solute-water 

(HBsw) and water-water hydrogen bonds (HBww). 

Fractional enclosure (fenc) was calculated based on the following function:17 

 

�Se� = 	1 − �em)
�em)&mpr,

 

 
 
where Nnbr is mean number of water molecules found in the first hydration shell of a hydration 

site or first shell neighbors and Nnbr-bulk is mean number of first-shell neighbors of a TIP3P water 



molecule in neat water simulation as defined in this previous work. This quantity indicates the 

degree to which the water in a hydration site is blocked from contact with other water molecules. 

 

Table S1. Thermodynamic properties of cavity waters at the 5’ site computed using HSA. 

index Occupancy Esw Eww Etot HBww HBsw HBtot Enclosure 
Ligand-
overlap 

0 0.77 -4.14 -5.81 -9.95 1.91 1.09 3.00 0.49 YES 
1 0.61 -2.39 -7.95 -10.34 2.95 0.03 2.98 0.34 YES 
2 0.68 -4.19 -6.21 -10.40 2.09 1.60 3.69 0.31 NO 
3 0.42 -1.27 -8.31 -9.58 2.85 0.04 2.90 0.23 YES 
4 0.37 -1.33 -8.45 -9.78 2.89 0.16 3.05 0.21 YES 
5 0.46 -3.07 -5.96 -9.03 2.21 0.70 2.91 0.43 YES 
6 0.36 -2.38 -7.50 -9.89 3.16 0.16 3.32 0.14 YES 
7 0.35 -1.17 -8.71 -9.88 3.06 0.01 3.08 0.20 YES 
8 0.34 -2.98 -6.95 -9.93 2.76 0.53 3.30 0.19 YES 
9 0.30 -3.21 -6.58 -9.79 2.78 0.50 3.27 0.18 YES 

10 0.35 -0.96 -8.53 -9.50 2.92 0.05 2.97 0.20 YES 
11 0.30 -2.56 -7.13 -9.70 2.90 0.37 3.27 0.17 YES 

BULK 0.14 0 -9.53 -9.53 3.33 0 3.33 0  
Esw, solute-water energy; Eww, water-water energy; Etot, total energy; HBww, water-water 

hydrogen bonds; HBsw, solute-water hydrogen bonds; Ligand-overlap, hydration sites are 
located in the same region or proximal to the ligand location in the binding cavity, BULK, bulk 
water, values were obtained from neat TIP3P water simulation (ref. Haider et al) 17.  

 

Table S2. Thermodynamic properties of cavity waters at the 3’ site computed using HSA.a 

index Occupancy Esw Eww Etot HBww HBsw HBtot Enclosure 
Ligand-
overlap 

0 0.87 -4.32 -4.38 -8.70 1.02 1.57 2.59 0.67 YES 
1 0.76 -4.55 -5.52 -10.06 2.15 0.91 3.06 0.44 YES 
2 0.55 -3.05 -6.26 -9.31 2.23 0.91 3.14 0.32 YES 
3 0.51 -3.11 -6.75 -9.86 2.48 0.80 3.28 0.28 YES 
4 0.47 -2.40 -7.35 -9.75 2.67 0.94 3.61 0.14 NO 
5 0.44 -1.55 -7.98 -9.53 2.85 0.25 3.10 0.25 YES 
6 0.42 -3.35 -6.36 -9.71 2.51 0.73 3.24 0.25 YES 
7 0.35 -0.89 -8.90 -9.79 3.07 0.01 3.08 0.15 YES 
8 0.41 -1.86 -8.37 -10.22 3.23 0.08 3.31 0.15 YES 
9 0.36 -1.08 -8.29 -9.37 2.78 0.21 2.99 0.21 YES 

10 0.35 -0.49 -9.17 -9.66 2.93 0.01 2.94 0.22 YES 
11 0.37 -1.49 -8.23 -9.73 2.95 0.04 2.99 0.22 YES 

BULK 0.14 0 -9.53 -9.53 3.33 0 3.33 0  
a. See footnotes for Table S1. 

 



 

Figure S2. Variations of the intermolecular distance between quindoline N1 and T23O4 as the ligand-DNA distance 
is increased from r = 12.6 Å to 14.2 Å. 
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