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1 Software tools for top-down mass spectrometry analysis

Table S1: Software tools for proteoform identification using top-down mass spectrometry

Software Website Reference

ProSightPC http://proteinaceous.net/product/prosightpc-4-0/ [1]

MS-TopDown http://proteomics.ucsd.edu/software-tools/ [2]

PIITA - [3]

Mascot Top Down http://www.matrixscience.com/ [4]

BUPID Top-Down
http://www.bumc.bu.edu/cardiovascularproteomics

/cpctools/bupid-top-down/
[5]

MS-Align+ http://bix.ucsd.edu/projects/msalign/ [6]

Byonic http://www.proteinmetrics.com/products/byonic/ [7]

MS-Align-E http://proteomics.informatics.iupui.edu/software/msaligne/ [8]

ProteinGoggle http://proteingoggle.tongji.edu.cn/ [9, 10]

ProSight Lite http://prosightlite.northwestern.edu/ [11]

Proteoform Suite https://github.com/smith-chem-wisc/ProteoformSuite [12]

TopPIC http://proteomics.informatics.iupui.edu/software/toppic/ [13]

pTop http://pfind.ict.ac.cn/software/pTop/index.html [14]

TopMG http://proteomics.informatics.iupui.edu/software/topmg/ [15]

MASH Suite Pro http://crb.wisc.edu/yinglab/software.html [16, 17]

MSPathFinder https://omics.pnl.gov/software/mspathfinder [18]
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Table S2: Software tools for top-down spectral deconvolution

Software Website Reference

THRASH http://proteinaceous.net/product/prosightpc-4-0/ [19]

Xtract http://proteinaceous.net/product/prosightpc-4-0/ [20]

DeconMSn https://omics.pnl.gov/software/deconmsn [21]

YADA http://pcarvalho.com/patternlab/downloads/windows/yada/ [22]

DeconTools (Decon2LS) https://omics.pnl.gov/software/decontools-decon2ls [23]

MS-Deconv http://bix.ucsd.edu/projects/msdeconv/ [24]

MS-Deconv+/TopFD1 https://github.com/toppic-suite/toppic-suite [25]

pParse http://pfind.net/software/pTop/index.html [26]

UniDec http://unidec.chem.ox.ac.uk [27]

ProMex https://omics.pnl.gov/software/mspathfinder [18]

The ASF-RESTRICT Algorithm

Input: A deconvoluted top-down MS/MS spectrum S, a set Ω of f variable

PTMs, a number k of intervals, parameters h and t, and a protein

database D.

Output: Top t candidate protein sequences in D for the query spectrum S.

1. Set the protein set Φ as an empty set, and compute k intervals as well as

their k centers in S.

2. For each set of h masses selected from the k centers with replacement do

3. For each set of h PTMs selected from Ω with replacement do

4. Generate an approximate spectrum S′ using the h selected masses

and the h selected PTMs.

5. Use the UPF-RESTRICT algorithm to search S′ against D to find

top t candidate proteins as well as their similarity scores, and add

them to Φ.

6. Report t top scoring protein sequences from Φ.

Figure S1: The ASF-RESTRICT algorithm for protein sequence filtration using top-down MS/MS spectra.

1The MS-Deconv+ algorithm has been implemented and integrated into TopFD.
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Algorithm

Input: A deconvoluted top-down MS/MS spectrum S with a precursor mass

M and peaks (a1, b1), (a2, b2), . . . , (an, bn), where ai is the ith mass and

bi is the intensity of ai; h guessed prefix residue masses c1 ≤ c2 ≤ . . . ch;

and h guessed PTMs and their corresponding mass shifts δ1, δ2, . . . , δh.

Output: An approximate spectrum S′.

1. Set q0 = 0, qh+1 = M , and qk = ck for 1 ≤ k ≤ h.

2. For i = 1 to n do

3. Find two values qj and qj+1 such that qj ≤ ai < qj+1.

4. a′i = ai −
∑j

k=1 δk.

5. If a′i > 0 then add (a′i, bi) as a peak to S′.

6. Set the precursor mass of S′ as M −
∑h

k=1 δk and output S′.

Figure S2: An algorithm for generating an approximate spectrum from a query top-down deconvoluted

MS/MS spectrum and a list of guessed prefix residue masses and variable PTMs.

Table S3: Parameter settings of TopPIC in the analysis of the EC data set

Parameter Value

Fragmentation method FILE

Fixed modifications None

N-terminal forms of proteins NONE, NME, NME+ACETYLATION

Using a decoy database Yes

Error tolerance 15 ppm

Maximum number of unexpected modifications 0

(unknown mass shifts) in a PrSM

Cutoff type Spectrum-level FDR

Cutoff value 0.01

Using the generating function approach

to compute p-values and E-values No

Number of combined spectra 1

Common modifications for characterization

of unknown mass shifts None

E-value computation Lookup table
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Figure S3: The histogram of the proteoform lengths of the 874 PrSMs identified by TopPIC from the EC
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Figure S4: The histogram of the conditional spectral probabilities p of the 874 PrSMs identified by TopPIC

from the EC data set
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Figure S5: The average running times (per spectrum) of the ASF algorithms with various settings of k

and h on the simulated PrSMs with 5 PTMs: (a) ASF-RESTRICT with h = 1; (b) ASF-RESTRICT

with h = 2; (c) ASF-DIAGONAL with h = 1 ; (d) ASF-DIAGONAL with h = 2.

2 Tag-based filtering algorithms

A sequence tag is a short amino acid sequence extracted from an MS/MS spectrum. Most tag extraction

methods are based on spectrum graphs [28]. A spectrum graph is constructed from a deconvoluted MS/MS

spectrum using three steps (Fig. S6): (a) A node is added to the spectrum graph for each fragment mass

in the spectrum. (b) Two nodes are connected by an edge if the difference between their corresponding

masses is similar to (within an error tolerance) the mass of an amino acid residue2. The label of the edge

is the amino acid. (c) A node is removed from the graph if there are no edges connecting to it. Each path

in the spectrum graph corresponds to a sequence tag. A top-down spectrum graph typically consists of

several connected components because of many missing peaks.

We describe two sequence tag-based filtering methods, which are used in MS-Align+Tag [29] and

MSPathFinder [18], respectively. The first method uses the long tag strategy to obtain sequence tags

from a spectrum graph with three steps: (a) A longest sequence tag is selected from each component of

2In some tag generation methods, two nodes are connected if their corresponding mass difference is similar to the mass

of one or two amino acid residues.
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Figure S6: A spectrum graph (bottom) is constructed from a deconvoluted MS/MS spectrum (top). The

two left most nodes correspond to masses 221.09 Da and 335.13 Da in the spectrum. These two nodes

are connected by an edge because the difference between 221.09 and 335.13 is similar to the mass of an

asparagine residue (114.04 Da). The spectrum graph contains two connected components.

the spectrum graph. If a component contains several longest sequence tags with the same length, one of

them is arbitrarily selected. (b) The reported sequence tags are filtered to remove those with less than

k amino acids (k = 4 in the experiments). (c) For each remaining sequence tag, all of its substrings

with length k are reported. For example, in Fig. S6, the longest sequence tags NVYTSAG and AC are

extracted from the spectrum graph, then the tag AC is filtered out because its length is less than k = 4,

and finally four length-4 short tags are extracted: NVYT, VYTS, YTSA, and TSAG.

In the second method, we extract from the spectrum graph all sequence tags with a length l between

the minimum length lmin and the maximum length lmax, that is, lmin ≤ l ≤ lmax. In the experiment,

lmin = 5 and lmax = 8. First, all tags with length lmax are extracted from the spectrum graph and added

to a sequence tag set T . For example, when lmax = 6, two tags NVYTSA and VYTSAG are extracted

from the graph in Fig. S6. Next, all tags with length lmax−1 are extracted. A length lmax−1 tag is added

to T if it is not a substring of any tag in T . For example, the length-5 sequence tag NVYTS in Fig. S6

is not added to T because it is a substring of the length-6 sequence tag NVYTSA, and the sequence

tag ATSAG is added to T because it is not a substring of any tag in T . Two tags in T may share a

substring, but their whole sequences are different. Similarly, we further extract sequence tags with lengths

lmax − 2, . . . , lmin and add them to T if they are not substrings of tags in T . The two methods are called

TAG-LONG (with the long tag strategy) and TAG-VAR (with tags of various lengths), respectively.

Because some sequence tags are extracted from suffix fragment ion series, a reversed tag is generated

from each extracted tag. The extracted sequence tags and their reversed tags are searched against a

protein database to find a small number of top candidate proteins. Because the lengths of proteins vary

significantly from dozens to tens of thousands, we compute similarity scores between sequence tags and

protein fragments with similar lengths rather than whole proteins. Protein fragments are generated using

a parameter L (L = 150 in the experiments). If the length of a protein is no larger than L, the whole
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protein sequence is a fragment. Otherwise, each length L substring of the protein is a fragment, and the

total number of fragments of the protein is n− L+ 1.

Let T be a set of sequence tags and reversed tags extracted from a spectrum graph. We define a

similarity score between a candidate fragment and T . If a sequence tag is a substring of a fragment, we

say the sequence tag has a hit in the fragment. The tag score between the fragment and T is the number

of tags in T that have a hit in the fragment. The tag score between a protein and T is the maximum tag

score among its fragments. All proteins in the protein database are ranked based on their tag scores and

the top t (t = 20 in experiments) proteins are reported as filtering results.

Table S5: Parameter settings of the tag-based, UPF-based, and ASF-based filtering algorithms

Parameter TAG-LONG TAG-VAR UPF-RESTRICT ASF-RESTRICT

UPF-DIAGONAL ASF-DIAGONAL

Fixed modifications None None None None

Error tolerance 15 ppm3 15 ppm 15 ppm 15 ppm

# threads 1 1

l 4

lmin 5

lmax 8

k 3

h 1
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Figure S7: Comparison of the filtering efficiency rates of the TAG-LONG, TAG-VAR, UPS and ASF

algorithms on the simulated test PrSMs with 5 PTMs.

3For the tag-based algorithms, two nodes in a spectrum graph corresponding to two masses m1 < m2 are connected by an

edge if the mass difference m2−m1 matches the residue mass of an amino acid within an error tolerance 15×10−6 ·(m2+m1)/2.
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Figure S9: Comparison of the filtering efficiency rates of the TAG-LONG, TAG-VAR, UPS and ASF

algorithms on PrSMs with various conditional spectral probabilities. The simulated test PrSMs with 5

PTMs are divided into 7 groups based on their conditional spectral probabilities p. (a) CID spectra, (b)

ETD spectra.
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Figure S11: Comparison of the filtering efficiency rates of the TAG-LONG, TAG-VAR, UPS and ASF

algorithms on the simulated test PrSMs with 2 PTMs. The PrSMs are divided into 7 groups based on

their conditional spectral probabilities p, and the efficiency rate for each group is compared.
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Figure S12: Comparison of the filtering efficiency rates of the TAG-LONG, TAG-VAR, UPS and ASF

algorithms on the simulated test PrSMs with 3 PTMs. The PrSMs are divided into 7 groups based on

their conditional spectral probabilities p, and the efficiency rate for each group is compared.
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Figure S13: Comparison of the filtering efficiency rates of the TAG-LONG, TAG-VAR, UPS and ASF

algorithms on the simulated test PrSMs with 4 PTMs. The PrSMs are divided into 7 groups based on

their conditional spectral probabilities p, and the efficiency rate for each group is compared.
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Figure S14: Comparison of the filtering efficiency rates of the TAG-LONG, TAG-VAR, UPS-RESTRICT,

UPS-DIAGONAL, ASF-RESTRICT and ASF-DIAGONAL algorithms on the simulated test PrSMs with

5 PTMs using the EC proteome database concatenated with the human proteome database. The PrSMs

are divided into 7 groups based on their conditional spectral probabilities p, and the efficiency rate for

each group is compared.

Table S6: Five variable PTMs used in the identification of proteoforms of the histone H3 and H4 proteins

PTM Monoisotopic mass shift (Da) Amino acids

Acetylation 42.01056 R, K

Methylation 14.01565 R, K

Dimethylation 28.03130 R, K

Trimethylation 42.04695 R

Phosphorylation 79.96633 S, T, Y
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Table S7: Parameter settings of TopMG in the analysis of the histone data sets

Parameter Value

Fragmentation method FILE

Fixed modifications None

N-terminal forms of proteins NONE, NME, NME+ACETYLATION

Using a decoy database No

Error tolerance 0.1 Da

Maximum number of unexpected modifications 0

(unknown mass shifts) in a PrSM

Number of combined spectra 1

Gap in constructing proteoform graph 40

Maximum number of variable modifications 10

Number of matched fragment ions
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Figure S15: Histograms of the 3 205 PrSMs identified from the histone H3 data set: (a) the number of

matched fragment ions, (b) the number of variable PTM sites.

12



Number of matched fragment ions
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Figure S16: Histograms of the 1 087 PrSMs identified from the histone H4 data set: (a) the number of

matched fragment ions, (b) the number of variable PTM sites.

290

21

30

803

291

842

22

27

38

1
1 43

1

4

0UPF−RESTRICT UPF−DIAGONAL

ASF−RESTRICT ASF−DIAGONAL

(a)

12

5

0

30

22

997

10

2

0

0
0 3

1

1

0UPF−RESTRICT UPF−DIAGONAL

ASF−RESTRICT ASF−DIAGONAL

(b)

Figure S17: Comparison of the numbers of PrSMs efficiently filtered by the UPF-RESTRICT, UPF-

DIAGONAL, ASF-RESTRICT and ASF-DIAGONAL algorithms: (a) comparison on the 3 205 histone

H3 PrSMs; (b) comparison on the 1 087 histone H4 PrSMs.
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Figure S18: Comparison of the numbers of PrSMs efficiently filtered by the TAG-LONG, TAG-VAR,

ASF-RESTRICT and ASF-DIAGONAL algorithms: (a) on the 3 205 histone H3 PrSMs; (b) on the 1 087

histone H4 PrSMs.
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Table S10: Parameter settings of TopPIC in the analysis of the xenograft data set

Parameter Value

Number of combined spectra 1

Fragmentation method FILE

Search type TARGET+DECOY

Fixed modifications None

Maximum number of unexpected modifications 0

Error tolerance 10 ppm

Cutoff type Proteoform-level FDR

Cutoff value 0.05

Allowed N-terminal forms NONE, NME, NME+ACETYLATION,

METHIONINE ACETYLATION

Maximum mass shift of modifications 500 Da

Thread number 12

E-value computation Lookup table

Table S11: Parameter settings of TopMG in the analysis of the xenograft data set

Parameter Value

Number of combined spectra 1

Fragmentation method FILE

Search type TARGET+DECOY

Fixed modifications None

Maximum number of unexpected modifications 0

Error tolerance 10 ppm

Cutoff type Proteoform-level FDR

Cutoff value 0.05

Allowed N-terminal forms NONE, NME, NME+ACETYLATION,

METHIONINE ACETYLATION

Maximum mass shift of modifications 500 Da

Thread number 12

E-value computation Lookup table

Variable PTM Phosphorylation

Gap in proteoform graph 40
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Figure S19: Histograms of the 41 phosphorylated mouse proteoforms identified from the xenograft data

set by TopMG: (a) the number of phosphorylation sites, (b) E-values.
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Figure S20: Comparison of the numbers of mouse proteoforms without PTMs (except for terminal trun-

cations and N-terminal acetylation) identified from the xenograft data set by ProSightPC and TopPIC.(a)

Mouse proteoforms. (b) Human proteoforms.
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Figure S21: Comparison of the numbers of distinct precursor masses corresponding to the phosphorylated

proteoforms identified from the xenograft data set by ProSightPC and TopMG. (a) Mouse proteoforms.

(b) Human proteoforms.
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Figure S22: A phosphorylated proteoform of the mouse histone H2B type 1-C/E/G with one phosphory-

lation site (UniProt ID: Q6ZWY9) identified by TopMG.

Figure S23: A phosphorylated proteoform of the mouse vacuolar ATPase assembly integral membrane

protein Vma21 (UniProt ID: Q78T54) with two phosphorylation sites identified by TopMG.
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Figure S24: A phosphorylated proteoform of the mouse histone H2B type 2-B with three phosphorylation

sites (UniProt ID: Q64525) identified by TopMG.

Figure S25: A phosphorylated proteoform of the mouse calmodulin protein (UniProt ID: P62204) with

three phosphorylation sites identified by TopMG.
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Figure S26: Histograms for the 82 phosphorylated human proteoforms identified from the xenograft data

set by TopMG: (a) the number of phosphorylation sites, (b) E-values.

Figure S27: A phosphorylated proteoform of the human transcription factor MafA (UniProt ID:

Q8NHW3) with five phosphorylation sites identified by TopMG.
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Figure S28: A phosphorylated proteoform of the human non-histone chromosomal protein HMG-14

(UniProt ID: P05114) with one phosphorylation site identified by TopMG.

Figure S29: A phosphorylated proteoform of the human histone H2B type 1-M (UniProt ID: Q99879)

with three phosphorylation sites identified by TopMG.
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Figure S30: A phosphorylated proteoform of the human 28 kDa heat- and acid-stable phosphoprotein

(UniProt ID: Q13442) with two phosphorylation sites identified by TopMG.

Supplementary tables (Microsoft Excel files)

Table S4: A total of 874 PrSMs were identified from the EC data set with a 1% spectrum level FDR by

TopPIC.

Table S8: A total of 3205 proteoforms were identified from the histone H3 data set with at least 10

matched fragment ions by TopMG.

Table S9: A total of 1087 proteoforms were identified from the histone H4 data set with at least 10

matched fragment ions by TopMG.

Table S12: A total of 122 mouse proteoforms were identified from the xenograft data set with a 5%

proteoform-level FDR by TopPIC.

Table S13: A total of 45 mouse proteoforms were identified from the xenograft data set with a 5%

proteoform-level FDR by TopMG.

Table S14: A total of 41 phosphorylated mouse proteoforms were identified from the xenograft data
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set with a 5% proteoform-level FDR by TopMG.

Table S15: A total of 265 human proteoforms were identified from the xenograft data set with a 5%

proteoform-level FDR by TopPIC.

Table S16: A total of 91 human proteoforms were identified from the xenograft data set with a 5%

proteoform-level FDR by TopMG.

Table S17: A total of 82 phosphorylated human proteoforms were identified from the xenograft data

set with a 5% proteoform-level FDR by TopMG.

Supplementary files (html files for annotated PrSMs)

File S1 mouse proteoforms identified by TopPIC.zip

File S2 mouse proteoforms identified by TopMG.zip

File S3 human proteoforms identified by TopPIC.zip

File S4 human proteoforms identified by TopMG.zip
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