Supplementary information

Proton-independent activation of acid-sensing ion channels by alkaloid lindoldhamine from Laurus nobilis

Dmitry I. Osmakov^{1,2,#}, Sergey G. Koshelev^{1,#}, Yaroslav A. Andreev^{1,2},

Maxim A. Dubinnyi¹, Vadim S. Kublitski¹, Roman G. Efremov¹, Alexander I.

Sobolevsky³*, Sergey A. Kozlov¹*

Supplementary Figure 1. Purification of LIN. *A*, The first separation stage of the acetic extract of *L*. *nobilis* leaves on a reverse-phase column LunaC18 (10x250mm) in 0.1% TFA with a flow rate 5 ml/min using a linear gradient of acetonitrile concentration. *B*, Final purification on a column VydacC18 (4.6x250mm) in 0.1% TFA with a flow rate of 1 ml/min using a linear gradient of acetonitrile concentration.

Fractions containing the active component are marked by an arrow.

Atom	¹ H ppm (J Hz)	¹³ C(¹⁵ N) ppm	NMR contacts ^{a)}	Atom	¹ H ppm (J Hz)	¹³ C(¹⁵ N) ppm	NMR contacts ^{a)}
α	3.233 dd(6.0;13.9) 3.064 dd(6.8;13.9)	38.145	<u>1</u> ,8a,9, 10,14	α'	3.314 dd(7.6,13.8) 3.167 dd(7.4,13.8)	38.496	<u>1'</u> ,8a',9', 10'14'
1	4.643 dd(6.0;6.8)	55.20	<u>a</u> ,3,4a, 8 ,8a,9, 10,14	1'	4.662 t(7.5)	55.64	<u>a'</u> ,3',4a',8',8a', 9',10'14'
2	• b)	¹⁵ N 43.8	4	2'	•	¹⁵ N 43.8	4'
3	3.452 m 3.388 m	38.16	<u>4</u> ,1,4a	3'	3.584 m 3.412 m	38.392	<u>4'</u> ,1',4a'
4	3.002 m 2.969 m	23.71	2, <u>3</u> ,5,4a,8a	4'	3.051 m	23.99	2', <u>3'</u> ,5',4a',8a'
4a		123.42	1,3,4,8	4a'	•	123.12	1',3',4',8'
5	6.648 s	111.60	<i>4,6,7,8a,</i> 60Me	5'	6.909 s	111.69	4',6',7',8a', 6'OMe
6		147.03	5,8	6'		147.21	5',8'
60Me	3.657 s	55.21	6,5	6'OMe	3.867 s	55.47	6',5'
7	•	142.71	5,8	7'	•	143.04	5',8'
8	6.193 s	113.40	a,1 ,4a,5,6,7	8'	6.201 s	113.21	a' ,1',4a',6',7'
8a	•	122.37	α,1,4,5	8a'	•	122.90	α',1',4',5'
9		127.66	α,1,2	9'		129.73	a',1',11'13'
10	6.449 s	121.51	α,1,11,12,14, 11'13'	10'14'	7.133 d(8.3)	130.78	1',a',<u>11'13'</u> , <i>12'</i>
11	•	143.20	13,10	11'13'	6.841 d(8.3)	117.49	<u>10'14'</u> ,9',10
12		146.09	14,10	12'		155.91	10'14'
13	7.086 s	117.17	9,11				
14	7.083 s	125.83	a , 1 , 10, 12				

Supplementary Table 1.

NMR chemical shifts (ppm), multiplicities (Hz) and NMR HMBC/ROESY/COSY contacts in LIN. Conditions: D₂O, pH 3.0, 14°C, Bruker Avance III 600MHz. Atom numbering follows Fig. 1B. ^{a)} Heavy atom number of corresponding NMR cross-peak outline HMBC contacts (*italic*), ROESY contacts (**bold**) and COSY ones (<u>underlined</u>) ^{b)} Not applicable

Supplementary Figure 2.

The ¹H NMR spectra of LIN at different pH values (D₂O, 14°C, 600 MHz). Absence of any observable chemical shift changes in ¹H NMR and 2D ¹³C-HSQC/¹³C-HMBC NMR spectra (data not shown) proves absence of ionogenic groups with pKa in range 1..8 in LIN.

Supplementary Figure 3. LIN application on uninjected oocytes.

Whole-cell current traces recorded from oocytes held at pH 8.5, 7.8 and 7.3 in response to corresponding bath solution (left panel) and to 1 mM LIN (right panel).

Supplementary Figure 4. LIN application on rat ASIC1a and rat ASIC2a channels.

(A) Whole-cell current traces recorded from rat ASIC1a channels held at pH 7.8 in response to pH 5.5 stimulus (left panel) and to 1 mM LIN (right panel). The mean of LIN-induced current was $0.55 \pm 0.13\%$ of pH 5.5-induced current, n = 6. Data are mean \pm SEM.

(B) Whole-cell traces recorded from rat ASIC2a channels held at pH 7.8 in response to pH 5.5 stimulus (left panel) and to 1 mM LIN (right panel). The mean of LIN-induced current was 0 ± 0 % of pH 5.5-induced current, n = 5.