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Supplementary Methods 

 

Data collection and preprocessing 

All ChIP-seq data were from Cistrome DB (1) and were processed using ChiLin, a ChIP-seq and 

DNase-seq analysis and quality control pipeline (2). Sequence reads were mapped to the 

reference human genome hg38 using BWA (3), and TF binding sites were called using MACS2 

(4). Peaks meeting a minimum fold enrichment of 5 were selected for the analysis. For each TF 

ChIP-seq dataset, a regulatory potential (RP) score was calculated for each gene in the genome 

using BETA (5), as the weighted sum of peaks within 100kb from the transcription start site 

(TSS) of that gene.  

  

Molecular profiling data for over 10,000 primary cancer samples from 31 cancer types were 

collected from TCGA, including RNA-seq transcriptomic profiles, gene-based copy number 

variation (CNV) profiles, DNA methylation profiles on gene promoters, and clinical survival 

information for each patient. Tumor purity score for each sample was calculated using CHAT (6) 

based on CNA profiles, and infiltrating immune cell concentration for each sample was 

estimated using TIMER (7) based on RNA-seq transcriptomic profiling data.  

 

Cancer type reannotation based on TCGA transcriptomic profile clustering 

In order to obtain robust and consistent cancer type annotations, 9,637 tumor samples from 31 

cancer types (originally annotated by TCGA) were re-clustered based on their transcriptomic 

profiles (RNA-seq) (Fig. S1). Cancer types were re-annotated based on this re-clustering, to 

reflect the actual molecular features of each sample. Some unambiguous cancer subtypes were 

annotated separately as different cancer types (e.g. BRCA_1 for mainly luminal breast cancer 

and BRCA_2 for mainly basal breast cancer (8) (Fig. S2a), while some samples from different 

TCGA annotations but having similar transcriptomic profiles were merged as one cluster and re-

annotated as the representative cancer type with an asterisk (e.g. COAD and READ merged as 



COAD_READ*, having less expression differences than the 2 breast cancer subtypes, Fig. S2b). 

We also confirmed that such reclustering was not confounded with sample batch effect, as shown 

in Fig. S1c. Cancer type abbreviations used here are the same as TCGA cancer abbreviations 

(https://tcga-data.nci.nih.gov/tcga/). For simplicity, we refer to the reannotated cancer clusters as 

“cancer types”. As a result, 29 reannotated cancer types were retained and used to construct the 

Cistrome Cancer database (Supplementary Table 1).  

 

Functional enhancer prediction 

For each cancer type, cancer-specific genes, defined as up-regulated genes in the cancer samples 

compared with normal samples, were first identified by analyzing the TCGA transcriptomic 

RNA-seq data using VOOM-LIMMA (9) with a p-value cutoff of 0.01 and fold-change cutoff of 

2. Eliminating the cancer types with less than 15 available normal samples for robust differential 

expression analysis, we obtained cancer-specific gene sets for 15 cancer types. Note that cancer-

specific genes are not specific to each cancer type. Genes can repetitively occur in multiple 

cancer types.  

 

The MARGE-express module (4) was used to generate functional enhancer profiles for each 

cancer type, integrating information from over 1,200 H3K27ac ChIP-seq datasets collected in the 

Cistrome DB database. For each H3K27ac ChIP-seq dataset, MARGE defines a regulatory 

potential (RP) score, Pi, for each gene i by summarizing H3K27ac signals within a 200kb region 

surrounding its transcription start site (TSS).  
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where zk is the H3K27ac ChIP-seq read count at genomic location k, ∆ik is the distance from the 

TSS of gene i to genomic location k, wik is the weight as a function of ∆ik, defined as 
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where the decay rate parameter 7 is set so that a H3K27ac read 10kb from the TSS contributes 

one-half of a read at the TSS, determined empirically. After RP scores for all genes were 

calculated for each ChIP-seq dataset j in the compendium, a logistic regression was performed to 



retrieve relevant H3K27ac profiles that accurately model the given cancer-specific gene set for 

each cancer type.  
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where yi is the indicator of whether a gene belongs to the cancer-specific gene set (yi =1) or not 

(yi =0), Pij is the RP score for gene i in H3K27ac dataset j, and < is the vector of regression 

coefficients. Using 5-fold cross validation, 10 relevant H3K27ac datasets from the over 1,200 

dataset compendium were retrieved by forward stepwise regression. These 10 H3K27ac profiles 

that best model the cancer-specific gene set mark functional enhancers regulating this gene set. 

Then MARGE adopts a semi-supervised learning approach to identify the relative weights 

between these 10 H3K27ac datasets, and uses the union DNaseI hypersensitive sites (UDHS) 

ranked by the weighted integration of H3K27ac signals as the predicted genomic profile of the 

enhancers functional to regulate these cancer-specific genes. In a predicted enhancer profile, the 

MARGE-predicted enhancer score Sl on UDHS site l is calculated as 
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where ulm is the normalized H3K27ac read count within a 1kb region centered around UDHS site 

l from retrieved H3K27ac dataset m (m = 1,…,10), and @A is the weight for dataset m imputed 

from the semi-supervised learining. In order to get optimized results, MARGE was run 5 times 

for each cancer type and the prediction with the highest ROC-AUC score was selected as the 

output result.  

 

MARGE-predicted enhancer profiles are available for download or direct visualization using 

WashU genome browser (10) or UCSC genome browser (11). Cancer-specific genes and 

MARGE retrieved integrative RP score for each gene are also available for download, where 

genes with high-ranked RP scores are “super-enhancer” target cancer type specific genes. 

 

Transcription factor activity and target gene prediction 

Target genes for each active TF in each cancer type were predicted from integrative analysis of 

TCGA molecular profiling data and public TF ChIP-seq data.  

 



1) TF activity by cancer type. TF activity in each cancer type was assessed by 2 measurements: 

average expression level (RPKM) and the expression ratio score. The average expression level 

(RPKM) was calculated for all tumor samples for each cancer type. The expression ratio score of 

a TF in a cancer type was defined as the fraction of tumor samples in which the TF expression 

level passes a threshold. The threshold is TF-dependent and defined as the larger value between 

1 RPKM and the median expression level of this TF across all tumor samples from all cancer 

types (Fig. S3a). The expression ratio score reflects cancer type specific TF expression. Target 

genes were predicted only for the active TFs in any cancer type. A TF is defined as active if its 

expression ratio score passes a threshold of 0.25.  

 

2) Candidate target identification by expression correlation. Candidate target genes of each 

TF in a cancer type were identified as having a high expression correlation with the TF across all 

tumor samples in this cancer type. Using the expression correlations of 1 million randomly 

selected pairs of genes in a cancer type as a background null distribution, a gene is a candidate 

target of an active TF if their expression correlation coefficient’s absolute value is ranked in the 

top 5% in the null distribution (Fig. S3b). To eliminate potential confounding effects of CNV, 

tumor purity, and promoter DNA methylation level on the expression variation across tumor 

samples, a multiple regression model was constructed for each gene i 

Expression(i) ~ Expression(TF) + CNV(i) + TumorPurityScore(i) + DNAme(i) 

and genes with significant regression coefficient (under a p-value threshold of 0.01) against the 

TF expression were further selected as candidate target genes.  

 

3) Target predictability of TF ChIP-seq data. The RP scores on all genes for each ChIP-seq 

dataset were used to generate a prediction model of the candidate target genes. In order to 

evaluate whether the TF ChIP-seq data is predictive of candidate target genes, a likelihood ratio 

test between the prediction model using TF ChIP-seq and chromatin input sequencing data (L1) 

and the prediction model using only chromatin input sequencing data (L2) was performed.  

    E1:		G	~	H/ + H.IJK + HLIMNOP 

    E2:		G	~	H/ + H.IJK 

where Y is the expression correlation between the TF and candidate target genes, IMNOP 

represents TF ChIP-seq RP scores, IJK represents chromatin input RP scores. 500 chromatin 



input sequencing datasets were collected in different cell types as the genomic background. For 

each cancer type and each TF, the most correlated ChIP-seq sample (IMNOP) with expression 

correlation (Y) was chosen and TF ChIP-seq was matched with the most similar input sample 

(IJK). Two prediction models were built based on the selected TF ChIP-seq sample and imput 

sample. The likelihood ratio test was used to compare the goodness of fit of two models, to 

determine whether the TF ChIP-seq (IMNOP) had a higher prediction power than ChIP-seq input. 

The likelihood ratio score is also reported to reflect the prediction power of the TF ChIP-seq data.  

 

4) Target gene identification. Putative target genes of a TF were predicted as showing high 

expression correlation as well as being supported by ChIP-seq derived TF binding information. 

Using candidate target genes with a high expression correlation and RP scores from TF ChIP-seq 

data, a generalized multiple regression model was used to select informative ChIP-seq datasets. 

At most 10 informative ChIP-seq datasets were selected in the model, adjusted RP scores were 

generated as a linear combination using regression coefficients. The final target genes were 

identified as genes passing a threshold on this model defined RP score. The threshold was 

determined as maximizing the Youden index (sensitivity+specificity−1) (12).  The final target 

gene list was ranked by the rank product between expression correlation and adjusted RP score 

by default, with the expression correlation and the adjusted RP score percentile represented as 

the color density and the size of the square, respectively.  

 

Web interface 

The Cistrome Cancer website displays cancer enhancer predictions and TF target predictions on 

2 separate webpages. A video introduction is available on the home page. 

 

On the Cancer enhancer prediction webpage, given a gene symbol in the search field, 

information about whether this gene is up-regulated in each cancer type or not can be displayed. 

Predicted regulatory profile near this gene locus can also be displayed by being redirected to 

genome browser. Cancer-specific gene lists, MARGE-retrieved integrative RP scores, and 

MARGE predicted enhancer profiles are available for download. Genes with high integrative RP 

scores can be used as “super-enhancer”-like target genes.  

 



On the TF target prediction web page, a list of available TFs is available for search, and 

prediction results for each TF is displayed as an individual page (Fig. S4). TF activities and 

putative target genes are displayed in heatmaps, in which each column represents a cancer type. 

TF activity information, including TF average expression (RPKM), the expression ratio, and the 

likelihood ratio for ChIP-seq predictability are shown on the top three rows, in green, purple, and 

cyan, respectively. Predicted target genes are listed below with colored squares representing the 

prediction scores for each gene and each cancer type where the TF is active. The color of the 

square represents the expression correlation between the target gene and the TF across tumor 

samples. The size of the square represents the adjusted RP score (as a percentile) from TF ChIP-

seq data. Predicted target genes can be ranked by the rank product of expression correlation and 

adjusted RP score in each cancer type.  

 

Auxiliary analysis functions are also provided in the TF target prediction webpage. These 

functions include:  

1) Advanced search: For a given TF, selected target genes in a query cancer type can be 

displayed with any given expression correlation and adjusted RP score cutoffs.  

2) Survival and expression: Given a query TF and a cancer type, a Kaplain-Meier survival plot 

can be generated using the top 25% and bottom 25% of tumor samples based on the TF 

expression level. Boxplots of expression levels of the TF in all tumor samples and all normal 

samples can also be generated and displayed.  

3) Target gene overlap: A Venn diagram showing the number of shared target genes between 

two TFs in any two cancer types can be generated.  

4) Download: For each TF, the bulk datasets for expression correlation with all genes in all 

cancer types and adjusted RP scores on all genes in all cancer types are available for download.  
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Supplementary Figure Legends 

 

Figure S1: Cancer sample reclustering. Heatmap of the k-means clustering of 9,637 TCGA 

tumor samples over 31 cancer types. Rows and columns are clustered according to cancer type 

and k-means cluster center, with each row representing a cancer type and each column a k-means 

cluster.  

 

Figure S2: Cancer type reannotation.  

a. Pie charts show the breast cancer molecular subtypes of tumors in BRCA_1 (mostly luminal) 

and BRCA_2 (mostly basal).  Breast cancer subtype information was derived from PAM50 

subtype assignments.  

b. Density plots show the distributions of log2 expression fold-change (FC) in BRCA_1 vs. 

BRCA_2 and COAD vs. READ, supporting the merging of COAD with READ and the splitting 

of BRCA into BRCA_1 and BRCA2. The x-axis represents log2 expression fold-change (FC) 

and the y-axis represents frequency.  

c. Percentage of BRCA_1 and BRCA_2 samples by batches.  Each dot represents one batch, and 

the x- and y-axes represent the percentage of samples classified to BRCA_1 and BRCA_2 in that 

batch. Most batches have similar proportion of samples assigned to the two batches, suggesting 

minimal batch effect.  

 

Figure S3: TF target prediction in cancer. 

a. Schematic of the TF expression ratio calculation. For a given TF an expression baseline 

threshold was set as the larger value between 1 RPKM (green dotted line) and the median 

expression level of the TF across tumor samples of all cancer types (black dotted line, chosen). 

For each cancer type, the TF expression ratio is calculated as the fraction of tumor samples 

(purple and white) in which the TF expression level is above the baseline (purple). A TF is 

considered to be active if its expression ratio is greater than 0.25.  

b. Distribution of gene expression Spearman correlation coefficients between gene pairs in 

LUSC (blue) and TGCT (red). The solid lines represent the background distributions calculated 

from one million randomly selected gene pairs. The dashed lines represent expression correlation 

distribution between FOXM1 and every other gene. 



 

Figure S4: Snapshot of the Cistrome Cancer TF target prediction webpage. For each TF 

(scrollable TF list on the left, with AR displayed as an example on the right), predicted target 

genes are displayed for all cancer type where the TF is active. Top rows represent the TF average 

expression level (RPKM), percent of tumors expressing the TF above baseline (expression ratio), 

and TF ChIP-seq predictability (likelihood ratio), in green, purple, and cyan, respectively. A 

red/blue square is displayed if a gene (row) is predicted as a target of this TF in a particular 

cancer type (column). The color of the square represents the gene expression correlation between 

the TF and the predicted target gene. The size of the square represents the TF binding score for 

the predicted target gene, calculated as the percentile of integrative regulatory potential score 

from selected TF ChIP-seq profiles. 

  

Figure S5: FOXM1, a pan-cancer active TF.  

a. FOXM1 expression levels in tumor and normal samples in different cancer types. 

b. Significantly different survival curves from the top 25% (red) and bottom 25% (black) of 

BRCA_1 patients according to FOXM1 expression level. The p-value was calculated using the 

Kaplain-Meier log-rank test.  

c. Active TFs ranked by proportion of overlapping target genes with FOXM1 in BRCA_1.  

d. Venn diagram showing ChIP-seq peak overlap between FOXM1, MYBL2 and E2F1. 

 

Figure S6: Distinct patterns of immune cell infiltration in kidney and colorectal cancers.  

a. STAT4 expression in KIRC tumor and normal samples. The p-value was calculated by t-test.  

b. Survival curves from the top 25% (red) and bottom 25% (black) KIRC patients according to 

STAT4 expression level. The p-value was calculated using the Kaplain-Meier log-rank test.  

c. Waterfall plot of the differential expression of predicted STAT4 target genes in KIRC between 

tumor and normal samples. Inset: Gene Ontology enrichment of STAT4 target genes.  

d. IRF4 expression in COAD_READ* tumor and normal samples. The p-value was calculated 

from t-test.  

e. Survival curves from the top 25% (red) and bottom 25% (black) COAD_READ* patients 

according to IRF4 expression levels. The p-value was calculated using the Kaplain-Meier log-

rank test. 



f. Waterfall plot of the differential expression of predicted IRF4 target genes in COAD_READ* 

between tumor and normal samples. Inset: Gene Ontology enrichment of IRF4 target genes.  

g. The abundance of tumor infiltrating CD8+ T-cells in KIRC and COAD_READ primary 

tumors and adjacent normal tissues.  

h. Scatter plot showing the STAT4 expression level and CD8+ T-cell concentration in each 

KIRC sample.  

i. Scatter plot showing the IRF4 expression level and CD8+ T-cell concentration in each 

COAD_READ* sample.  
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Supplementary Figure S3 

 

 

 

 

 

 

 



Supplementary Figure S4 

 

 
 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure S5 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure S6 

 

 

 



Supplementary Table 1: Cancer Type Abbreviations  
 
Abbreviation  Cancer Type 
ACC Adrenocortical carcinoma 
BLCA Bladder urothelial carcinoma 
BRCA_1 Breast invasive carcinoma type 1 (luminal) 
BRCA_2 Breast invasive carcinoma type 2 (basal) 
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 
COAD_READ Colon and colorectal adenocarcinoma 
GBM Glioblastoma multiforme 
HNSC Head and neck squamous cell carcinoma 
KICH Kidney chromophobe 
KIRC Kidney renal clear cell carcinoma 
KIRP Kidney renal papillary cell carcinoma 
LAML Acute myeloid leukemia 
LGG Brain lower grade glioma 
LIHC Liver hepatocellular carcinoma 
LUAD Lung adenocarcinoma 
LUSC Lung squamous cell carcinoma 
MESO Mesothelioma 
OV Ovarian serous cystadenocarcinoma 
PAAD Pancreatic adenocarcinoma 
PCPG Pheochromocytoma and Paraganglioma 
PRAD Prostate adenocarcinoma 
SARC Sarcoma 
SKCM Skin cutaneous melanoma 
STES Stomach and esophageal carcinoma 
TGCT Testicular germ cell tumors 
THCA Thyroid carcinoma 
THYM Thymoma 
UCEC Uterine corpus endometrial carcinoma 
UVM Uveal melanoma 

 
 


