Supplementary Information

Supplementary Figure 1 | **Characterization of floor plate differentiation. a-f**, Quantification of neuronal subtypes present in differentiated hNs. hiPSC-derived corrected hNs (top panels) and A53T hNs (bottom panels) are both MAP2/TH doublepositive and Girk2/TH double-positive at 60 days *in vitro* (DIV). Blue: DAPI. Scale bar: $50 \ \mu m$ (**a**). Quantification of TH-positive and TH-GIRK2 double positive populations. Data represent mean \pm s.e.m., *n* = 6 coverslips over three independent differentiations, DIV: 60 (**b**). A53T and corrected hNs were antigenically labeled for Tuj1 and either vGlut, Gad65 or TH (**c**,**d**) and the percentage of cells expressing each marker was quantified (**e**,**f**). *n* = 6 coverslips from 2 independent differentiations, Blue=DAPI.

Supplementary Figure 2 | Subcellular localization of α -syn-PS129 in α -syn mutant hNs. a,b, Micrographs depicting α -syn-PS129 co-localization with the endoplasmic reticulum (Calregulin), the Golgi Apparatus (GM130) and the lysosomal compartment (LAMP1) (a). Quantification of Pearson co-localization coefficients from samples in panel a (b). Data represent mean + s.e.m. **P < 0.01 by ANOVA, posthoc Tukey. n = 4 coverslips from 2 independent differentiations, DIV: 60.

Supplementary Figure 3 | Characterization of mitochondrial pathology in BG01-WT and BG01-A53T hNs. a-b Steady-state levels of LC3I and LC3II protein expression were monitored by lysosomal inhibition with 20μ M chloroquine (a). Turnover was induced with 3hrs of starvation. Triplicate experiments were quantified (b) relative to GAPDH expression. Data represent mean + s.e.m. ***P* < 0.01 by Student t-test, *n* = 3. **c**, Quantification of the average mitochondrial volume per neurons for A53T and WT hNs following knock down of the mitophagy gene, Beclin-1 (*BECN1*) or scrambled shRNA control. Data represent mean + s.e.m. ***P* < 0.01 by ANOVA followed by Dunnett, *n* = 3 neurons from 2 independent differentiations, DIV: 60. **d**, Knockdown efficiency of Beclin1 as measured by fold change in mRNA expression. Data represent mean + s.e.m. ***P* < 0.01 by ANOVA followed by Dunnett, *n* = 3 independent experiments.

Supplementary Figure 4 | Characterization of α -syn accumulation and

mitochondrial fragmentation. a, Western blot analysis of lysates from hESC-derived WT, A53T or E46K hNs at DIV 35 labeled for total α -syn, PS129, or GAPDH shows that levels of PS129 modified α -syn (14 kDa) are elevated in A53T and E46K hNs. **b.c.** Mitochondrial structure is normal in in hiPSC-derived A53T cells at the NPC stage (DIV14) as shown by labelling with MitoDSRed (b). Quantification of data (c) represent mean \pm s.e.m. *P* = 0.1647 by Student *t*-test, *n* = 8 coverslips over 2 independent differentiations, DIV: 14; scale bar: 10 µm. d.e. Micrographs of hiPSC-derived corrected (left panel) and A53T mutant NPCs at DIV 14, expressing the negative charge probe RPRE-RFP (d). RPRE shifts from a primarily plasma membrane localization in isogeniccorrected hNs to a punctate intracellular localization in A53T hNs at DIV 14. Quantification of percentage of hNs with plasma membrane localized RPRE-RFP at DIV14 (e). Data represent mean \pm s.e.m. ***P* < 0.0001 by Student *t*-test, *n* = 6 coverslips over 2 independent differentiations, DIV: 14; scale bar: 10 μm. f, Western blot analysis of total and heat stable (HS) lysate from WT and A53T transgenic brain probed for ubiquitylation (Ubg), α -syn or synaptophysin 1. Merge represents overlay of α -syn and Ubg.

Supplementary Figure 5 | Effect of large unilamellar lipid vesicles (LUVs) with different cardiolipin (CL) content on folding of WT and A53T α -syn monomers. a-l, Six lipid compositions of PI:PC:PS:PE:CL with increasing molar ratio of cardiolipin were used, namely, 9.4:55.2:7.3:28.1:0 (a,b); 8.8:51.9:6.9:26.4:6 (c,d); 8.6:50.8:6.7:25.9:8 (e,f); 8.3:48.6:6.4:24.7:12 (g,h); 7.8:45.8:6.1:23.3:17 (i,j); and 6.6:38.6:5.1:19.7:30 (k,l). Monomeric WT (a,c,e,g,i,k) or A53T (b,d,f,h,j,I) α -syn (4 µM) was incubated in the presence of an increasing concentration of LUVs at 37°C, and the CD spectrum was collected to follow the relative redistribution of the secondary structure components (from mostly random coil in the absence of LUVs to α -helical structures in their presence).

Supplementary Figure 6 | Characterization of differentiation of A53T and isogeniccorrected hNs in co-culture. a,b, Micrographs of GFP^{+ve} isogenic-corrected hNs and GFP^{-ve} A53T mutant hNs in co-culture, antigenically-labeled for TH (a). Percentage of total TH positive neurons that are GFP^{+ve} and GFP^{-ve} (b). Data represent mean + s.e.m. P = 0.3022 by Student *t*-test, n = 10 coverslips over 2 independent differentiations, DIV: 60. **c**, Percentage of total neurons with depolarized mitochondria. Data represent mean + s.e.m. P = 0.5764 by Student *t*-test, n = 3 cultures from independent differentiations, DIV: 60.**d**, GFP^{+ve} isogenic-corrected hNs and GFP^{-ve} isogenic-corrected hNs in coculture, antigenically-labeled for PS129 modified α -syn. **e**, GFP^{+ve}, MitoDSRed^{+ve} isogenic-corrected hNs and GFP^{-ve} isogenic-corrected hNs in coculture, antigenically-labeled for PS129 modified α -syn. **e**, GFP^{+ve}, MitoDSRed^{+ve} isogenic-corrected hNs and GFP^{-ve} isogenic-corrected hNs in coculture, antigenically-labeled for PS129 modified α -syn. **e**, GFP^{+ve}, MitoDSRed^{+ve}

Supplementary Figure 7 | Blocking α -syn transmission blocks α -syn PS129 accumulation. a-b, hESC-derived WT cells expressing GFP were co-cultured with either A53T cells (a) or E46K cells (b) at DIV 14 and differentiated to hNs (DIV 60) together in the presence of either monoclonal anti- α -syn or IgG control to block α -syn seeding and percentage PS129 positive neurons was quantified. Data represent mean + s.e.m. ***P* < 0.0001 by ANOVA, posthoc Tukey, *n* = 5 coverslips from 3 independent differentiations, DIV: 60.

Supplementary Figure 8 | **Uncropped blots. a-d**, Uncropped blots from figure 4a (**a**), figure 4b (**b**), and supplementary figures S4a (**c**) and S4f (**d**) are depicted.

	WT				А53Т				E46K			
Type of LUV	<i>K</i> _D , μM	n	L	R ²	<i>К</i> _D , µМ	n	L	R ²	<i>К</i> _D , µМ	n	L	R ²
8% CL	~ 3.7 mM	N.D.	N.D.	0.946	~ 4.2 mM	N.D.	N.D.	0.961	140.74 ±27.14	166.27 ±19.77	13.30 ±1.58	0.994
12% CL	199.69 ±22.46	296.00 ±16.22	35.52 ±1.95	0.998	438.11 ±54.61	202.00 ±32.24	24.24 ±3.87	0.996	56.59 ±12.74	146.77 ±11.44	17.61 ±1.37	0.996
17% CL	52.02 ±11.62	220.98 ±11.04	29.57 ±2.31	0.997	114.44 ±24.68	163.91 ±18.11	27.87 ±3.08	0.995	11.29 ±6.18	130.85 ±3.72	22.25 ±1.32	0.995
30% CL	1.11 ±2.33	98.51 ±7.71	29.57 ±2.31	0.993	2.36 ±4.13	95.34 ±10.31	28.6 ±3.09	0.987	8.37 ±4.69	86.34 ±6.21	25.90 ±1.86	0.994

Supplementary Table 1: Binding parameters of WT, A53T and E46K α -syn to cardiolipin-containing LUVs

Binding parameters (K_D , n, and L) were obtained from fitting of the data presented in Figure 5 (a-c) to equation 1 (see Methods). s.e.m was estimated by the fitting program (OriginPro 8) at the confidence level of 95%. n – the total number of lipid molecules in the bilayer that are involved in binding one molecule of protein (stoichiometry of binding). L – the number of cardiolipin (CL) molecules in the bilayer that are involved in binding one molecule of protein. Date represent mean \pm s.e.m. of 3 replicates.

Supplementary Table 2: Efficacy of mAB- α -syn mediated capture of α -syn from conditioned media

	Corr-hN-D60	A53T-hN-D60	Co-Culture
α-synuclein captured (ng ml ⁻¹)	10.85±4.75	6.05±2.80	6.98±1.43

One mL of conditioned media from hiPSC-derived A53T, Corrected or Co-Cultured hNs was incubated for 24 hours at 37°C with 1ug of α -syn-mAB conjugated to protein G dynabeads. The quantity of captured α -syn was normalized against a standard curve of recombinant human α -syn. Date represent mean ± s.d. of 4 replicates. Mean values do not differ significantly.