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sequencing, variations in coding and non-coding sequences can be discovered. But
the cost associated with it is currently limiting its general use in research. Whole exome
sequencing is used to characterize sequence variations in coding regions, but the cost
associated with capture reagents and biases in capture rate limit its full use in
research. Additional limitations include uncertainty in assigning the functional
significance of the mutations when these mutations are observed in the non-coding
region or in genes that are not expressed in cancer tissue.

Results
We investigated the feasibility of uncovering mutations from expressed genes using
RNA sequencing datasets with a method called "VaDiR: Variant Detection in RNA" that
integrate three variant callers, namely: SNPiR, RVBoost and MuTect2. The
combination of all three methods, which we called Tier1 variants, produced the highest
specificity with true positive mutations from RNA-seq that could be validated at the
DNA level.  We also found that the integration of Tier1 variants with those called by
MuTect2 and SNPiR produced the highest sensitivity with acceptable specificity.
Finally, we observed higher rate of mutation discovery in genes that are expressed at
higher levels.

Conclusions
Our method, VaDiR, provides a possibility of uncovering mutations from RNA
sequencing datasets that could be useful in further functional analysis. In addition, our
approach allows orthogonal validation of DNA-based mutation discovery by providing
complementary sequence variation analysis from paired RNA sequencing data sets.
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VaDiR: an integrated approach to Variant
Detection in RNA
Lisa Neums1,2, Seiji Suenaga1, Peter Beyerlein2, Andrea Mariani3 and Jeremy Chien1*

Abstract

Background: Advances in next-generation DNA sequencing technologies are now enabling detailed
characterization of sequence variations in cancer genomes. With whole genome sequencing, variations in
coding and non-coding sequences can be discovered. But the cost associated with it is currently limiting its
general use in research. Whole exome sequencing is used to characterize sequence variations in coding regions,
but the cost associated with capture reagents and biases in capture rate limit its full use in research. Additional
limitations include uncertainty in assigning the functional significance of the mutations when these mutations
are observed in the non-coding region or in genes that are not expressed in cancer tissue.

Results: We investigated the feasibility of uncovering mutations from expressed genes using RNA sequencing
datasets with a method called “VaDiR: Variant Detection in RNA” that integrate three variant callers, namely:
SNPiR, RVBoost and MuTect2. The combination of all three methods, which we called Tier1 variants,
produced the highest specificity with true positive mutations from RNA-seq that could be validated at the
DNA level. We also found that the integration of Tier1 variants with those called by MuTect2 and SNPiR
produced the highest sensitivity with acceptable specificity. Finally, we observed higher rate of mutation
discovery in genes that are expressed at higher levels.

Conclusions: Our method, VaDiR, provides a possibility of uncovering mutations from RNA sequencing
datasets that could be useful in further functional analysis. In addition, our approach allows orthogonal
validation of DNA-based mutation discovery by providing complementary sequence variation analysis from
paired RNA sequencing data sets.

Keywords: RNA-seq; somatic variant calling; Ovarian Cancer; Cancer genomes; Transcriptome

Background
Next-generation sequencing has enabled the discovery
of novel variants in genetic sequences. However, even
though the cost of sequencing has decreased in recent
years, whole genome sequencing (WGS) can still be
prohibitively expensive in many cases [1]. Sequenc-
ing only exonic regions of the genome helps reduce
cost, and multiple tools (such as MuTect2 provided by
GATK [2], MuSE [3], SomaticSniper [4] and VarScan2
[5]) have been developed for somatic variant discov-
ery using whole exome sequencing (WES) data. Still,
the reagents used to capture exonic regions are costly
and produce uneven coverage across the genome due
to capture rate biases [6, 7], and few of the genes in an
exome are actually expressed in any given cell [8]. For
diseases like cancer, mutations in expressed regions are

*Correspondence: jchien@kumc.edu
1Department of Cancer Biology, University of Kansas Medical Center, 3901

Rainbow Blvd., 66160 Kansas City, KS, USA

Full list of author information is available at the end of the article

of greater interest than in non-exonic or unexpressed
exonic regions because they are more likely to affect
cell function directly. The transcriptome is therefore
an attractive subject of research in cancer and other
human pathologies, and some of the cancer genes, such
as FOXL2 in granulosa-cell tumors [9] and ARID1A
in clear cell carcinomas of the ovary [10], were initially
discovered through transcriptome sequencing.

The calling of variants with sequencing data from
transcriptome (RNA-seq) is more challenging because
of the splice junctions. Tools like RVBoost [11], SNPiR
[12] or GATK Haplotypecaller are created to address
this problem. Somatic variant calling from RNA is
more difficult because of RNA processing like RNA-
editing, allele-specific expression, variable levels of
gene expression, and the heterogeneity of tumors which
leads to low variant frequencies of some mutations [13].
Tools such as RVBoost, SNPiR, and GATK Haplo-
typecaller can be used to perform variant calling from
RNA, but their performance and limitations for so-

Additional file Click here to download Manuscript Reference PDF.pdf 
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matic variant calling have not been studied previously.
Nonetheless, these approaches have the potential to
provide an orthogonal method to validate DNA se-
quence variations by complementing the analysis with
RNA sequence analysis.

It should be noted that the integrated approach used
by RADIA [14], that combines the variant sequence
analysis from DNA and RNA sequencing, allows dis-
covery of DNA sequence variations in expressed genes
and better characterization of the effect of mutations
on gene expression and phenotypic alterations, but its
use of WES introduces cost. The limitation of RA-
DIA is that it requires DNA sequencing data, and
RNA sequence analysis was used just as a supplement.
Moreover, DNA sequence variations are considered as
the ground truth, and RNA variants not supported
by DNA sequencing were rejected as false-positives.
Although variants discovered only by RNA sequenc-
ing have the potential of being false-positives, some of
these variants may represent missed calls from DNA
sequencing or RNA-editing sites that have not been
annotated. A detailed comparison of DNA and RNA
variants from different tools will provide us with more
precise processing and discovery of sequence variations
from RNA and DNA sequencing.

In this study, we performed a detailed comparison
of DNA and RNA sequence variations from 21 pairs
of whole exome and mRNA sequencing from ovar-
ian cancer genomes. We described variants discovered
in RNA-seq through three publicly available tools,
namely MuTect2, RVboost and SNPiR, and developed
the best combination of these tools that enables dis-
covery of variants from RNA sequence with high pre-
cision and sensitivity. We also show that most of the
variants which would be classified as false-positives or
false-negatives can be explained by biological charac-
teristics.

DATA DESCRIPTION
Twenty one samples of ovarian serous cystadenocarci-
noma from The Cancer Genome Atlas (TCGA) were
divided into two groups: 11 cases that were sensitive to
the cancer treatment and 10 cases that were resistant.
Sensitive cases had a progression-free survival of more
than 18 months, and resistant cases had progression-
free survival of less than 12 months. The clinical data
for the patients were retrieved from cBioPortal ([15–
17]) and the Illumina sequence files for tumor RNA
and normal blood DNA were retrieved from cghub [18]
and gdc [19] (see Supplementary Table 3). Whole ex-
ome sequencing and mRNA sequencing datasets were
available from each patient.

Additional data were provided by Dr. Andrea Mar-
iani and came from 2 different tumor samples from a
patient with serous ovarian carcinoma.

ANALYSIS
Performance characteristics of each method and
different combinations of two or more methods
To describe the performance characteristics of each
method, we performed variant calling using RVBoost,
SNPiR, and MuTect2 separately. Each caller alone
calls many variants which are not validated by DNA
somatic variants (discordant calls), while SNPiR calls
the most variants (see Figure 2(A)). Mutect2 provides
the least amount of variant calls not supported by
DNA sequencing compared to the other two methods.
However, only 10% of variant calls made by Mutect2
was supported by DNA sequencing. These results in-
dicate that any single caller is not adequate in dis-
covering variants with high specificity. Therefore, we
next tested if any combination of three calling methods
will provide higher rate of variant calls supported by
DNA sequencing. The combination of all three calling
methods (Tier1) leads to 81.8% of variants which are
validated by DNA somatic variants (concordant calls)
(see Figure 2(B)). The combination of Tier1 with mu-
tations called by Mutect2 and SNPiR (Tier2) leads
to a higher sensitivity while the precision is still in a
moderate range. For the following analysis, we concen-
trated only on Tier1.

Performance of a combined calling method
A total of 634 somatic mutations were called from 21
tumor samples. 518 mutations of them were concor-
dant and 116 were discordant (see Table 1). On the
DNA level, a total of 10099 mutations were called and
9864 of them were not called by our method.

Variants not found in RNA
To understand why variant calls from RNA sequenc-
ing missed a large majority of variant calls observed by
DNA sequencing, we checked the properties of variants
missed by RNA callers. From the 9864 missed somatic
variants, 6949 (70.4%) were not in exonic regions (see
Supplementary Figure 1). From the mutations in ex-
onic regions, 2046 (20.9%) were missed because these
variants are from genes with less abundant transcripts.
The effect of transcript abundance on variants discov-
ered from RNA-seq could also be observed in the per-
centage of concordant calls: 516 (15%) of the expressed
mutations were called by Tier1 (see Figure 3 (A)) but
when the expression is higher (DP>10) 34.6% of the
somatic mutations were called. This confirms that an
important factor in RNA-seq variant calling is the ex-
pression level.

Among the mutations found by DNA callers but
missed by Tier1 from highly expressed genes, 594
(6.0%) of mutations in tumor DNA and 756 (7.7%) of
mutations in tumor RNA had a variant fraction < 0.20
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(see Figure 3 (B), Supplementary Figure 2). This result
shows that one of the limitations of RNA-based variant
calling methods is that it is highly dependent on the
variant allele frequency. When the mutation has a low
variant frequency at DNA level, it is possible to miss
these mutations because of the heterogeneity of the
tumor sample. From the variants with high expression
and high variant allele frequency, thirty one mutations
were not called by at least one of the callers. Ninety six
mutations were filtered out by at least one of the callers
because of potential evidence of germline variants or
because the realigning step with PBLAT shows that
these variants could come from mis-mapping. Most of
the variants which are missed at a low variant fre-
quency are called by MuTect2 or SNPiR alone (see
Figure 3 (C)). By studying the filter steps in future
work, we may be able to call a higher number of those
variants.

Variants not found in DNA
The differences in coverage or allele fraction between
DNA and RNA datasets could contribute to discor-
dant calls. Therefore, we checked those attributes at
discordant sites. Twenty four (20.7%) of the discordant
mutations had a read depth (DP) of uniquely mapping
reads under 10 at DNA level (see Sublementary Fig-
ure 3) and another 25 (21.6%) mutations had a variant
allele frequency (VF) above zero at DNA level, indi-
cating that these low level DNA variants were missed
by DNA-based callers by TCGA. Twenty four vari-
ants with 0 variant fraction at DNA level but high
DP in DNA normal, DNA tumor and RNA tumor
were mostly either A>G or C>T (see Sublementary
Figure 5). Those variants were found at 15 different
positions, of which one variant (chr3:58141791 A>G
[FLNB:p.M2324V]) is found in 4 different samples and
another (chr20:10285837 C>T) in 9 different samples.
These likely represent probably non-annotated RNA-
editing sites [20–22].

Because we observed differences in the variant frac-
tion at the discordant sites, we next expanded the anal-
ysis to all sites. Interestingly, we observed weak corre-
lation of variant fraction between tumor DNA and tu-
mor RNA at positions with DP>0 for tumor DNA and
RNA (see Figure 4 (A)). When we limit the analysis
to positions with DP>10 for tumor DNA (see Figure
4 (B)) or tumor and normal DNA (see Figure 4 (C)),
we also observed a weak correlation. Finally, when we
limit the analysis to positions with DP>10 for tumor
DNA and RNA and normal DNA, we observed a strong
correlation of variant fraction between RNA and DNA
(see Figure 4 (D)). Only four mutations had variant
frequencies around 50% at DNA level and 100% at
RNA level which suggests that these are imprinted

genes. These results suggest that variant fraction in
abundant transcripts are strongly correlated with vari-
ant fractions at DNA level. Therefore, RNA variant
fraction may be used as a substitute for DNA variant
fraction for subclone phylogenetic analysis.

Detection of artificial spiked variants
To further assess the performance of RNA-based
callers, we used BamSurgeon and spiked-in 200 artifi-
cial RNA sequence variants at varying variant fractions
in two tumor transcriptomes. From the 200 simulated
variant positions, 120 were actually spiked in because
failed positions have too low read depth even if the po-
sitions for spiking were obtained from expressed genes.
On average 71% of all spiked-in variants were found by
each caller alone. The combination of all three callers
leads to a calling of around 50% of all spiked-in muta-
tions (see Table 2, Supplementary Figure 5). By using
Tier2, we were able to call 60% of all spiked-in muta-
tions. 55.6% of the mutations missed by Tier1 are not
in coding regions (see Table 3). From the remaining
missed variants, 15.7% have a variant allele fraction of
less than 0.2 and 6.1% have high variant allele fraction
but have a DP<10 in DNA.

Comparison between RADIA and VaDiR
Since RADIA performs function similar to our work-
flow VaDiR, we compared the performance differences
between RADIA and VaDiR. RADIA uses DNA vari-
ant calling as the primary method and use RNA vari-
ant calling as a supplement. All somatic variants called
by RADIA are supported by DNA-level evidence and
RNA-only variants are not called by RADIA. There-
fore, we limited our comparison to variants that are
found at both RNA and DNA levels by RADIA and
VaDiR. A total of 308 mutations were called by either
RADIA or VaDiR or both in six samples. Of these,
175 mutations were called by both methods, 12 muta-
tions were called by VaDiR only, and 121 mutations
were called by RADIA only (see Supplementary Fig-
ure 6). From these 121 mutations, 40 (33.1%) had a
read depth below 10 in RNA. 52 (43.0%) mutations,
with a read depth over 10, had a variant fraction below
0.20. This shows again the limitation of method based
only on RNA. Six of the remaining 29 variants were
in non-exonic regions and would not be called by our
method.

Ovarian cancer: resistant vs. sensitive
Since variant calling from RNA-seq provides both mu-
tational status and gene expression, the number of
mutations found by RNA-seq may be associated with
pathologic or clinical phenotypes. In contrast, the to-
tal number of mutations found at the DNA level may
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not be associated with pathologic or clinical pheno-
type because it may be confounded by potentially non-
relevant mutations in non-coding region or in genes
that are not expressed. To determine if variant calling
from RNA-sequencing may provide novel insights into
clinical phenotype, we characterized the number of
mutations in expressed genes from RNA-seq obtained
from 10 chemotherapy-resistant and 11 chemotherapy-
sensitive ovarian carcinomas. We considered concor-
dant mutations only (those found by both RNA- and
DNA-based callers) for the analysis. The results in-
dicate that concordant rate is higher for Tier1 mu-
tations compared to Tier2 mutations although total
number of mutations are higher in Tier2 (see Figure
5 (A)). We observed higher amount of mutations in
chemotherapy-sensitive ovarian carcinomas compared
to chemotherapy-resistant counterparts (see Figure 5
(A)). This result is consistent with previous studies
indicating that sensitive tumor samples have a higher
mutation rate in ovarian cancer [23]. In these samples,
number of mutations at either DNA or RnA levels was
significantly higher in sensitive carcinomas compared
to resistant carcinoma samples (see Figure 5 (B)).

A higher mutation burden in sensitive tumors sam-
ples may be the result of high mutagenic processes
in the cancer cells or the result of a high degree of
intratumor heterogeneity or tumor subclones. If high
levels of tumor subclones with clonal driver mutations
are contributing to higher mutation burden in sensi-
tive tumor samples, we expect these mutations will
exist in lower variant fractions because they represent
unique tumor subclones. Therefore, we limit our vari-
ant fraction analysis to variants that produce nonsyn-
onymous mutations because they are more likely to
contribute to a change in phenotype and the evolution
of tumor subclones. Results, shown in supplementary
Figure 7, indicate that differences in variant fractions
between sensitive and resistant samples are not signifi-
cant. Interestingly, sensitive samples have significantly
lower variant allele fractions in non-COSMIC muta-
tions compared to resistant samples both at the RNA
(pValue=0.034) and DNA level (pValue=0.017)(see
Supplementary Figure 7 (B)). These results suggest
that these mutations are coming from subclonal pop-
ulations. The higher levels of clonal heterogeneity and
mutation burden in sensitive samples may be the result
of defects in DNA repair, and this tumor cell character-
istics may explain why they are sensitive to platinum-
based chemotherapy.

DISCUSSION
With our approach, we were able to call variants with
high precision. Only a small fraction of the variants
which are called in RNA but not in DNA are likely

false positives. The remaining discordant variants are
either RNA-editing sites or are missed at the DNA
level as well. Most of the variants called in DNA but
missed by VaDiR are not in coding regions or are not
expressed. We also missed many variants that have
low variant frequency. Those are called by none of the
callers, MuTect2 only, or SNPiR only. These muta-
tions are observed at low variant frequencies in tu-
mor DNA, and therefore they likely represent muta-
tions from small subsets of tumor subclones. Finally,
our approach missed approximately 15% of variants
(127/853) with a high DP and a high variant allele fre-
quency. Among those 127, 96 mutations were called by
at least one method, indicating that consensus calling
is too stringent or that parameters for one of the callers
is not optimal. Those data are confirmed by the arti-
ficial spiked-in variants where only variants with high
variant frequency could be called by all three callers.

The comparison to RADIA shows that we are miss-
ing mainly variants in low frequency ranges while RA-
DIA is missing a few variants with high variant fre-
quency in RNA. This confirms the limitation of calling
variants only from RNA, but also shows that we are
able to call a great number of somatic variants with-
out the need for whole exome sequencing. We were
also able to find new possible RNA-editing sites, which
should be investigated in future studies. Therefore, our
workflow provides new capabilities that are missing in
existing approaches and can be used to gain novel in-
sight into disease phenotype.

Our main concern in future studies would be to in-
crease the number of concordant variant calls by ad-
justment of the filtering steps from SNPiR and RV-
boost, and to investigate the reasons for the missed
somatic variants with high variant allele frequency.

METHODS
Software
To process the data, we used the software STAR, BWA
MEM, Genome Analysis Toolkit (GATK), SNPiR, RV-
boost, R, Picard, BEDtools, ANNOVAR, SAMtools,
and BCFtools which is a part of the SAMtools package
[2, 11, 12, 24–31] (see Supplementary Table 1). To an-
alyze our results, we used the software BAMSurgeon,
R, and RADIA [14, 32]. We used reference files from
Broad Institute’s resource bundle [33], including the
UCSC hg19 (GRCh37) reference genome, known in-
dels from the 1000 Genomes Project, and known SNPs
from dbSNP.

To validate the results that we obtained from RNA,
we used somatic variants from DNA called by any
two of the variant callers MuSE, MuTect2, Somatic-
Sniper, and VarScan. We retrieved the corresponding
VCF files from GDC [19].
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We implemented SNPiR with the following modifi-
cations: In the file BLAT candidates.pl at line 94, the
developers incorrectly handled the information in the
CIGAR-string of hardclipped reads, that resulted in a
faulty shift of the read position. We corrected the code
to handle CIGAR-strings correctly. This modification
was necessary because our workflow differs from the
SNPiR workflow in that we use hard-clipped reads. At
the same location, we also added an optimization to
avoid searching through more base positions than nec-
essary. Further, we changed the filter to use PBLAT
instead of BLAT, so we could utilize additional CPU
threads to improve execution time. We made similar
changes in the file filter mismatch first6bp.pl at line
84. In addition, we optimized the search algorithm
in filter intron near splicejuncts.pl by skipping exons
and genes that do not contain a given variant position
(which also introduced the requirement that SNPiR’s
gene annotation table be sorted by position) and mod-
erately improve code for readability. Finally, we mod-
ified convertVCF.sh to filter out any variant whose
read depth (DP) value was zero, in order to prevent
division-by-zero errors that occurred with our dataset.
Rather than replacing the original SNPiR files in our
distribution, we have included both versions and pre-
fixed our file names with “revised ”.

For comparison with our method, we implemented
RADIA with the following modification: During BLAT
filtering, RADIA also incorrectly handled the hard-
clipped reads. We corrected the code for the same rea-
sons as described for the SNPiR implementation.

For creation of the figures, the R package ggplot2
[34] was used.

Aligning sequences
The procedure for the alignment to the reference
genome followed GATK Best Practices [35, 36]. For
RNA-seq, we used the STAR aligner in 2-pass mode
with the parameters implemented by ENCODE project.
The resulting aligned reads were processed to add read
groups, sort, mark duplicates, split reads that spanned
splice junctions, create an index, realign around known
indels, reassign mapping qualities, and recalibrate base
quality scores.

For DNA, we used the BWA MEM aligner with the
same reference genome. The resulting aligned reads
were processed to add read groups, sort, mark dupli-
cates, create an index, realign around known indels,
reassign mapping qualities, and recalibrate base qual-
ity scores.

Calling variants
A refined BAM file for each sample is then used to
process the variant calling. Three different methods for

calling are used: RVboost, SNPiR, and MuTect2. The
first two methods are for germline variants in RNA
and the last method is for somatic variants in DNA.
None of these methods is for somatic variant calling in
RNA. RVboost and SNPiR use the same variant caller,
UnifiedGenotyper from GATK, but different filtering
procedures. RVboost filters variants using a statisti-
cal learning method called boosting, whereas SNPiR
uses hard filtering in 7 steps (see Supplementary Ta-
ble 2). To adapt MuTect2’s results for RNA, we im-
plemented three of SNPiR’s hard-filtering steps. RV-
boost and SNPiR only need the refined RNA BAM
file from the tumor tissue. MuTect2 needs both the re-
fined RNA BAM from the tumor tissue and the refined
DNA BAM from normal tissue.

Filtering somatic variants by caller intersection and
additional hard filters
In addition to the filtering procedures of the variant
callers themselves, we further filtered our results by
taking an intersection of vcf files from the three callers.
We restricted our final, combined callset to the vari-
ants called by all three methods (Tier 1) or supple-
mented by variants called by MuTect2 and SNPiR
(Tier2). We also applied our own hard filters, only ac-
cepting variants with a read depth (DP) of at least five
and a variant allele frequency (VF) of less than 3% in
uniquely mapping reads (Mapping quality of at least
40) in the normal DNA at the corresponding position.

Processing artificial spiked variants
We used BAMSURGEON to spike in 200 variants in
coding regions of two ovarian tumor samples, such
that each sample had a different random frequency of
spiked-in variants. The samples were then processed
by VaDiR.

Processing samples with RADIA
Six samples from TCGA, three from resistant patients
and three from sensitive patients, were processed with
RADIA. This analysis required three BAM files from
each sample: one from normal blood DNA, one from
tumor DNA, and one from tumor RNA. We followed
the instructions provided by RADIA for filtering. We
used all possible filters provided by RADIA.

AVAILABILITY AND REQUIREMENTS
• Project name: somatic VaDiR
• Project home page: e.g. http://to.be.added.later
• Operating system(s): Linux/Unix 64-Bit
• Programming language: Perl, R, Java, Shell
• Other requirements: Java 7 and 8, R 3.3 or higher
• License: MIT
• Any restrictions to use by non-academics: no
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Illustrations and figures

Figure 1 Workflow of processing the variant call for somatic
variants with RNA-seq. Aligning is done by STAR and BWA
MEM and the refined mapping follows GATK Best Practices.
The variant calling is done by Unified Genotyper (GATK) and
MuTect2 (GATK). The following filtering steps are done by
RVBoost and SNPiR.

Tables and captions

Figure 2 Intersection of the three variant calling methods.
(A) Intersection of the three methods with all somatic calls.
The red arrows symbolize the amount of concordant calls. (B)
Intersection of three methods with only concordant calls.

Figure 3 Variants called in tumor DNA. (A) Percentage of
concordant calls of all somatic variants from expressed genes
for each sample. With a high expression a higher percentage of
concordant calls can be achieved. (B) Variant frequency in
tumor DNA and RNA and normal DNA of all somatic variant
called in DNA with a high expression (DP>10). (C)
Comparison of somatic variants called in DNA which have
high coverage in tumor DNA and RNA and normal DNA with
variant calls from the three RNA callers. The names in the
chart are the first letters of the caller SNPiR (s), RVBoost (r)
and MuTect (m) or their combinations.

Figure 4 Correlation between the variant frequency of RNA
and DNA. The four charts show different filtering steps of the
read depth of tumor DNA and RNA and normal DNA.

Figure 5 Comparison of sensitive and resistant samples. (A)
Test for significance of the difference in the variant allele
frequency of nonsynonymous variants with DP>10 in DNA
normal, DNA tumor and RNA tumor at tumor DNA and RNA
level. (B) Comparison of variant frequency in DNA and RNA
for each somatic variant.

Table 1 Performance characteristics of VaDiR with the
combination Tier1.

DNA positive DNA negative
RNA positive 518 116
RNA negative 9864 1595677

Table 2 Called spiked-in variants.

Sample Tier1 Tier2
OV10 68 (52.71%) 78 (62.40%)
OV11 61 (52.59%) 68 (58.62%)
OV12 48 (48.74%) 69 (57.98%)

Table 3 Characteristics of missed spiked-in variants.

Tier1 OV10 OV11 OV12
all 105 96 99
missed 37 36 42
missed in coding region 16 17 18
missed in coding region 11 9 13
by RNA VF>20%
missed in coding region 8 7 11
by RNA VF>20%
and normal DNA DP>10
Tier2 OV10 OV11 OV12
all 105 96 99
missed 27 29 31
missed in coding region 9 11 12
missed in coding region 6 5 9
by RNA VF>20%
missed in coding region 4 4 8
by RNA VF>20%
and normal DNA DP>10
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VaDiR: an integrated approach to Variant
Detection in RNA
Lisa Neums1,2, Seiji Suenaga1, Peter Beyerlein2, Andrea Mariani3 and Jeremy Chien1*

Abstract

Background: Advances in next-generation DNA sequencing technologies are now enabling detailed

characterization of sequence variations in cancer genomes. With whole genome sequencing, variations in

coding and non-coding sequences can be discovered. But the cost associated with it is currently limiting its

general use in research. Whole exome sequencing is used to characterize sequence variations in coding regions,

but the cost associated with capture reagents and biases in capture rate limit its full use in research. Additional

limitations include uncertainty in assigning the functional significance of the mutations when these mutations

are observed in the non-coding region or in genes that are not expressed in cancer tissue.

Results: We investigated the feasibility of uncovering mutations from expressed genes using RNA sequencing

datasets with a method called “VaDiR: Variant Detection in RNA” that integrate three variant callers, namely:

SNPiR, RVBoost and MuTect2. The combination of all three methods, which we called Tier1 variants,

produced the highest specificity with true positive mutations from RNA-seq that could be validated at the

DNA level. We also found that the integration of Tier1 variants with those called by MuTect2 and SNPiR

produced the highest sensitivity with acceptable specificity. Finally, we observed higher rate of mutation

discovery in genes that are expressed at higher levels.

Conclusions: Our method, VaDiR, provides a possibility of uncovering mutations from RNA sequencing

datasets that could be useful in further functional analysis. In addition, our approach allows orthogonal

validation of DNA-based mutation discovery by providing complementary sequence variation analysis from

paired RNA sequencing data sets.

Keywords: RNA-seq; somatic variant calling; Ovarian Cancer; Cancer genomes; Transcriptome

Background
Next-generation sequencing has enabled the discovery
of novel variants in genetic sequences. However, even
though the cost of sequencing has decreased in recent
years, whole genome sequencing (WGS) can still be
prohibitively expensive in many cases [1]. Sequenc-
ing only exonic regions of the genome helps reduce
cost, and multiple tools (such as MuTect2 provided by
GATK [2], MuSE [3], SomaticSniper [4] and VarScan2
[5]) have been developed for somatic variant discov-
ery using whole exome sequencing (WES) data. Still,
the reagents used to capture exonic regions are costly
and produce uneven coverage across the genome due
to capture rate biases [6, 7], and few of the genes in an
exome are actually expressed in any given cell [8]. For
diseases like cancer, mutations in expressed regions are

*Correspondence: jchien@kumc.edu
1Department of Cancer Biology, University of Kansas Medical Center, 3901

Rainbow Blvd., 66160 Kansas City, KS, USA

Full list of author information is available at the end of the article

of greater interest than in non-exonic or unexpressed
exonic regions because they are more likely to affect
cell function directly. The transcriptome is therefore
an attractive subject of research in cancer and other
human pathologies, and some of the cancer genes, such
as FOXL2 in granulosa-cell tumors [9] and ARID1A
in clear cell carcinomas of the ovary [10], were initially
discovered through transcriptome sequencing.
The calling of variants with sequencing data from

transcriptome (RNA-seq) is more challenging because
of the splice junctions. Tools like RVBoost [11], SNPiR
[12] or GATK Haplotypecaller are created to address
this problem. Somatic variant calling from RNA is
more difficult because of RNA processing like RNA-
editing, allele-specific expression, variable levels of
gene expression, and the heterogeneity of tumors which
leads to low variant frequencies of some mutations [13].
Tools such as RVBoost, SNPiR, and GATK Haplo-
typecaller can be used to perform variant calling from
RNA, but their performance and limitations for so-

Manuscript Click here to download Manuscript VaDiR_bmc_rev.tex 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

mailto:jchien@kumc.edu
http://www.editorialmanager.com/giga/download.aspx?id=7530&guid=bd98a8a5-2131-4469-a234-a3ca056ac993&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=7530&guid=bd98a8a5-2131-4469-a234-a3ca056ac993&scheme=1


Neums et al. Page 2 of 7

matic variant calling have not been studied previously.
Nonetheless, these approaches have the potential to
provide an orthogonal method to validate DNA se-
quence variations by complementing the analysis with
RNA sequence analysis.
It should be noted that the integrated approach used

by RADIA [14], that combines the variant sequence
analysis from DNA and RNA sequencing, allows dis-
covery of DNA sequence variations in expressed genes
and better characterization of the effect of mutations
on gene expression and phenotypic alterations, but its
use of WES introduces cost. The limitation of RA-
DIA is that it requires DNA sequencing data, and
RNA sequence analysis was used just as a supplement.
Moreover, DNA sequence variations are considered as
the ground truth, and RNA variants not supported
by DNA sequencing were rejected as false-positives.
Although variants discovered only by RNA sequenc-
ing have the potential of being false-positives, some of
these variants may represent missed calls from DNA
sequencing or RNA-editing sites that have not been
annotated. A detailed comparison of DNA and RNA
variants from different tools will provide us with more
precise processing and discovery of sequence variations
from RNA and DNA sequencing.
In this study, we performed a detailed comparison

of DNA and RNA sequence variations from 21 pairs
of whole exome and mRNA sequencing from ovar-
ian cancer genomes. We described variants discovered
in RNA-seq through three publicly available tools,
namely MuTect2, RVboost and SNPiR, and developed
the best combination of these tools that enables dis-
covery of variants from RNA sequence with high pre-
cision and sensitivity. We also show that most of the
variants which would be classified as false-positives or
false-negatives can be explained by biological charac-
teristics.

DATA DESCRIPTION
Twenty one samples of ovarian serous cystadenocarci-
noma from The Cancer Genome Atlas (TCGA) were
divided into two groups: 11 cases that were sensitive to
the cancer treatment and 10 cases that were resistant.
Sensitive cases had a progression-free survival of more
than 18 months, and resistant cases had progression-
free survival of less than 12 months. The clinical data
for the patients were retrieved from cBioPortal ([15–
17]) and the Illumina sequence files for tumor RNA
and normal blood DNA were retrieved from cghub [18]
and gdc [19] (see Supplementary Table 3). Whole ex-
ome sequencing and mRNA sequencing datasets were
available from each patient.
Additional data were provided by Dr. Andrea Mar-

iani and came from 2 different tumor samples from a
patient with serous ovarian carcinoma.

ANALYSIS
Performance characteristics of each method and

different combinations of two or more methods

To describe the performance characteristics of each
method, we performed variant calling using RVBoost,
SNPiR, and MuTect2 separately. Each caller alone
calls many variants which are not validated by DNA
somatic variants (discordant calls), while SNPiR calls
the most variants (see Figure 2(A)). Mutect2 provides
the least amount of variant calls not supported by
DNA sequencing compared to the other two methods.
However, only 10% of variant calls made by Mutect2
was supported by DNA sequencing. These results in-
dicate that any single caller is not adequate in dis-
covering variants with high specificity. Therefore, we
next tested if any combination of three calling methods
will provide higher rate of variant calls supported by
DNA sequencing. The combination of all three calling
methods (Tier1) leads to 81.8% of variants which are
validated by DNA somatic variants (concordant calls)
(see Figure 2(B)). The combination of Tier1 with mu-
tations called by Mutect2 and SNPiR (Tier2) leads
to a higher sensitivity while the precision is still in a
moderate range. For the following analysis, we concen-
trated only on Tier1.

Performance of a combined calling method

A total of 634 somatic mutations were called from 21
tumor samples. 518 mutations of them were concor-
dant and 116 were discordant (see Table 1). On the
DNA level, a total of 10099 mutations were called and
9864 of them were not called by our method.

Variants not found in RNA

To understand why variant calls from RNA sequenc-
ing missed a large majority of variant calls observed by
DNA sequencing, we checked the properties of variants
missed by RNA callers. From the 9864 missed somatic
variants, 6949 (70.4%) were not in exonic regions (see
Supplementary Figure 1). From the mutations in ex-
onic regions, 2046 (20.9%) were missed because these
variants are from genes with less abundant transcripts.
The effect of transcript abundance on variants discov-
ered from RNA-seq could also be observed in the per-
centage of concordant calls: 516 (15%) of the expressed
mutations were called by Tier1 (see Figure 3 (A)) but
when the expression is higher (DP>10) 34.6% of the
somatic mutations were called. This confirms that an
important factor in RNA-seq variant calling is the ex-
pression level.
Among the mutations found by DNA callers but

missed by Tier1 from highly expressed genes, 594
(6.0%) of mutations in tumor DNA and 756 (7.7%) of
mutations in tumor RNA had a variant fraction < 0.20
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(see Figure 3 (B), Supplementary Figure 2). This result
shows that one of the limitations of RNA-based variant
calling methods is that it is highly dependent on the
variant allele frequency. When the mutation has a low
variant frequency at DNA level, it is possible to miss
these mutations because of the heterogeneity of the
tumor sample. From the variants with high expression
and high variant allele frequency, thirty one mutations
were not called by at least one of the callers. Ninety six
mutations were filtered out by at least one of the callers
because of potential evidence of germline variants or
because the realigning step with PBLAT shows that
these variants could come from mis-mapping. Most of
the variants which are missed at a low variant fre-
quency are called by MuTect2 or SNPiR alone (see
Figure 3 (C)). By studying the filter steps in future
work, we may be able to call a higher number of those
variants.

Variants not found in DNA

The differences in coverage or allele fraction between
DNA and RNA datasets could contribute to discor-
dant calls. Therefore, we checked those attributes at
discordant sites. Twenty four (20.7%) of the discordant
mutations had a read depth (DP) of uniquely mapping
reads under 10 at DNA level (see Sublementary Fig-
ure 3) and another 25 (21.6%) mutations had a variant
allele frequency (VF) above zero at DNA level, indi-
cating that these low level DNA variants were missed
by DNA-based callers by TCGA. Twenty four vari-
ants with 0 variant fraction at DNA level but high
DP in DNA normal, DNA tumor and RNA tumor
were mostly either A>G or C>T (see Sublementary
Figure 5). Those variants were found at 15 different
positions, of which one variant (chr3:58141791 A>G
[FLNB:p.M2324V]) is found in 4 different samples and
another (chr20:10285837 C>T) in 9 different samples.
These likely represent probably non-annotated RNA-
editing sites [20–22].
Because we observed differences in the variant frac-

tion at the discordant sites, we next expanded the anal-
ysis to all sites. Interestingly, we observed weak corre-
lation of variant fraction between tumor DNA and tu-
mor RNA at positions with DP>0 for tumor DNA and
RNA (see Figure 4 (A)). When we limit the analysis
to positions with DP>10 for tumor DNA (see Figure
4 (B)) or tumor and normal DNA (see Figure 4 (C)),
we also observed a weak correlation. Finally, when we
limit the analysis to positions with DP>10 for tumor
DNA and RNA and normal DNA, we observed a strong
correlation of variant fraction between RNA and DNA
(see Figure 4 (D)). Only four mutations had variant
frequencies around 50% at DNA level and 100% at
RNA level which suggests that these are imprinted

genes. These results suggest that variant fraction in
abundant transcripts are strongly correlated with vari-
ant fractions at DNA level. Therefore, RNA variant
fraction may be used as a substitute for DNA variant
fraction for subclone phylogenetic analysis.

Detection of artificial spiked variants

To further assess the performance of RNA-based
callers, we used BamSurgeon and spiked-in 200 artifi-
cial RNA sequence variants at varying variant fractions
in two tumor transcriptomes. From the 200 simulated
variant positions, 120 were actually spiked in because
failed positions have too low read depth even if the po-
sitions for spiking were obtained from expressed genes.
On average 71% of all spiked-in variants were found by
each caller alone. The combination of all three callers
leads to a calling of around 50% of all spiked-in muta-
tions (see Table 2, Supplementary Figure 5). By using
Tier2, we were able to call 60% of all spiked-in muta-
tions. 55.6% of the mutations missed by Tier1 are not
in coding regions (see Table 3). From the remaining
missed variants, 15.7% have a variant allele fraction of
less than 0.2 and 6.1% have high variant allele fraction
but have a DP<10 in DNA.

Comparison between RADIA and VaDiR

Since RADIA performs function similar to our work-
flow VaDiR, we compared the performance differences
between RADIA and VaDiR. RADIA uses DNA vari-
ant calling as the primary method and use RNA vari-
ant calling as a supplement. All somatic variants called
by RADIA are supported by DNA-level evidence and
RNA-only variants are not called by RADIA. There-
fore, we limited our comparison to variants that are
found at both RNA and DNA levels by RADIA and
VaDiR. A total of 308 mutations were called by either
RADIA or VaDiR or both in six samples. Of these,
175 mutations were called by both methods, 12 muta-
tions were called by VaDiR only, and 121 mutations
were called by RADIA only (see Supplementary Fig-
ure 6). From these 121 mutations, 40 (33.1%) had a
read depth below 10 in RNA. 52 (43.0%) mutations,
with a read depth over 10, had a variant fraction below
0.20. This shows again the limitation of method based
only on RNA. Six of the remaining 29 variants were
in non-exonic regions and would not be called by our
method.

Ovarian cancer: resistant vs. sensitive

Since variant calling from RNA-seq provides both mu-
tational status and gene expression, the number of
mutations found by RNA-seq may be associated with
pathologic or clinical phenotypes. In contrast, the to-
tal number of mutations found at the DNA level may
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not be associated with pathologic or clinical pheno-
type because it may be confounded by potentially non-
relevant mutations in non-coding region or in genes
that are not expressed. To determine if variant calling
from RNA-sequencing may provide novel insights into
clinical phenotype, we characterized the number of
mutations in expressed genes from RNA-seq obtained
from 10 chemotherapy-resistant and 11 chemotherapy-
sensitive ovarian carcinomas. We considered concor-
dant mutations only (those found by both RNA- and
DNA-based callers) for the analysis. The results in-
dicate that concordant rate is higher for Tier1 mu-
tations compared to Tier2 mutations although total
number of mutations are higher in Tier2 (see Figure
5 (A)). We observed higher amount of mutations in
chemotherapy-sensitive ovarian carcinomas compared
to chemotherapy-resistant counterparts (see Figure 5
(A)). This result is consistent with previous studies
indicating that sensitive tumor samples have a higher
mutation rate in ovarian cancer [23]. In these samples,
number of mutations at either DNA or RnA levels was
significantly higher in sensitive carcinomas compared
to resistant carcinoma samples (see Figure 5 (B)).
A higher mutation burden in sensitive tumors sam-

ples may be the result of high mutagenic processes
in the cancer cells or the result of a high degree of
intratumor heterogeneity or tumor subclones. If high
levels of tumor subclones with clonal driver mutations
are contributing to higher mutation burden in sensi-
tive tumor samples, we expect these mutations will
exist in lower variant fractions because they represent
unique tumor subclones. Therefore, we limit our vari-
ant fraction analysis to variants that produce nonsyn-
onymous mutations because they are more likely to
contribute to a change in phenotype and the evolution
of tumor subclones. Results, shown in supplementary
Figure 7, indicate that differences in variant fractions
between sensitive and resistant samples are not signifi-
cant. Interestingly, sensitive samples have significantly
lower variant allele fractions in non-COSMIC muta-
tions compared to resistant samples both at the RNA
(pValue=0.034) and DNA level (pValue=0.017)(see
Supplementary Figure 7 (B)). These results suggest
that these mutations are coming from subclonal pop-
ulations. The higher levels of clonal heterogeneity and
mutation burden in sensitive samples may be the result
of defects in DNA repair, and this tumor cell character-
istics may explain why they are sensitive to platinum-
based chemotherapy.

DISCUSSION
With our approach, we were able to call variants with
high precision. Only a small fraction of the variants
which are called in RNA but not in DNA are likely

false positives. The remaining discordant variants are
either RNA-editing sites or are missed at the DNA
level as well. Most of the variants called in DNA but
missed by VaDiR are not in coding regions or are not
expressed. We also missed many variants that have
low variant frequency. Those are called by none of the
callers, MuTect2 only, or SNPiR only. These muta-
tions are observed at low variant frequencies in tu-
mor DNA, and therefore they likely represent muta-
tions from small subsets of tumor subclones. Finally,
our approach missed approximately 15% of variants
(127/853) with a high DP and a high variant allele fre-
quency. Among those 127, 96 mutations were called by
at least one method, indicating that consensus calling
is too stringent or that parameters for one of the callers
is not optimal. Those data are confirmed by the arti-
ficial spiked-in variants where only variants with high
variant frequency could be called by all three callers.
The comparison to RADIA shows that we are miss-

ing mainly variants in low frequency ranges while RA-
DIA is missing a few variants with high variant fre-
quency in RNA. This confirms the limitation of calling
variants only from RNA, but also shows that we are
able to call a great number of somatic variants with-
out the need for whole exome sequencing. We were
also able to find new possible RNA-editing sites, which
should be investigated in future studies. Therefore, our
workflow provides new capabilities that are missing in
existing approaches and can be used to gain novel in-
sight into disease phenotype.
Our main concern in future studies would be to in-

crease the number of concordant variant calls by ad-
justment of the filtering steps from SNPiR and RV-
boost, and to investigate the reasons for the missed
somatic variants with high variant allele frequency.

METHODS
Software

To process the data, we used the software STAR, BWA
MEM, Genome Analysis Toolkit (GATK), SNPiR, RV-
boost, R, Picard, BEDtools, ANNOVAR, SAMtools,
and BCFtools which is a part of the SAMtools package
[2, 11, 12, 24–31] (see Supplementary Table 1). To an-
alyze our results, we used the software BAMSurgeon,
R, and RADIA [14, 32]. We used reference files from
Broad Institute’s resource bundle [33], including the
UCSC hg19 (GRCh37) reference genome, known in-
dels from the 1000 Genomes Project, and known SNPs
from dbSNP.
To validate the results that we obtained from RNA,

we used somatic variants from DNA called by any
two of the variant callers MuSE, MuTect2, Somatic-
Sniper, and VarScan. We retrieved the corresponding
VCF files from GDC [19].
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We implemented SNPiR with the following modifi-
cations: In the file BLAT candidates.pl at line 94, the
developers incorrectly handled the information in the
CIGAR-string of hardclipped reads, that resulted in a
faulty shift of the read position. We corrected the code
to handle CIGAR-strings correctly. This modification
was necessary because our workflow differs from the
SNPiR workflow in that we use hard-clipped reads. At
the same location, we also added an optimization to
avoid searching through more base positions than nec-
essary. Further, we changed the filter to use PBLAT
instead of BLAT, so we could utilize additional CPU
threads to improve execution time. We made similar
changes in the file filter mismatch first6bp.pl at line
84. In addition, we optimized the search algorithm
in filter intron near splicejuncts.pl by skipping exons
and genes that do not contain a given variant position
(which also introduced the requirement that SNPiR’s
gene annotation table be sorted by position) and mod-
erately improve code for readability. Finally, we mod-
ified convertVCF.sh to filter out any variant whose
read depth (DP) value was zero, in order to prevent
division-by-zero errors that occurred with our dataset.
Rather than replacing the original SNPiR files in our
distribution, we have included both versions and pre-
fixed our file names with “revised ”.
For comparison with our method, we implemented

RADIA with the following modification: During BLAT
filtering, RADIA also incorrectly handled the hard-
clipped reads. We corrected the code for the same rea-
sons as described for the SNPiR implementation.
For creation of the figures, the R package ggplot2

[34] was used.

Aligning sequences

The procedure for the alignment to the reference
genome followed GATK Best Practices [35, 36]. For
RNA-seq, we used the STAR aligner in 2-pass mode
with the parameters implemented by ENCODE project.
The resulting aligned reads were processed to add read
groups, sort, mark duplicates, split reads that spanned
splice junctions, create an index, realign around known
indels, reassign mapping qualities, and recalibrate base
quality scores.
For DNA, we used the BWA MEM aligner with the

same reference genome. The resulting aligned reads
were processed to add read groups, sort, mark dupli-
cates, create an index, realign around known indels,
reassign mapping qualities, and recalibrate base qual-
ity scores.

Calling variants

A refined BAM file for each sample is then used to
process the variant calling. Three different methods for

calling are used: RVboost, SNPiR, and MuTect2. The
first two methods are for germline variants in RNA
and the last method is for somatic variants in DNA.
None of these methods is for somatic variant calling in
RNA. RVboost and SNPiR use the same variant caller,
UnifiedGenotyper from GATK, but different filtering
procedures. RVboost filters variants using a statisti-
cal learning method called boosting, whereas SNPiR
uses hard filtering in 7 steps (see Supplementary Ta-
ble 2). To adapt MuTect2’s results for RNA, we im-
plemented three of SNPiR’s hard-filtering steps. RV-
boost and SNPiR only need the refined RNA BAM
file from the tumor tissue. MuTect2 needs both the re-
fined RNA BAM from the tumor tissue and the refined
DNA BAM from normal tissue.

Filtering somatic variants by caller intersection and

additional hard filters

In addition to the filtering procedures of the variant
callers themselves, we further filtered our results by
taking an intersection of vcf files from the three callers.
We restricted our final, combined callset to the vari-
ants called by all three methods (Tier 1) or supple-
mented by variants called by MuTect2 and SNPiR
(Tier2). We also applied our own hard filters, only ac-
cepting variants with a read depth (DP) of at least five
and a variant allele frequency (VF) of less than 3% in
uniquely mapping reads (Mapping quality of at least
40) in the normal DNA at the corresponding position.

Processing artificial spiked variants

We used BAMSURGEON to spike in 200 variants in
coding regions of two ovarian tumor samples, such
that each sample had a different random frequency of
spiked-in variants. The samples were then processed
by VaDiR.

Processing samples with RADIA

Six samples from TCGA, three from resistant patients
and three from sensitive patients, were processed with
RADIA. This analysis required three BAM files from
each sample: one from normal blood DNA, one from
tumor DNA, and one from tumor RNA. We followed
the instructions provided by RADIA for filtering. We
used all possible filters provided by RADIA.

AVAILABILITY AND REQUIREMENTS
• Project name: somatic VaDiR
• Project home page: e.g. http://to.be.added.later
• Operating system(s): Linux/Unix 64-Bit
• Programming language: Perl, R, Java, Shell
• Other requirements: Java 7 and 8, R 3.3 or higher
• License: MIT
• Any restrictions to use by non-academics: no
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AVAILABILITY OF SUPPORTING DATA
AND MATERIALS
The data sets supporting the results of this article
are available in the open science framework repository,
[37], and the GDC repository, [19].
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• WGS: Whole genome sequencing

• WES: Whole exome sequencing

• RNA-seq: Data from sequencing cDNA derived from RNA

• Tier1: Variants called by each caller (SNPiR, RVBoost, MuTect2)

• Tier2: Variants called by Tier1 and variants called by SNPiR and

MuTect2.

• VF: Variant fraction

• DP: read depth
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Illustrations and figures

Figure 1 Workflow of processing the variant call for somatic
variants with RNA-seq. Aligning is done by STAR and BWA
MEM and the refined mapping follows GATK Best Practices.
The variant calling is done by Unified Genotyper (GATK) and
MuTect2 (GATK). The following filtering steps are done by
RVBoost and SNPiR.

Tables and captions

Figure 2 Intersection of the three variant calling methods.
(A) Intersection of the three methods with all somatic calls.
The red arrows symbolize the amount of concordant calls. (B)
Intersection of three methods with only concordant calls.

Figure 3 Variants called in tumor DNA. (A) Percentage of
concordant calls of all somatic variants from expressed genes
for each sample. With a high expression a higher percentage of
concordant calls can be achieved. (B) Variant frequency in
tumor DNA and RNA and normal DNA of all somatic variant
called in DNA with a high expression (DP>10). (C)
Comparison of somatic variants called in DNA which have
high coverage in tumor DNA and RNA and normal DNA with
variant calls from the three RNA callers. The names in the
chart are the first letters of the caller SNPiR (s), RVBoost (r)
and MuTect (m) or their combinations.

Figure 4 Correlation between the variant frequency of RNA
and DNA. The four charts show different filtering steps of the
read depth of tumor DNA and RNA and normal DNA.

Figure 5 Comparison of sensitive and resistant samples. (A)
Test for significance of the difference in the variant allele
frequency of nonsynonymous variants with DP>10 in DNA
normal, DNA tumor and RNA tumor at tumor DNA and RNA
level. (B) Comparison of variant frequency in DNA and RNA
for each somatic variant.

Table 1 Performance characteristics of VaDiR with the
combination Tier1.

DNA positive DNA negative
RNA positive 518 116
RNA negative 9864 1595677

Table 2 Called spiked-in variants.

Sample Tier1 Tier2
OV10 68 (52.71%) 78 (62.40%)
OV11 61 (52.59%) 68 (58.62%)
OV12 48 (48.74%) 69 (57.98%)

Table 3 Characteristics of missed spiked-in variants.

Tier1 OV10 OV11 OV12
all 105 96 99
missed 37 36 42
missed in coding region 16 17 18
missed in coding region 11 9 13
by RNA VF>20%
missed in coding region 8 7 11
by RNA VF>20%
and normal DNA DP>10
Tier2 OV10 OV11 OV12
all 105 96 99
missed 27 29 31
missed in coding region 9 11 12
missed in coding region 6 5 9
by RNA VF>20%
missed in coding region 4 4 8
by RNA VF>20%
and normal DNA DP>10
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Dear Dr. Goodman,  
 
I would like to submit the manuscript entitled, “VADiR – an integrated approach to Variant Detection in RNA” for 
consideration as a Research article in the journal GigaScience. 
 
Although most of the available tools (such as SNPiR, RVboost) were developed for variant calling from RNA 
sequencing datasets, the performance of these methods for somatic variant calling from RNA sequencing was not 
previously evaluated. 
 
In this study, we developed an approach that integrate two available RNA variant callers (RVboost and SNPiR) and 
also adapted MuTect2 to perform the analysis of variants in RNA datasets. We analyzed performance of each 
caller against the ground-truth DNA variants called by TCGA. These analyses showed the limitation of each caller, 
and therefore we developed an approach that uses the consensus calls from all three callers.   This consensus 
calling approach produced variant calls with high precision.  Finally, we packaged these tools into one integrated 
tool set to perform variant calling from RNA sequencing. 
 
The main points in this study are:  
 

 We implemented a software pipeline to process RNA-seq for a 2-pass alignment with STAR and GATK Best 

Practice. BWA-MEM and GATK Best Practice was used for the DNA-seq. 

 We implemented a software pipeline that integrate RVBoost, SNPiR, and Mutect2 to perform consensus 

variant calling from RNA-seq.  

 The software utilizes several established filters to remove known RNA sequence artifacts and improved 

specific steps in SNPiR for more efficient detection of variants.  

 The performance of the proposed tool was evaluated by using two sets of data: (1) TCGA ovarian cancer 

data sets that contains validated DNA sequence variants; and (2) Three RNA-sequencing datasets with 

artificial variants spiked-in by BAMSurgeon. 

 Application of our tool resulted in the identification of RNA-editing sites that are previously 

undocumented in the literature.   

 The developed tool also provide evidence that mutation burden established from RNA-sequencing 

datasets is associated with clinical behavior.  

Since our tool is a complete, standalone workflow, it can be easily integrated into established workflows or 

custom pipelines.  We are confident that our tool will be of value to researchers interested in discovering somatic 

mutations from RNA-seq or those interested in using RNA-seq as an orthogonal validation platform for 

confirmation of DNA sequence variations.  
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